Supporting Information

Catalytic enantioselective synthesis of β-trifluoromethyl pyrrolines

Hiroyuki Kawai, Takashi Kitayama, Etsuko Tokunaga, Takashi Matsumoto, Hiroyasu Sato, Motoo Shiro and Norio Shibata*

Department of Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology,
Gokiso, Showa-ku, Nagoya 466-8555, Japan

Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan

Experimental Section

General Methods:

All reactions were performed in oven-dried glassware under a positive pressure of nitrogen. Solvents were transferred via syringe and were introduced into the reaction vessels through a rubber septum. All reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica-gel (60-F254). The TLC plates were visualized with UV light and 7% phosphomolybdic acid or KMnO₄ in water/heat. Column chromatography was carried out on a column packed with silica-gel 60N spherical neutral size 63-210 μm. The ¹H-NMR (300 MHz), ¹⁹F-NMR (282 MHz), ¹³C-NMR (150.9 MHz) spectra for solution in CDCl₃ were recorded on a Bruker Avance 600 and a Varian Mercury 300. Chemical shifts (δ) are expressed in ppm downfield from internal TMS or CHCl₃. HPLC analyses were performed on a JASCO U-2080 Plus using 4.6 x 250 mm CHIRALPAK AD-3 or CHIRALCEL OJ-H or CHIRALPAK IB column. Mass spectra were recorded on a SHIMADZU LCMS-2010EV. Optical rotations were measured on a HORIBA SEPA-300. Infrared spectra were recorded on a JASCO FT/IR-200 spectrometer. The β-trifluoromethylated enones 3 were prepared according to literature.¹

General procedure for the asymmetric conjugated addition of nitromethane to β-trifluoromethylated enones 3:
To a stirred solution of β-trifluoromethylated enone 3 (0.20 mmol), catalyst 7 (2.3 mg, 0.004 mmol, 2 mol%) in toluene (1.0 mL) was added nitromethane (58.8 μL, 1.00 mmol, 5.0 equiv) at ambient temperature under nitrogen atmosphere. After completion of reaction checked by TLC, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (n-hexane/ethyl acetate = 90/10) to give (S)-4.

(S)-4,4,4-Trifluoro-3-(nitromethyl)-1-phenylbutan-1-one (4a)

Reaction of 3a (20.0 mg, 0.10 mmol), catalyst 7 (1.1 mg, 0.002 mmol, 2 mol%), nitromethane (26.9 μL, 0.50 mmol, 5.0 equiv) in toluene (0.5 mL) at ambient temperature for 20 h gave (S)-4a (26.1 mg, 99%, 97% ee) as a white solid.

1H NMR (CDCl3, 300 MHz) δ 3.35 (dd, J = 9.0, 18.6 Hz, 1H), 3.47 (dd, J = 3.9, 18.3 Hz, 1H), 3.88-3.99 (m, 1H), 4.63 (dd, J = 4.8, 13.8 Hz, 1H), 4.72 (dd, J = 6.8, 13.8 Hz, 1H), 7.51 (t, J = 7.5 Hz, 2H), 7.64 (t, J = 7.4 Hz, 1H), 7.97 (d, J = 7.5 Hz, 2H); 13C NMR (CDCl3, 150.9 MHz) δ 34.2 (m), 37.9 (q, J = 28.2 Hz), 72.3 (m), 126.1 (q, J = 280.0 Hz), 128.1, 128.9, 134.2, 135.5, 194.7; 19F NMR (CDCl3, 282 MHz) δ -71.3 (d, J = 9.0 Hz, 3F) ; IR (KBr) 3068, 2962, 1691, 1558, 1451, 1396, 1172, 1102, 959, 930, 897, 799, 758, 724, 690, 653, 552, 510 cm⁻¹; mp = 48.0-49.0 ºC (CHCl3); MS (ESI, m/z) 300 [(M+Na) +], HRMS (ESI) calcd. for C11H10F3NNaO3 [(M+Na) +]: 284.0510 Found: 284.0506; The ee of the product was determined by HPLC using an IB column (n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm, τmaj = 16.1 min, τmin = 12.3 min); [α]D25 = -7.4 (c = 0.64, CHCl3), 97% ee.

(S)-4,4,4-Trifluoro-3-(nitromethyl)-1-m-tolylbutan-1-one (4b)

Reaction of 3b (42.8 mg, 0.20 mmol), catalyst 7 (2.3 mg, 0.004 mmol, 2 mol%), nitromethane (58.8 μL, 1.00 mmol, 5.0 equiv) in toluene (1.0 mL) at ambient temperature for 70 h gave (S)-4b (52.4 mg, 95%, 98% ee) as a white solid.

1H NMR (CDCl3, 300 MHz) δ 2.43 (s, 3H), 3.32 (dd, J = 9.3, 18.3 Hz, 1H), 3.45 (dd, J = 4.1, 18.5 Hz, 1H), 3.87-3.98 (m, 1H), 4.62 (dd, J = 4.5, 14.1 Hz, 1H), 4.70 (dd, J = 6.5, 14.1 Hz, 1H), 7.36-7.46 (m, 2H), 7.74-7.77 (m, 2H); 13C NMR (CDCl3, 150.9 MHz) δ 21.3, 34.2 (m), 37.9 (q, J =
28.7 Hz), 72.4 (m), 125.2, 126.1 (q, J = 280.0 Hz), 128.6, 128.8, 134.9, 135.6, 138.8, 194.8; 19F NMR (CDCl3, 282 MHz) δ -71.3 (d, J = 7.9 Hz, 3F); IR (KBr) 3018, 2928, 1681, 1562, 1430, 1385, 1300, 1251, 1173, 972, 798, 724, 686, 630, 597, 549, 505, 464 cm⁻¹; mp = 49.0-50.0 °C (CHCl₃); MS (ESI, m/z) 298 [(M+K)⁺], HRMS (ESI) calcd. for C₁₂H₁₂F₃NNaO₃ [(M+Na)⁺]: 298.0667 Found: 298.0670; The ee of the product was determined by HPLC using an IB column (n-hexane/i-PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm, τmaj = 14.5 min, τmin = 15.9 min); [α]D²⁵ = +0.3 (c = 1.19, CHCl₃), 98% ee.

(S)-4,4,4-Trifluoro-3-(nitromethyl)-1-ρ-tolylbutan-1-one (4c)

Reaction of 3c (42.8 mg, 0.20 mmol), catalyst 7 (2.3 mg, 0.004 mmol, 2 mol%), nitromethane (58.8 μL, 1.00 mmol, 5.0 equiv) in toluene (1.0 mL) at ambient temperature for 48 h gave (S)-4c (53.1 mg, 96%, 96% ee) as a white solid.

1H NMR (CDCl₃, 300 MHz) δ 2.43 (s, 3H), 3.30 (dd, J = 9.3, 18.3 Hz, 1H), 3.43 (dd, J = 3.9, 18.3 Hz, 1H), 3.86-3.97 (m, 1H), 4.62 (dd, J = 4.5, 14.1 Hz, 1H), 4.69 (dd, J = 6.9, 13.7 Hz, 1H), 7.30 (d, J = 14.4 Hz, 2H), 7.86 (d, J = 8.1 Hz, 2H); 13C NMR (CDCl₃, 150.9 MHz) δ 21.7, 34.0 (m), 37.9 (q, J = 28.7 Hz), 72.4 (m), 126.1 (q, J = 280.0 Hz), 128.2, 129.6, 133.1, 145.2, 194.2; 19F NMR (CDCl₃, 282 MHz) δ -71.4 (d, J = 9.0 Hz, 3F); IR (KBr) 3022, 2922, 1683, 1556, 1345, 1119, 972, 919, 846, 808, 764, 730, 651, 590, 567, 506, 459 cm⁻¹; mp = 43.0-44.5 °C (CHCl₃); MS (ESI, m/z) 298 [(M+K)⁺], HRMS (ESI) calcd. for C₁₂H₁₂F₃NNaO₃ [(M+Na)⁺]: 298.0667 Found: 298.0670; The ee of the product was determined by HPLC using an OJ-H column (n-hexane/i-PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm, τmaj = 18.2 min, τmin = 14.9 min); [α]D²⁵ = -8.5 (c = 0.80, CHCl₃), 96% ee.

(S)-4,4,4-Trifluoro-1-(4-methoxyphenyl)-3-(nitromethyl)butan-1-one (4d)

Reaction of 3d (46.0 mg, 0.20 mmol), catalyst 7 (2.3 mg, 0.004 mmol, 2 mol%), nitromethane (58.8 μL, 1.00 mmol, 5.0 equiv) in toluene (1.0 mL) at ambient temperature for 48 h gave (S)-4d (56.1 mg, 96%, 97% ee) as a white solid.

1H NMR (CDCl₃, 300 MHz) δ 3.27 (dd, J = 9.2, 18.5 Hz, 1H), 3.40 (dd, J = 4.1, 18.2 Hz, 1H), 3.83-3.97 (m, 1H), 3.89 (s, 3H), 4.63 (dd, J = 5.0, 14.3 Hz, 1H), 4.69 (dd, J = 6.8, 14.0 Hz, 1H),
6.94-6.99 (m, 2H), 7.91-7.96 (m, 2H); 13C NMR (CDCl$_3$, 150.9 MHz) δ 33.7 (m), 37.9 (q, J = 28.2 Hz), 55.5, 72.4 (m), 114.0, 126.2 (q, J = 280.0 Hz), 128.6, 130.4, 164.3, 193.0; 19F NMR (CDCl$_3$, 282 MHz) δ -71.3 (d, J = 7.9 Hz, 3F); IR (KBr) 2965, 2844, 1667, 1550, 1255, 1120, 1030, 968, 919, 842, 818, 733, 652, 569, 499, 419 cm$^{-1}$; mp = 90.0-92.0 ºC (CHCl$_3$); MS (ESI, m/z) 314 [(M+Na$^+$)]; HRMS (ESI) calcd. for C$_{12}$H$_{12}$F$_3$NNaO$_4$ [(M+Na$^+$)]: 314.0616 Found: 314.0626; The ee of the product was determined by HPLC using an OJ-H column (n-hexane/i-PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm, τ_{maj} = 41.2 min, τ_{min} = 31.6 min); [α]$_D$ = -10.8 (c = 1.43, CHCl$_3$), 97% ee.

(S)-4,4,4-Trifluoro-1-(4-fluorophenyl)-3-(nitromethyl)butan-1-one (4e)

![Chemical structure of 4e](image)

Reaction of 3e (43.6 mg, 0.20 mmol), catalyst 7 (2.3 mg, 0.004 mmol, 2 mol%), nitromethane (58.8 μL, 1.00 mmol, 5.0 equiv) in toluene (1.0 mL) at ambient temperature for 70 h gave (S)-4e (49.1 mg, 88%, 97% ee) as a colorless oil.

1H NMR (CDCl$_3$, 300 MHz) δ 3.33 (dd, J = 9.0, 18.3 Hz, 1H), 3.44 (dd, J = 4.1, 18.5 Hz, 1H), 3.85-3.97 (m, 1H), 4.63 (dd, J = 4.8, 13.8 Hz, 1H), 4.72 (dd, J = 6.8, 14.0 Hz, 1H), 7.18 (t, J = 8.6 Hz, 2H), 8.01 (dd, J = 5.3, 8.9 Hz, 2H); 13C NMR (CDCl$_3$, 150.9 MHz) δ 34.1 (m), 37.9 (q, J = 28.2 Hz), 72.3 (m), 116.1 (d, J = 22.6 Hz), 126.0 (q, J = 280.0 Hz), 130.9 (d, J = 9.1 Hz), 132.0 (d, J = 3.0 Hz), 166.3 (d, J = 256.5 Hz), 193.1; 19F NMR (CDCl$_3$, 282 MHz) δ -103.5 (m, 1F), -71.3 (d, J = 7.9 Hz, 3F); IR (neat) 2928, 1688, 1599, 1562, 1508, 1380, 1342, 1301, 1228, 1176, 1124, 1003, 973, 911, 837, 735, 651, 587, 548, 474 cm$^{-1}$; MS (ESI, m/z) 302 [(M+Na$^+$)]; HRMS (ESI) calcd. for C$_{11}$H$_9$F$_4$NNaO$_3$ [(M+Na$^+$)]: 302.0416 Found: 302.0414; The ee of the product was determined by HPLC using an OJ-H column (n-hexane/i-PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm, τ_{maj} = 18.4 min, τ_{min} = 15.1 min); [α]$_D$ = -6.6 (c = 1.20, CHCl$_3$), 97% ee.

(S)-1-(4-Chlorophenyl)-4,4,4-trifluoro-3-(nitromethyl)butan-1-one (4f)

![Chemical structure of 4f](image)

Reaction of 3f (46.9 mg, 0.20 mmol), catalyst 7 (2.3 mg, 0.004 mmol, 2 mol%), nitromethane (58.8 μL, 1.00 mmol, 5.0 equiv) in toluene (1.0 mL) at ambient temperature for 71 h gave (S)-4f (59.1 mg, 99%, 97% ee) as a white solid.

1H NMR (CDCl$_3$, 300 MHz) δ 3.32 (dd, J = 9.2, 18.5 Hz, 1H), 3.43 (dd, J = 4.5, 18.3 Hz, 1H),...
(S)-1-(4-Bromophenyl)-4,4,4-trifluoro-3-(nitromethyl)butan-1-one (4g)

Reaction of 3g (55.8 mg, 0.20 mmol), catalyst 7 (2.3 mg, 0.004 mmol, 2 mol%), nitromethane (58.8 μL, 1.00 mmol, 5.0 equiv) in toluene (1.0 mL) at ambient temperature for 72 h gave (S)-4g (62.8 mg, 92%, 98% ee) as a white solid.

1H NMR (CDCl₃, 300 MHz) δ 3.32 (dd, J = 8.9, 18.5 Hz, 1H), 3.43 (dd, J = 4.4, 18.2 Hz, 1H), 3.85-3.96 (m, 1H), 4.63 (dd, J = 4.8, 13.8 Hz, 1H), 4.72 (dd, J = 6.6, 13.8 Hz, 1H), 7.49 (d, J = 8.4 Hz, 2H), 7.91 (d, J = 8.4 Hz, 2H); 13C NMR (CDCl₃, 150.9 MHz) δ 34.2 (m), 37.8 (q, J = 28.2 Hz), 72.2 (m), 126.0 (q, J = 280.0 Hz), 129.5, 132.2, 134.2, 193.7; 19F NMR (CDCl₃, 282 MHz) δ -71.3 (d, J = 7.9 Hz, 3F); IR (KBr) 3032, 2974, 1928, 1676, 1558, 1487, 1344, 1172, 973, 895, 817, 784, 737, 704, 637, 564, 509, 472 cm⁻¹; mp = 40.0-41.0 °C (CHCl₃); MS (ESI, m/z) 362 [(M+Na)+], HRMS (ESI) calcd. for C₁₁H₉BrF₃NNaO₃ [(M+Na)+]: 361.9616 Found: 361.9615; The ee of the product was determined by HPLC using an IB column (n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm, τmaj = 12.7 min, τmin = 13.8 min); [α]D²⁵ = -8.9 (c = 1.37, CHCl₃), 98% ee.

(S)-4,4,4-Trifluoro-3-(nitromethyl)-1-(4-nitrophenyl)butan-1-one (4h)

Reaction of 3h (49.0 mg, 0.20 mmol), catalyst 7 (2.3 mg, 0.004 mmol, 2 mol%), nitromethane (58.8 μL, 1.00 mmol, 5.0 equiv) in toluene (1.0 mL) at ambient temperature for 90 h gave (S)-4h (57.3 mg, 94%, 97% ee) as a white solid.
1H NMR (CDCl3, 300 MHz) δ 3.44 (dd, J = 8.4, 18.6 Hz, 1H), 3.53 (dd, J = 4.5, 18.6 Hz, 1H), 3.88-3.98 (m, 1H), 4.66 (dd, J = 6.5, 14.0 Hz, 1H), 8.15 (d, J = 8.4 Hz, 2H), 8.36 (d, J = 8.4 Hz, 2H); 13C NMR (CDCl3, 150.9 MHz) δ 34.9 (m), 37.8 (q, J = 28.7 Hz), 72.1 (m), 124.1, 125.8 (q, J = 280.0 Hz), 129.2, 139.8, 150.8, 193.4; 19F NMR (CDCl3, 282 MHz) δ -71.2 (d, J = 8.7 Hz, 3F); IR (KBr) 3113, 2931, 1687, 1563, 1525, 1345, 1254, 1217, 1125, 1059, 1006, 851, 788, 748, 723, 687, 489 cm\(^{-1}\); mp = 80.0-81.0 ºC (CHCl3); MS (ESI, m/z) 329 [(M+Na)+], HRMS (ESI) calcd. for C11H9F3N2NaO5 [(M+Na)+]: 329.0361 Found: 329.0368.; The ee of the product was determined by HPLC using an OJ-H column (n-hexane/i-PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm, τ\(_{maj}\) = 47.5 min, τ\(_{min}\) = 64.5 min); [α]\(_D\)\(^{25}\) = -8.2 (c = 1.53, CHCl3), 97% ee.

Table: Chemical Constants

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mp</td>
<td>80.0-81.0 ºC (CHCl3)</td>
</tr>
<tr>
<td>MS (ESI, m/z)</td>
<td>329 [(M+Na)+]</td>
</tr>
</tbody>
</table>

Reaction of 3i (50.0 mg, 0.20 mmol), catalyst 7 (2.3 mg, 0.004 mmol, 2 mol%), nitromethane (58.8 µL, 1.00 mmol, 5.0 equiv) in toluene (1.0 mL) at ambient temperature for 72 h gave (S)-4i (60.3 mg, 97%, 97% ee) as a white solid.

1H NMR (CDCl3, 300 MHz) δ 3.46 (dd, J = 9.2, 18.2 Hz, 1H), 3.58 (dd, J = 4.1, 18.5 Hz, 1H), 3.96-4.01 (m, 1H), 4.66 (dd, J = 4.7, 14.0 Hz, 1H), 4.74 (dd, J = 6.5, 14.0 Hz, 1H), 7.55-7.66 (m, 2H), 7.87-7.92 (m, 2H), 7.95-8.00 (m, 2H), 8.46 (s, 1H); 13C NMR (CDCl3, 150.9 MHz) δ 34.2 (m), 38.0 (q, J = 28.2 Hz), 72.4 (m), 123.3, 126.1 (q, J = 281 Hz), 127.2, 127.8, 128.9, 129.1, 129.6, 130.1, 132.3, 132.8, 135.9, 194.5; 19F NMR (CDCl3, 282 MHz) δ -71.2 (d, J = 8.7 Hz, 3F); IR (KBr) 3035, 2931, 1675, 1569, 1469, 1430, 1384, 1254, 1168, 1117, 974, 941, 857, 823, 748, 625, 592, 549, 474 cm\(^{-1}\); mp = 74.5-76.5 ºC (CHCl3); MS (ESI, m/z) 334 [(M+Na)+], HRMS (ESI) calcd. for C15H12F3NNaO3 [(M+Na)+]: 334.0667 Found: 334.0669; The ee of the product was determined by HPLC using an IB column (n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm, τ\(_{maj}\) = 17.1 min, τ\(_{min}\) = 14.9 min); [α]\(_D\)\(^{25}\) = -24.3 (c = 1.65, CHCl3), 97% ee.

Reaction of 3j (38.0 mg, 0.20 mmol), catalyst 7 (2.3 mg, 0.004 mmol, 2 mol%), nitromethane (58.8 µL, 1.00 mmol, 5.0 equiv) in toluene (1.0 mL) at ambient temperature for 72 h gave (S)-4j (47.6 mg, 95%, 98% ee) as a yellow oil.

1H NMR (CDCl3, 300 MHz) δ 3.20 (dd, J = 9.0, 18.0 Hz, 1H), 3.35 (dd, J = 4.4, 18.2 Hz, 1H),
3.83-3.94 (m, 1H), 4.64 (dd, J = 5.1, 13.8 Hz, 1H), 4.71 (dd, J = 6.5, 14.0 Hz, 1H), 6.61 (dd, J = 1.7, 3.8 Hz, 1H), 7.29 (dd, J = 0.8, 4.1 Hz, 1H), 7.64-7.65 (m, 1H); 13C NMR (CDCl3, 150.9 MHz) δ 33.8 (m), 37.5 (q, J = 28.7 Hz), 72.3 (m), 112.8, 118.2, 125.9 (q, J = 280.0 Hz), 147.2, 151.6, 183.6; 19F NMR (CDCl3, 282 MHz) δ -71.4 (d, J = 9.0 Hz, 3F); IR (neat) 3142, 2929, 1681, 1567, 1469, 1386, 1254, 1176, 1126, 1037, 974, 838, 767, 735, 639, 594 cm⁻¹; MS (ESI, m/z) 274 [(M+Na)+], HRMS (ESI) calcd. for C9H8F3NNaO4 [(M+Na)+]: 274.0303 Found: 274.0304; The ee of the product was determined by HPLC using an IB column (n-hexane/i-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm, τmaj = 23.3 min, τmin = 20.0 min); [α]D²⁵ = -8.7 (c = 1.12, CHCl3), 98% ee.

General procedure for the enantioselective one-pot synthesis of β-trifluoromethyl pyrrolines 2:

To a stirred solution of β-trifluoromethylated enone 3 (0.10 mmol), catalyst 7 (1.1 mg, 0.002 mmol, 2 mol%) in toluene (0.5 mL) was added nitromethane (26.9 μL, 0.50 mmol, 5.0 equiv) at ambient temperature under nitrogen atmosphere. After completion of reaction checked by TLC, the reaction mixture was concentrated under reduced pressure. To a stirred solution of crude 4 in THF/MeOH (2/1, 1.5 mL) was added acetic acid (90.0 μL, 16.0 equiv), Fe (251 mg, 45.0 equiv) successively at the ambient temperature, and the resulting mixture was heated at 65 ºC for 10 h under nitrogen atmosphere. After cooling down to room temperature, the reaction mixture was filtrated through Celite, rinsed with AcOEt. The whole mixture was washed with sat. NaHCO₃ aq., brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (CHCl₃) to give β-trifluoromethyl pyrrole (S)-2.

(S)-5-Phenyl-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrole (2a)

Reaction of 3a (20.0 mg, 0.10 mmol), catalyst 7 (1.1 mg, 0.002 mmol, 2 mol%), nitromethane (26.9 μL, 0.50 mmol, 5.0 equiv) in toluene (0.5 mL) at ambient temperature for 50 h gave the crude product of 4a. Reduction-cyclization-dehydration reaction of crude 4a, acetic acid (90.0 μL, 16.0 equiv), Fe (251 mg, 45.0 equiv) in THF/MeOH (2/1, 1.5 mL) at 65 ºC for 10 h gave (S)-2a (19.0 mg, 89%, 98% ee) as a white solid.

1H NMR (CDCl3, 300 MHz) δ 3.12-3.32 (m, 3H), 4.20-4.37 (m, 2H), 7.40-7.50 (m, 3H), 7.78-7.84 (m, 2H); 13C NMR (CDCl3, 150.9 MHz) δ 35.9 (m), 40.9 (q, J = 28.2 Hz), 61.2 (m), 127.5 (q, J = 277.2 Hz), 127.6, 128.6, 131.0, 133.4, 170.9; 19F NMR (CDCl3, 282 MHz) δ -72.2 (d, J = 8.7 Hz, 3F); IR (KBr) 3032, 2944, 1628, 1578, 1496, 1439, 1385, 1351, 1276, 1108, 1024, 928, 797, 764, 694, 553, 520.7, 458 cm⁻¹; mp = 61.0-62.0 ºC (CHCl3); MS (ESI, m/z) 214 [M+H]+, HRMS (ESI) calcd. for C11H11F3N [M+H]+: 214.0844 Found: 214.0835; The ee of the product was determined by
HPLC using an OJ-H column (n-hexane/i-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm, τ_{maj} = 14.9 min, τ_{min} = 19.6 min); [α]_{D}^{25} = -42.4 (c = 0.32, CHCl₃), 98% ee.

(S)-5-p-Tolyl-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrole (2c)

Reaction of 3c (21.4 mg, 0.10 mmol), catalyst 7 (1.1 mg, 0.002 mmol, 2 mol%), nitromethane (26.9 μL, 0.50 mmol, 5.0 equiv) in toluene (0.5 mL) at ambient temperature for 50 h gave the crude product of 4c. Reduction-cyclization-dehydration reaction of crude 3c, acetic acid (90.0 μL, 16.0 equiv), Fe (251 mg, 45.0 equiv) in THF/MeOH (2/1, 1.5 mL) at 65 ºC for 10 h gave (S)-2c (20.9 mg, 92%, 98% ee) as a white solid.

1H NMR (CDCl₃, 300 MHz) δ 2.39 (s, 3H), 3.10-3.26 (m, 3H), 4.18-4.35 (m, 2H), 7.23 (d, J = 7.8 Hz, 2H), 7.71 (d, J = 8.1 Hz, 2H); 13C NMR (CDCl₃, 150.9 MHz) δ 21.5, 35.9 (m), 40.8 (q, J = 28.2 Hz), 61.1 (m), 127.57 (q, J = 277.2 Hz), 127.57, 129.3, 130.7, 141.3, 170.8; 19F NMR (CDCl₃, 282 MHz) δ -72.2 (d, J = 8.7 Hz, 3F); IR (KBr) 2950, 2879, 1924, 1622, 1569, 1514, 1459, 1387, 1343, 1320, 1109, 960, 821, 714, 609, 517, 468 cm⁻¹; mp = 62.0-64.5 ºC (CHCl₃); MS (ESI, m/z) 228 [M+H]⁺, HRMS (ESI) calcd. for C₁₂H₁₃F₃N [M+H]⁺: 228.1000 Found: 228.1007; The ee of the product was determined by HPLC using an OJ-H column (n-hexane/i-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm, τ_{maj} = 15.9 min, τ_{min} = 23.2 min); [α]_{D}^{25} = -43.5 (c = 0.36, CHCl₃), 98% ee.

(S)-5-(4-Methoxyphenyl)-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrole (2d)

Reaction of 3d (23.0 mg, 0.10 mmol), catalyst 7 (1.1 mg, 0.002 mmol, 2 mol%), nitromethane (26.9 μL, 0.50 mmol, 5.0 equiv) in toluene (0.5 mL) at ambient temperature for 50 h gave the crude product of 4d. Reduction-cyclization-dehydration reaction of crude 3d, acetic acid (90.0 μL, 16.0 equiv), Fe (251 mg, 45.0 equiv) in THF/MeOH (2/1, 1.5 mL) at 65 ºC for 10 h gave (S)-2d (23.6 mg, 97%, 98% ee) as a white solid.

1H NMR (CDCl₃, 300 MHz) δ 3.10-3.24 (m, 3H), 3.85 (s, 3H), 4.16-4.32 (m, 2H), 6.93 (d, J = 8.7 Hz, 2H), 7.77 (d, J = 8.7 Hz, 2H); 13C NMR (CDCl₃, 150.9 MHz) δ 35.8 (m), 40.9 (q, J = 28.2 Hz), 55.3, 61.0 (m), 113.9, 126.2, 127.6 (q, J = 276.7 Hz), 129.3, 161.8, 170.2; 19F NMR (CDCl₃, 282 MHz) δ -72.2 (d, J = 8.7 Hz, 3F); IR (KBr) 2962, 2841, 1623, 1575, 1516, 1462, 1385, 1345, 1319,
1158, 1111, 1037, 845, 821, 556 cm⁻¹; mp = 79.5-81.0 °C (CHCl₃); MS (ESI, m/z) 244 [M+H]⁺, HRMS (ESI) calcd. for C₁₂H₁₅F₃NO [M+H]⁺: 244.0949 Found: 244.0948; The ee of the product was determined by HPLC using an AD-3 column (n-hexane/i-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm, τₘₐₐₐ = 26.9 min, τₘᵢₙ = 25.7 min); [α]D²⁵ = -42.7 (c = 0.53, CHCl₃), 98% ee.

(S)-5-(4-Chlorophenyl)-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrole (2f)

Reaction of 3f (23.5 mg, 0.10 mmol), catalyst 7 (1.1 mg, 0.002 mmol, 2 mol%), nitromethane (26.9 μL, 0.50 mmol, 5.0 equiv) in toluene (0.5 mL) at ambient temperature for 72 h gave the crude product of 4f. Reduction-cyclization-dehydration reaction of crude 4f, acetic acid (90.0 μL, 16.0 equiv), Fe (251 mg, 45.0 equiv) in THF/MeOH (2/1, 1.5 mL) at 65 °C for 10 h gave (S)-2f (23.3 mg, 94%, 98% ee) as a white solid.

¹H NMR (CDCl₃, 300 MHz) δ 3.12-3.25 (m, 3H), 4.19-4.37 (m, 2H), 7.40 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 8.7 Hz, 2H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 35.9 (m), 40.9 (q, J = 28.2 Hz), 61.3 (m), 127.4 (q, J = 277.2 Hz), 128.86, 128.91, 131.8, 137.1, 169.8; ¹⁹F NMR (CDCl₃, 282 MHz) δ -72.3 (d, J = 8.7 Hz, 3F); IR (KBr) 2955, 2880, 1625, 1492, 1439, 1387, 1321, 1274, 1116, 1034, 1014, 957, 828, 714, 553, 528, 455 cm⁻¹; mp = 67.0-68.0 °C (CHCl₃); MS (ESI, m/z) 248 [M+H]⁺, HRMS (ESI) calcd. for C₁₁H₁₀ClF₃N [M+H]⁺: 248.0454 Found: 248.0459; The ee of the product was determined by HPLC using an OJ-H column (n-hexane/i-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm, τₘₐₐₐ = 14.6 min, τₘᵢₙ = 22.6 min); [α]D²⁵ = -38.2 (c = 0.45, CHCl₃), 98% ee.

(S)-5-(4-Bromophenyl)-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrole (2g)

Reaction of 3g (27.9 mg, 0.10 mmol), catalyst 7 (1.1 mg, 0.002 mmol, 2 mol%), nitromethane (26.9 μL, 0.50 mmol, 5.0 equiv) in toluene (0.5 mL) at ambient temperature for 72 h gave the crude product of 4g. Reduction-cyclization-dehydration reaction of crude 4g, acetic acid (90.0 μL, 16.0 equiv), Fe (251 mg, 45.0 equiv) in THF/MeOH (2/1, 1.5 mL) at 65 °C for 10 h gave (S)-2g (26.7 mg, 91%, 98% ee) as a white solid.

¹H NMR (CDCl₃, 300 MHz) δ 3.12-3.24 (m, 3H), 4.18-4.36 (m, 2H), 7.56 (d, J = 8.4 Hz, 2H), 7.69 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 35.9 (m), 40.9 (q, J = 28.7 Hz), 61.3 (m),
125.6, 127.4 (q, J = 277.2 Hz), 129.1, 131.8, 132.2, 169.9; 19F NMR (CDCl3, 282 MHz) δ -72.3 (d, J = 7.9 Hz, 3F); IR (KBr) 2956, 2877, 1624, 1590, 1564, 1488, 1438, 1385, 1343, 1321, 1272, 1114, 1072, 1033, 709, 551, 456 cm⁻¹; mp = 78.0-79.0 °C (CHCl3); MS (ESI, m/z) 292 [M+H]+, HRMS (ESI) calcd. for C11H10BrF3N [M+H]+: 291.9949 Found: 291.9942; The ee of the product was determined by HPLC using an OJ-H column (n-hexane/i-PrOH = 95/5, flow rate 0.5 mL/min, λ = 254 nm, τmaj = 16.0 min, τmin = 28.2 min); [α]D²⁵ = -33.3 (c = 0.61, CHCl3), 98% ee.

(S)-4-(3-(Trifluoromethyl)-3,4-dihydro-2H-pyrrol-5-yl)aniline (2h)

Reaction of 3h (24.5 mg, 0.10 mmol), catalyst 7 (1.1 mg, 0.002 mmol, 2 mol%), nitromethane (26.9 μL, 0.50 mmol, 5.0 equiv) in toluene (0.5 mL) at ambient temperature for 90 h gave the crude product of 4h. Reduction-cyclization-dehydration reaction of crude 4h, acetic acid (90.0 μL, 16.0 equiv), Fe (251 mg, 45.0 equiv) in THF/MeOH (2/1, 1.5 mL) at 65 °C for 10 h gave (S)-2h (19.5 mg, 85%, 98% ee) as a white solid.

1H NMR (CDCl3, 300 MHz) δ 3.08-3.21 (m, 3H), 4.06-4.30 (m, 5H), 6.67 (d, J = 8.7 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H); 13C NMR (CDCl3, 150.9 MHz) δ 35.7 (m), 40.8 (q, J = 27.7 Hz), 60.8 (m), 114.4, 123.7, 127.6 (q, J = 277.2 Hz), 129.3, 149.1, 170.4; 19F NMR (CDCl3, 282 MHz) δ -72.1 (d, J = 7.9 Hz, 3F); IR (KBr) 3329, 3215, 2873, 1601, 1520, 1437, 1378, 1350, 1264, 1220, 1177, 1144, 1102, 1027, 984, 831, 550, 465 cm⁻¹; mp = 128.0-131.0 °C (CHCl3); MS (ESI, m/z) 229 [M+H]+, HRMS (ESI) calcd. for C11H12F3N2 [M+H]+: 229.0953 Found: 229.0952; The ee of the product was determined by HPLC using an OJ-H column (n-hexane/i-PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm, τmaj = 10.6 min, τmin = 16.0 min); [α]D²⁵ = -47.8 (c = 0.50, CHCl3), 98% ee.

(S)-5-(Naphthen-2-yl)-3-(trifluoromethyl)-3,4-dihydro-2H-pyrrole (2i)

Reaction of 3i (25.0 mg, 0.10 mmol), catalyst 7 (1.1 mg, 0.002 mmol, 2 mol%), nitromethane (26.9 μL, 0.50 mmol, 5.0 equiv) in toluene (0.5 mL) at ambient temperature for 72 h gave the crude product of 4i. Reduction-cyclization-dehydration reaction of crude 4i, acetic acid (90.0 μL, 16.0 equiv), Fe (251 mg, 45.0 equiv) in THF/MeOH (2/1, 1.5 mL) at 65 °C for 10 h gave (S)-2i (25.0 mg, 95%, 97% ee) as a white solid.

1H NMR (CDCl3, 300 MHz) δ 3.17-3.43 (m, 3H), 4.25-4.43 (m, 2H), 7.50-7.57 (m, 2H), 7.84-7.91
(m, 3H), 8.06 (d, J = 8.7 Hz, 1H), 8.13 (s, 1H); 13C NMR (CDCl$_3$, 150.9 MHz) δ 36.0 (m), 40.9 (q, J = 28.2 Hz), 61.3 (m), 124.2, 126.6, 127.4, 127.6 (q, J = 277.2 Hz), 127.8, 128.41, 128.44, 128.7, 130.9, 132.8, 134.5, 170.9; 19F NMR (CDCl$_3$, 282 MHz) δ -72.1 (d, J = 9.9 Hz, 3F); IR (KBr) 3071, 2934, 1620, 1436, 1379, 1320, 1270, 1204, 1155, 1106, 1022, 960, 897, 869, 826, 754, 623, 576, 480 cm$^{-1}$; mp = 91.0-92.0 °C (CHCl$_3$); MS (ESI, m/z) 264 [M+H]$^+$, HRMS (ESI) calcd. for C$_{15}$H$_{13}$F$_3$N [M+H]$^+$: 264.1000 Found: 264.0997; The ee of the product was determined by HPLC using an AD-3 column (n-hexane/i-PrOH = 95/5, flow rate 0.5 mL/min, $\lambda = 254$ nm, $\tau_{maj} = 23.9$ min, $\tau_{min} = 33.6$ min); [α]$_D^{25}$ = -34.7 (c = 0.14, CHCl$_3$), 97% ee.
(S)-4a

HPLC using an IB

\((n\text{-hexane/i-PrOH} = 90/10, \text{flow rate} 1.0 \text{ mL/min,} \lambda = 254 \text{ nm})\)

<table>
<thead>
<tr>
<th>No.</th>
<th>tR (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.058</td>
<td>49.945</td>
<td>56.471</td>
</tr>
<tr>
<td>2</td>
<td>15.967</td>
<td>50.055</td>
<td>43.529</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>tR (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.258</td>
<td>1.435</td>
<td>1.977</td>
</tr>
<tr>
<td>2</td>
<td>16.133</td>
<td>98.565</td>
<td>98.023</td>
</tr>
</tbody>
</table>

(S)-4b

HPLC using an IB

\((n\text{-hexane/i-PrOH} = 70/30, \text{flow rate} 1.0 \text{ mL/min,} \lambda = 254 \text{ nm})\)

<table>
<thead>
<tr>
<th>No.</th>
<th>tR (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.575</td>
<td>50.015</td>
<td>53.549</td>
</tr>
<tr>
<td>2</td>
<td>15.933</td>
<td>49.985</td>
<td>46.451</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>tR (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.467</td>
<td>99.086</td>
<td>99.152</td>
</tr>
<tr>
<td>2</td>
<td>15.875</td>
<td>0.914</td>
<td>0.848</td>
</tr>
</tbody>
</table>
ESI13

(S)-4c

HPLC using an OJ-H

\((n\text{-hexane/i-PrOH} = 70/30, \text{flow rate} 1.0 \text{mL/min}, \lambda = 254 \text{nm}) \)

<table>
<thead>
<tr>
<th>No.</th>
<th>tR (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.458</td>
<td>50.115</td>
<td>54.325</td>
</tr>
<tr>
<td>2</td>
<td>18.908</td>
<td>49.885</td>
<td>45.675</td>
</tr>
</tbody>
</table>

(S)-4d

HPLC using an OJ-H

\((n\text{-hexane/i-PrOH} = 70/30, \text{flow rate} 1.0 \text{mL/min}, \lambda = 254 \text{nm}) \)

<table>
<thead>
<tr>
<th>No.</th>
<th>tR (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32.375</td>
<td>50.139</td>
<td>55.278</td>
</tr>
<tr>
<td>2</td>
<td>42.792</td>
<td>49.861</td>
<td>44.722</td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2012
(S)-4e

HPLC using an OJ-H

(n-hexane/PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm)

<table>
<thead>
<tr>
<th>No.</th>
<th>tR (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
<th>No.</th>
<th>tR (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.592</td>
<td>50.010</td>
<td>55.793</td>
<td>1</td>
<td>15.117</td>
<td>1.730</td>
<td>2.261</td>
</tr>
<tr>
<td>2</td>
<td>19.325</td>
<td>49.990</td>
<td>44.207</td>
<td>2</td>
<td>18.383</td>
<td>98.270</td>
<td>97.739</td>
</tr>
</tbody>
</table>

(S)-4f

HPLC using an IB

(n-hexane/PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm)

<table>
<thead>
<tr>
<th>No.</th>
<th>tR (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
<th>No.</th>
<th>tR (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.183</td>
<td>49.544</td>
<td>51.351</td>
<td>1</td>
<td>17.717</td>
<td>98.716</td>
<td>98.729</td>
</tr>
<tr>
<td>2</td>
<td>18.533</td>
<td>50.456</td>
<td>48.649</td>
<td>2</td>
<td>19.667</td>
<td>1.284</td>
<td>1.271</td>
</tr>
</tbody>
</table>
(S)-4g
HPLC using an IB
(n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm)

<table>
<thead>
<tr>
<th>No.</th>
<th>tR (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.758</td>
<td>49.816</td>
<td>51.528</td>
</tr>
<tr>
<td>2</td>
<td>15.158</td>
<td>50.184</td>
<td>48.472</td>
</tr>
</tbody>
</table>

(S)-4h
HPLC using an OJ-H
(n-hexane/i-PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm)

<table>
<thead>
<tr>
<th>No.</th>
<th>tR (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.650</td>
<td>99.056</td>
<td>98.999</td>
</tr>
<tr>
<td>2</td>
<td>13.808</td>
<td>0.944</td>
<td>1.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>tR (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49.617</td>
<td>50.160</td>
<td>56.908</td>
</tr>
<tr>
<td>2</td>
<td>65.683</td>
<td>49.840</td>
<td>43.092</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>tR (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47.492</td>
<td>98.559</td>
<td>98.761</td>
</tr>
<tr>
<td>2</td>
<td>64.533</td>
<td>1.441</td>
<td>1.239</td>
</tr>
</tbody>
</table>
HPLC using an IB

\((n\text{-hexane/i}-\text{PrOH} = 90/10, \text{flow rate } 1.0 \text{ mL/min}, \lambda = 254 \text{ nm})\)

\[
\begin{array}{cccc}
\text{No.} & tR (\text{min}) & \text{Area} (%) & \text{High} (%) \\
1 & 15.617 & 49.914 & 52.896 \\
2 & 18.133 & 50.086 & 47.104 \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{No.} & tR (\text{min}) & \text{Area} (%) & \text{High} (%) \\
1 & 14.925 & 1.502 & 2.124 \\
2 & 17.117 & 98.498 & 97.876 \\
\end{array}
\]

HPLC using an IB

\((n\text{-hexane/i}-\text{PrOH} = 95/5, \text{flow rate } 1.0 \text{ mL/min}, \lambda = 254 \text{ nm})\)

\[
\begin{array}{cccc}
\text{No.} & tR (\text{min}) & \text{Area} (%) & \text{High} (%) \\
1 & 20.008 & 49.968 & 53.812 \\
2 & 23.783 & 50.032 & 46.188 \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{No.} & tR (\text{min}) & \text{Area} (%) & \text{High} (%) \\
1 & 19.983 & 1.078 & 1.324 \\
2 & 23.333 & 98.922 & 98.676 \\
\end{array}
\]
ESI17

[(S)-2a](#)

HPLC using an OJ-H

\((n\text{-hexane/i-PrOH} = 95/5, \text{flow rate } 0.5 \text{ mL/min, } \lambda = 254 \text{ nm})\)

<table>
<thead>
<tr>
<th>No.</th>
<th>tR (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.875</td>
<td>49.943</td>
<td>53.414</td>
</tr>
<tr>
<td>2</td>
<td>19.542</td>
<td>50.057</td>
<td>46.586</td>
</tr>
</tbody>
</table>

[(S)-2c](#)

HPLC using an OJ-H

\((n\text{-hexane/i-PrOH} = 95/5, \text{flow rate } 0.5 \text{ mL/min, } \lambda = 254 \text{ nm})\)

<table>
<thead>
<tr>
<th>No.</th>
<th>tR (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.917</td>
<td>50.198</td>
<td>55.503</td>
</tr>
<tr>
<td>2</td>
<td>23.233</td>
<td>49.802</td>
<td>44.497</td>
</tr>
</tbody>
</table>

ESI17
Electronic Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2012

(S)-2d

HPLC using an AD-3

(*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, $\lambda = 254$ nm)

<table>
<thead>
<tr>
<th>No.</th>
<th>t_R (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26.133</td>
<td>49.801</td>
<td>51.084</td>
</tr>
<tr>
<td>2</td>
<td>27.300</td>
<td>50.199</td>
<td>48.916</td>
</tr>
</tbody>
</table>

(S)-2f

HPLC using an OJ-H

(*n*-hexane/*i*-PrOH = 95/5, flow rate 0.5 mL/min, $\lambda = 254$ nm)

<table>
<thead>
<tr>
<th>No.</th>
<th>t_R (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.558</td>
<td>50.044</td>
<td>56.176</td>
</tr>
<tr>
<td>2</td>
<td>22.583</td>
<td>49.956</td>
<td>43.824</td>
</tr>
</tbody>
</table>

ESI18
Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2012

\[
(\text{S})-2g
\]
HPLC using an OJ-H
\((n\text{-hexane}/i\text{-PrOH} = 95/5, \text{ flow rate 0.5 mL/min, } \lambda = 254 \text{ nm})\)

<table>
<thead>
<tr>
<th>No.</th>
<th>tR (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.042</td>
<td>50.082</td>
<td>62.400</td>
</tr>
<tr>
<td>2</td>
<td>28.425</td>
<td>49.918</td>
<td>37.600</td>
</tr>
</tbody>
</table>

\[
(\text{S})-2h
\]
HPLC using an OJ-H
\((n\text{-hexane}/i\text{-PrOH} = 70/30, \text{ flow rate 1.0 mL/min, } \lambda = 254 \text{ nm})\)

<table>
<thead>
<tr>
<th>No.</th>
<th>tR (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.650</td>
<td>49.870</td>
<td>59.272</td>
</tr>
<tr>
<td>2</td>
<td>16.067</td>
<td>50.130</td>
<td>40.728</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>tR (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.567</td>
<td>99.045</td>
<td>99.234</td>
</tr>
<tr>
<td>2</td>
<td>16.033</td>
<td>0.955</td>
<td>0.766</td>
</tr>
</tbody>
</table>
(S)-2i
HPLC using an AD-3

(n-hexane/i-PrOH = 95/5, flow rate 0.5 mL/min, $\lambda = 254$ nm)

<table>
<thead>
<tr>
<th>No.</th>
<th>tR (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.758</td>
<td>49.751</td>
<td>56.554</td>
</tr>
<tr>
<td>2</td>
<td>33.408</td>
<td>50.249</td>
<td>43.446</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>tR (min)</th>
<th>Area (%)</th>
<th>High (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.867</td>
<td>98.648</td>
<td>98.875</td>
</tr>
<tr>
<td>2</td>
<td>33.575</td>
<td>1.352</td>
<td>1.125</td>
</tr>
</tbody>
</table>
4a

19F NMR
Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2012
$	ext{Me} \quad \begin{array}{c}
\text{O} \\
\text{CH}_2\text{NO}_2 \\
\text{CF}_3
\end{array}$

$^19\text{F} \text{NMR}$
Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2012

19F NMR

$4c$

![Chemical structure diagram]
Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2012

13C NMR

ESI29
19F NMR

4d

MeO

O

CH$_2$NO$_2$

CF$_3$

1.0

0.0

-0.2

-0.4

ESI31
Electronic Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2012
Electronic Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2012
Current Data Parameters
NAME KT-408
EXPO 10
PROCNO 1

F2 - Acquisition Parameters
Date_ 20121001
Time 12.44
INSTRUM drx600
FREQUNIT mm BBO BB=1H
FPROG capp10
TD 131073
SOLVENT CDCl3
NS 831
DS 6
SWH 45454.547 Hz
FIDRES 0.346791 Hz
AQ 1.4418930 sec
RG 1625.5
DW 11000 usec
DE 6000 usec
TE 296.3 K
E1 0.6000000000 sec
d11 0.0300000000 sec
DELTA 0.0000000000 sec
TDD 1

===== CHANNEL f1 =====
WBC1 13C
P1 8.00 usec
FL1 3.70 dB
SF01 150.922366 MHz

===== CHANNEL f2 =====
CPDPRG2 waltz16
RWC2 1H
RCPD2 80.00 usec
TL2 -5.30 dB
FL2 9.34 dB
FL3 9.50 dB
SF02 600.1324009 MHz

F2 - Processing parameters
SI 131073
SF 150.9028136 MHz
NHM EN
SSR 0
LH 1.00 Hz
DB 0
FC 1.40
Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2012

13C NMR

13C NMR

Current Data Parameters
NAME KT-415
EXPNO 10
PROCNO 1

F2 - Acquisition Parameters
Data_ 20110530
Time 22.51
INSTROM drx600
F0 = 100.61 MHz
POLPROG sqp30
TD 131072
SOLVENT CDCl3
NS 4096
DS 4
SWH 45454.547 Hz
FIDRES 0.346791 Hz
AQ 1.4418530 sec
RG 1824.4
DM 11.0000 usec
DE 6.0000 usec
TD 296.6 K
D1 0.60000002 sec
d1l 0.03000000 sec
DELTAS 0.50000000 sec
TDO 1

********** CHANNEL F1 **********
M Pul 13C
P1 8.00 usec
PL1 3.70 dm
SQF1 156.9223664 MHz

********** CHANNEL F2 **********
CPDPBG2 wait16
M Pul 15H
PCD02 80.00 usec
PL2 -5.00 dm
PL12 9.54 dm
PUL3 9.50 dm
SQF2 600.1324005 MHz

F2 - Processing parameters
SI 131072
SF 150.9028159 MHz
WM EM
SB 0
LB 1.00 Hz
DC 1.40
ESI46
13C NMR
^{1}H NMR
19F NMR
19F NMR
ESI62

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2012
19F NMR

$2g$

Electronic Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2012
ESI66

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2012
ESI67
^{1}H NMR
19F NMR

2i
13C NMR

Current Data Parameters
NAME EX-2476
EXPNO 10
PROCNO 1

F2 - Acquisition Parameters
Data- 21110601
Time 14.13
INSTNUM daz600
PROBD 5 mm BBO BB-1H
PULPROG zgppq30
TD 131072
SOLVENT CDCl3
NS 1632
DS 4
SWH 45454.547 Hz
FIDRES 0.346791 Hz
AQ 1.4418530 sec
RG 1149.4
DW 11.000 usec
DE 6.00 usec
TE 295.9 K
D1 0.60000002 sec
d11 0.03000000 sec
d11A 0.50000000 sec
TOD 1

======== CHANNEL f1 ========
NUC1 13C
P1 8.00 usec
PL1 3.70 dB
SPFO1 150.9223664 MHz

======== CHANNEL f2 ========
CPDPPG2 waltz16
NUC2 1H
PCEP2 80.00 usec
PL2 5.00 dB
PL12 9.54 dB
PL13 9.50 dB
SPFO2 600.1324005 MHz

F2 - Processing parameters
ST 131072
SF 150.9028138 MHz
WDM EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40
X-ray crystallographic structure of (S)-4i

Figure S1
X-ray crystallographic structure of racemic 2g

Figure S2