Direct carboxamidation of indoles by palladium-catalyzed C–H activation and isocyanide insertion

Jiangling Peng, Lanying Liu, Ziwei Hu, Jinbo Huang, Qiang Zhu*

State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China

zhu_qiang@gibh.ac.cn

Table of Contents
I. General information ...S2
II. Screening of the reaction conditions ..S2
III. General procedures and characterization of the productsS3
 General procedures ..S3
 Characterization of the products ..S4
IV. X-ray Structures of 4a and 3a ..S13
V. References ..S14
VI. Copies of 1H NMR and 13C NMR SpectraS14
I. General information

All reagents were purchased without further purification unless otherwise noted. Reactions were monitored using thin-layer chromatography (TLC) on commercial silica gel plates (GF254). Visualization of the developed plates was performed under UV light (254 nm). Flash column chromatography was performed on silica gel (200-300 mesh). 1H and 13C NMR spectra were recorded on a 400 or 500 MHz spectrometer. Chemical shifts (δ) are reported in ppm referenced to an internal tetramethylsilane standard or the DMSO-d$_6$ residual peak (δ 2.50) for 1H NMR. Chemical shifts of 13C NMR are reported relative to CDCl$_3$ (δ 77.0) or DMSO-d$_6$ (δ 39.5). The following abbreviations were used to describe peak splitting patterns when appropriate: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Coupling constants, J, were reported in Hertz unit (Hz). High resolution mass spectra (HRMS) were obtained on an ESI-LC-MS/MS spectrometer.

II. Screening of the reaction conditions

<table>
<thead>
<tr>
<th>entry</th>
<th>oxidant (equiv)</th>
<th>additive (equiv)</th>
<th>solvent</th>
<th>T/°C</th>
<th>yield (%)</th>
<th>3a</th>
<th>4a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cu(OAc)$_2$ (1)</td>
<td>--</td>
<td>AcOH</td>
<td>110</td>
<td>54</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cu(OAc)$_2$ (1)</td>
<td>--</td>
<td>Toluene</td>
<td>110</td>
<td>n.d.</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cu(OAc)$_2$ (1)</td>
<td>--</td>
<td>THF</td>
<td>110</td>
<td>4</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AgOAc (1)</td>
<td>--</td>
<td>AcOH</td>
<td>110</td>
<td>37</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CuO (1)</td>
<td>--</td>
<td>AcOH</td>
<td>110</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>O$_2$</td>
<td>--</td>
<td>AcOH</td>
<td>110</td>
<td>10c</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>BQ (1)</td>
<td>--</td>
<td>AcOH</td>
<td>110</td>
<td>26</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>K$_2$S$_2$O$_8$ (1)</td>
<td>--</td>
<td>AcOH</td>
<td>110</td>
<td>19</td>
<td>n.d.</td>
<td></td>
</tr>
</tbody>
</table>
III. General procedures and characterization of the products

General procedures

General procedure for the synthesis of 3

A mixture of substrate 1 (0.4 mmol), isocyanide 2 (0.48 mmol, 1.2 equiv), Pd(OAc)$_2$ (4.5 mg, 0.02 mmol, 5 mol %), Cu(OAc)$_2$ (73.2 mg, 0.4 mmol, 1 equiv), TFA (0.48 mmol, 1.2 equiv), H$_2$O (36 mg, 2 mmol, 5 equiv) in THF (2.0 mL) was stirred in a sealed tube under air atmosphere at 70 °C. The reaction was cooled down to room temperature after complete consumption of the starting material as being monitored by TLC. Saturated NH$_4$OH (10 mL) and EtOAc (10 mL) were added to the reaction mixture successively. The organic phase was separated, and the aqueous phase was further extracted with EtOAc (2 × 10 mL). The combined organic layers were dried over anhydrous Na$_2$SO$_4$ and concentrated. The residue was purified by flash chromatography to provide the desired product 3.

General procedure for the synthesis of 4

A mixture of substrate 1 (0.4 mmol), isocyanide 2 (0.48 mmol, 1.2 equiv), Pd(OAc)$_2$ (9 mg, 0.04 mmol, 10 mol %), Cu(OAc)$_2$ (73.2 mg, 0.4 mmol, 1 equiv), in
THF (2.0 mL) was stirred in a sealed tube under air atmosphere at 90 °C. The reaction was cooled down to room temperature after complete consumption of the starting material as being monitored by TLC. Saturated aqueous NH₄OH (10 mL) and EtOAc (10 mL) were added to the reaction mixture successively. The organic phase was separated, and the aqueous phase was further extracted with EtOAc (2 × 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by flash chromatography to provide the products 4 (major) and 3 (minor).

Characterization of the products

N-tert-butyl-1-methyl-1H-indole-3-carboxamide (3a)

![Chemical Structure]

1H NMR (400 MHz, CDCl₃) δ 7.87-7.89 (m, 1H), 7.61 (s, 1H), 7.34 (d, J = 7.2 Hz, 1H), 7.23-7.32 (m, 1H), 5.88 (br, 1H), 3.78 (s, 1H), 1.51 (s, 9H); 13C NMR (125 MHz, CDCl₃) δ 164.6, 137.2, 132.2, 125.1, 122.3, 121.2, 119.7, 112.1, 110.0, 51.3, 33.1, 29.2; HRMS (ESI): Exact mass calcd for C₁₄H₁₉N₂O [M+H]+ 231.1492, Found 231.1495.

N-tert-butyl-1H-indole-3-carboxamide (3b)

![Chemical Structure]

1H NMR (400 MHz, CDCl₃) δ 10.24 (br, 1H), 7.83-7.85 (m, 1H), 7.62 (d, J = 2.8 Hz, 1H), 7.42-7.44 (m, 1H), 7.20-7.23 (m, 2H), 5.79 (s, 1H), 1.55 (s, 9H); 13C NMR (125 MHz, CDCl₃) δ 165.7, 136.7, 128.6, 124.3, 122.5, 121.2, 119.0, 112.8, 112.5, 51.5, 29.3; HRMS (ESI): Exact mass calcd for C₁₃H₁₇N₂O [M+H]+ 217.1335, Found 217.1337.

N-tert-butyl-5-methyl-1H-indole-3-carboxamide (3c)

![Chemical Structure]

1H NMR (400 MHz, CDCl₃) δ 10.13 (br, 1H), 7.65 (s, 1H), 7.54 (d, J = 2.8 Hz, 1H), 7.29 (d, J = 8 Hz 1H), 7.02 (dd, J = 8, 0.8 Hz, 1H), 5.94 (br, 1H), 2.45 (s, 3H), 1.54 (s, 9H); 13C NMR (125 MHz, CDCl₃) δ 165.8, 135.0, 130.5, 128.4, 124.6, 118.9, 112.1, 51.4, 29.2; HRMS (ESI): Exact mass
calcld for C_{14}H_{18}N_{2}O_{2}Na \[M+Na\]^+ 253.1311, Found 253.1313.

N-tert-butyl-5-methoxy-1H-indole-3-carboxamide (3d)

![Structure of 3d](image)

1H NMR (400 MHz, DMSO-d$_6$) δ 11.33 (br, 1H), 8.02 (d, $J = 2.8$ Hz, 1H), 7.65 (d, $J = 2.4$ Hz, 1H), 7.28 (d, $J = 8.8$ Hz, 1H), 7.09 (br, 1H), 6.76 (dd, $J = 8.8, 2.4$ Hz, 1H), 3.76 (s, 3H), 1.40 (s, 9H); 13C NMR (125 MHz, DMSO-d$_6$) δ 164.6, 154.1, 130.1, 127.8, 126.8, 112.0, 111.7, 111.1, 102.7, 55.1, 50.0, 28.9; HRMS (ESI): Exact mass calcld for C$_{14}$H$_{19}$N$_{2}$O$_{2}$ [M+H]$^+$ 247.1441, Found 247.1440.

N-tert-butyl-5-(benzyloxy)-1H-indole-3-carboxamide (3e)

![Structure of 3e](image)

1H NMR (400 MHz, DMSO-d$_6$) δ 11.38 (br, 1H), 8.05 (d, $J = 2.8$ Hz, 1H), 7.77 (d, $J = 2.0$ Hz, 1H), 7.48 (d, $J = 7.6$ Hz, 2H), 7.39 (t, $J = 7.2$ Hz, 2H), 7.32 (t, $J = 8.8$ Hz, 2H), 7.12 (s, 1H), 6.85 (dd, $J = 8.8, 2.0$ Hz, 1H), 5.09 (s, 1H), 1.40 (s, 9H); 13C NMR (125 MHz, DMSO-d$_6$) δ 164.6, 153.2, 137.6, 131.2, 128.1, 127.9, 127.3, 126.8, 112.3, 112.1, 111.2, 104.3, 69.7, 50.0, 28.9; HRMS (ESI): Exact mass calcld for C$_{20}$H$_{23}$N$_{2}$O$_{2}$ [M+H]$^+$ 323.1754, Found 323.1756.

N-tert-butyl-5-hydroxy-1H-indole-3-carboxamide (3f)

![Structure of 3f](image)

1H NMR (400 MHz, DMSO-d$_6$) δ 11.12 (br, 1H), 8.37 (s, 1H), 7.92 (d, $J = 3.2$ Hz, 1H), 7.49 (d, $J = 2.4$ Hz, 1H), 7.17 (d, $J = 8.8$ Hz, 1H), 6.98 (br, 1H), 6.62 (dd, $J = 8.4, 2.4$ Hz, 1H), 1.38 (s, 9H); 13C NMR (125 MHz, DMSO-d$_6$) δ 164.8, 151.6, 130.4, 127.8, 127.2, 111.9, 111.8, 110.7, 105.2, 50.1, 29.1; HRMS (ESI): Exact mass calcld for C$_{13}$H$_{17}$N$_{2}$O$_{2}$ [M+H]$^+$ 233.1285, Found 233.1286.

N-tert-butyl-5-fluoro-1H-indole-3-carboxamide (3g)

![Structure of 3g](image)

1H NMR (400 MHz, DMSO-d$_6$) δ 11.60 (br, 1H), 8.16 (d, $J = 2.8$ Hz), 7.82 (dd, $J = 10.4, 2.4$ Hz,
1H), 7.40 (dd, \(J = 8.8, 4.4 \) Hz, 1H), 7.22 (br, 1H), 6.95-7.00 (m, 1H), 1.39 (s, 9H); \(^{13}\)C NMR (125 MHz, DMSO-\(d_6\)) \(\delta \) 164.2, 158.7, 156.4, 132.6, 129.2, 126.8, 126.7, 112.5, 112.4, 11.6, 111.6, 109.8, 109.5, 105.7, 105.4, 50.1, 28.9; HRMS (ESI): Exact mass calcd for C\(_{13}\)H\(_{15}\)FN\(_2\)ONa [M+Na]\(^+\) 257.1061, Found 257.1062.

N-tert-butyl-5-chloro-1H-indole-3-carboxamide (3h)

\(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta \) 11.67 (br, 1H), 8.14 (d, \(J = 8.8 \) Hz, 1H), 8.13 (d, \(J = 2.0 \) Hz, 1H), 7.41 (d, \(J = 8.8 \) Hz, 1H), 7.26 (br, 1H), 7.13 (dd, \(J = 8.4, 2.0 \) Hz, 1H), 1.39, (s, 9H); \(^{13}\)C NMR (125 MHz, DMSO-\(d_6\)) \(\delta \) 164.0, 134.4, 128.9, 127.4, 124.8, 121.5, 120.1, 113.0, 111.2, 50.1, 28.8; HRMS (ESI): Exact mass calcd for C\(_{13}\)H\(_{16}\)ClN\(_2\)O [M+H]\(^+\) 251.0946, Found 251.0945.

N-tert-butyl-5-bromo-1H-indole-3-carboxamide (3i)

\(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta \) 11.67 (br, 1H), 8.29 (d, 1.6 Hz, 1H), 8.12 (d, \(J = 2.8 \) Hz, 1H), 7.37 (d, \(J = 8.8 \) Hz, 1H), 7.23-7.26 (m, 2H), 1.39 (s, 9H); \(^{13}\)C NMR (125 MHz, DMSO-\(d_6\)) \(\delta \) 164.0, 134.6, 128.7, 128.1, 124.0, 123.2, 113.5, 112.8, 111.0, 50.1, 40.1, 28.8; HRMS (ESI): Exact mass calcd for C\(_{13}\)H\(_{16}\)BrN\(_2\)O [M+H]\(^+\) 295.0441, Found 295.0442.

N-tert-butyl-5-iodo-1H-indole-3-carboxamide (3j)

\(^1\)H NMR (400 MHz, DMSO-D\(_6\)) \(\delta \) 11.64 (br, 1H), 8.50 (d, \(J = 2.8 \) Hz, 1H), 8.07 (d, \(J = 2.4 \) Hz, 1H), 7.39 (dd, \(J = 8.4, 2.0 \) Hz, 1H), 7.24-7.27 (m, 2H), 1.39 (s, 9H); \(^{13}\)C NMR (125 MHz, DMSO-\(d_6\)) \(\delta \) 164.0, 135.0, 129.5, 129.4, 128.2, 113.9, 110.7, 84.1, 50.1, 40.1, 28.8; HRMS (ESI): Exact mass calcd for C\(_{13}\)H\(_{16}\)IN\(_2\)O [M+H]\(^+\) 343.0302, Found 343.0301.

N-tert-butyl-5-cyano-1H-indole-3-carboxamide (3k)

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2012
1H NMR (400 MHz, DMSO-d$_6$) δ 12.02 (br, 1H), 8.54 (d, $J = 0.8$ Hz, 1H), 8.28 (d, $J = 2.4$ Hz), 7.58 (d, $J = 8.4$ Hz, 1H), 7.48 (dd, $J = 8.4$, 1.6 Hz, 1H), 7.40 (br, 1H), 1.40 (s, 9H); 13C NMR (125 MHz, DMSO-d$_6$) δ 164.2, 138.3, 130.5, 127.0, 126.7, 124.9, 120.9, 112.6, 112.2, 103.0, 50.9, 29.4; HRMS (ESI): Exact mass calcd for C$_{14}$H$_{15}$N$_3$ONa [M+Na]$^+$ 264.1107, Found 264.1108.

N-tert-butyl-5-formyl-1H-indole-3-carboxamide (3l)

methyl 3-(tert-butylcarbamoyl)-1H-indole-5-carboxylate (3m)

N-tert-butyl-5-nitro-1H-indole-3-carboxamide (3n)

N-tert-butyl-6-chloro-1H-indole-3-carboxamide (3o)
1H NMR (400 MHz, DMSO-d$_6$) δ 11.58 (br, 1H), 8.09-8.12 (m, 1H), 7.45 (d, $J = 1.6$ Hz, 1H), 7.23 (br, 1H), 7.08 (dd, $J = 8.4$, 1.6 Hz, 1H), 1.39 (s, 9H); 13C NMR (125 MHz, DMSO-d$_6$) δ 164.0, 136.3, 128.3, 126.2, 125.0, 122.2, 120.2 11.7, 111.1, 50.1, 40.1, 28.8; HRMS (ESI): Exact mass calcd for C$_{13}$H$_{16}$ClN$_2$O [M+H]$^+$ 251.0947, Found 251.0946.

N-tert-butyl-6-bromo-1H-indole-3-carboxamide (3p)

1H NMR (400 MHz, DMSO-d$_6$) δ 11.59 (br, 1H), 8.09 (d, $J = 2.8$ Hz, 1H), 8.08 (d, $J = 8.8$ Hz, 1H), 7.60 (d, $J = 1.6$ Hz, 1H), 7.25 (s, 1H), 7.22 (dd, $J = 8.8$, 1.6 Hz, 1H), 3.34 (s, 1H), 1.39 (s, 9H); 13C NMR (125 MHz, DMSO-d$_6$) δ 164.1, 136.9, 128.5, 125.4, 123.0, 122.9, 114.4, 114.2, 111.7, 50.3, 29.0; HRMS (ESI): Exact mass calcd for C$_{13}$H$_{16}$BrN$_2$O [M+H]$^+$ 295.0441, Found 295.0444.

N-tert-butyl-7-methyl-1H-indole-3-carboxamide (3q)

1H NMR (400 MHz, DMSO-d$_6$) δ 11.43 (br, 1H), 8.06 (d, $J = 2.8$ Hz, 1H), 7.94 (d, $J = 7.6$ Hz, 1H), 7.12 (br, 1H), 6.97 (t, $J = 8.0$ Hz, 1H), 6.91 (d, $J = 6.8$ Hz, 1H), 2.46 (s, 3H), 1.39 (s, 9H); 13C NMR (100 MHz, DMSO-d$_6$) δ 164.5, 135.4, 127.2, 125.8, 121.9, 120.5, 120.1, 118.5, 111.9, 50.0, 28.9, 16.4; HRMS (ESI): Exact mass calcd for C$_{14}$H$_{19}$N$_2$O [M+H]$^+$ 231.1492, Found 231.1492.

N-tert-butyl-7-ethyl-1H-indole-3-carboxamide (3r)

1H NMR (400 MHz, CDCl$_3$) δ 10.09 (br, 1H), 7.69 (d, $J = 2.8$ Hz, 1H), 7.56 (d, $J = 4.0$ Hz, 1H), 7.19 (t, $J = 7.6$ Hz, 1H), 7.07 (d, $J = 7.2$ Hz, 1H), 5.98 (br, 1H), 2.91 (dd, $J = 14.8$, 7.2 Hz, 2H), 1.53 (s, 9H), 1.32 (t, $J = 7.2$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 165.6, 135.5, 128.4, 124.0,
121.6, 121.1, 116.6, 113.5, 51.4, 29.2, 23.9, 13.9; HRMS (ESI): Exact mass calcd for C\textsubscript{12}H\textsubscript{21}N\textsubscript{2}O [M+H]+ 245.1648, Found 245.1649.

\textit{N-tert-butyl-1-ethyl-1H-indole-3-carboxamide (3s)}2

\[
\begin{align*}
\text{1H NMR (400 MHz, DMSO-d\textsubscript{6})} & \delta 8.13 (d, J = 8.0 \text{ Hz}, 1H), 8.10 (s, 1H), 7.76(dd, J = 8.4, 1.6 \text{ Hz}, 1H), 7.49(d, J = 8.8 \text{ Hz}, 1H), 7.31 (br, 1H), 3.86 (s, 3H), 1.41 (s, 9H); ^{13}C \text{ NMR (125 MHz, DMSO-d\textsubscript{6})} \delta 164.1, 135.6, 129.8, 126.6, 121.5, 120.1, 110.7, 109.8, 50.1, 28.9, 14.9; HRMS (ESI): Exact mass calcd for C\textsubscript{15}H\textsubscript{21}N\textsubscript{2}O [M+H]+ 245.1648, Found 245.1649.
\end{align*}
\]

\textit{N-tert-butyl-1-allyl-1H-indole-3-carboxamide (3t)}

\[
\begin{align*}
\text{1H NMR (400 MHz, CDCl\textsubscript{3})} & \delta 7.88-7.90 (m, 1H), 7.66 (s, 1H), 7.33-7.36 (m, 1H), 7.23-7.28(m, 2H), 5.93-6.02 (m, 1H), 5.83 (br, 1H), 5.24 (dd, J = 10.4, 1.2 \text{ Hz}, 1H), 5.13 (dd, J = 16.8, 1.2 \text{ Hz}, 1H) 4.74 (t, J = 1.6 \text{ Hz}, 1H), 1.52 (s, 9H); ^{13}C \text{ NMR (100 MHz, CDCl\textsubscript{3})} \delta 164.6, 136.6, 132.3, 131.2, 125.3, 122.2, 121.3, 119.9, 118.2, 112.5, 110.5, 51.3, 49.1, 29.3; HRMS (ESI): Exact mass calcd for C\textsubscript{16}H\textsubscript{20}N\textsubscript{2}ONa [M+Na]+ 279.1468, Found 279.1466.
\end{align*}
\]

\textit{N-tert-butyl-1-benzyl-1H-indole-3-carboxamide (3u)}

\[
\begin{align*}
\text{1H NMR (400 MHz, DMSO-d\textsubscript{6})} & \delta 8.13 (d, J = 8.0 \text{ Hz}, 1H), 8.10 (s, 1H), 7.76(dd, J = 8.4, 1.6 \text{ Hz}, 1H), 7.49(d, J = 8.8 \text{ Hz}, 1H), 7.31 (br, 1H), 3.86 (s, 3H), 1.41 (s, 9H); ^{13}C \text{ NMR (100 MHz, DMSO-d\textsubscript{6})} \delta 164.2, 137.6, 136.0, 131.1, 128.6, 127.5, 127.0, 126.8, 121.9, 121.4, 120.5, 111.2, 110.4, 50.3, 49.4, 29.0; HRMS (ESI): Exact mass calcd for C\textsubscript{20}H\textsubscript{22}N\textsubscript{2}ONa [M+Na]+ 329.1624, Found 329.1627.
\end{align*}
\]

\textit{N-isopropyl-1H-indole-3-carboxamide (3v)}
1H NMR (400 MHz, CDCl$_3$) δ 9.74 (br, 1H), 7.89-7.91 (m, 1H), 7.65 (d, J = 2.8 Hz, 1H), 7.41-7.43 (m, 1H), 7.20-7.26 (m, 2H), 5.90 (d, J = 3.6 Hz, 1H), 4.34-4.42 (m, 1H), 1.30 (d, J = 2.8 Hz, 6H); 13C NMR (100 MHz, CDCl$_3$) δ 165.1, 136.6, 128.3, 122.7, 121.4, 119.5, 112.3, 112.2, 41.4, 23.1; HRMS (ESI): Exact mass calcd for C$_{12}$H$_{14}$N$_2$ONa [M+Na]$^+$ 225.0998, Found 225.0998.

N-cyclohexyl-1H-indole-3-carboxamide (3w)

$\ce{\text{O}}$
N
CH_2
N

1H NMR (400 MHz, CDCl$_3$) δ 9.31 (br, 1H), 7.88-7.91 (m, 1H), 7.69 (d, J = 2.8 Hz, 1H), 7.41-7.43 (m, 1H), 7.23-7.25 (m, 2H), 5.91 (d, J = 8.0 Hz, 1H), 4.04-4.11 (m, 1H), 2.05-2.10 (m, 2H), 1.74-1.79 (m, 2H), 1.63-1.67 (m, 1H), 1.40-1.50 (m, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 164.5, 136.4, 127.8, 124.6, 122.9, 121.5, 119.7, 113.1, 112.0, 48.1, 33.5, 25.7, 24.9; HRMS (ESI): Exact mass calcd for C$_{15}$H$_{19}$N$_2$O [M+H]$^+$ 243.1492, Found 243.1493.

N-(2, 6-dimethylphenyl)-1H-indole-3-carboxamide (3x)

HN
O
N
CH_2

1H NMR (400 MHz, CDCl$_3$) δ 11.66 (br, 1H), 9.20 (br, 1H), 8.24 (d, J = 2.4 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.11-7.20 (m, 5H), 2.22 (s, 6H); 13C NMR (125 MHz, CDCl$_3$) δ 163.1, 136.2, 135.9, 135.7, 128.2, 128.1, 127.6, 127.6, 126.3, 126.2, 122.0, 121.1, 121.0, 120.4, 111.8, 110.3, 18.2; HRMS (ESI): Exact mass calcd for C$_{17}$H$_{16}$N$_2$O [M+Na]$^+$ 287.1155, Found 287.1154.

N- (1-Ad)-1H-indole-3-carboxamide (3y)
1H NMR (400 MHz, CDCl$_3$) δ 9.82 (br, 1H), 7.84-7.87 (m, 1H), 7.62 (d, $J = 4.0$ Hz, 1H), 7.40-7.44 (m, 1H), 7.19-7.24 (m, 2H), 5.81 (br, 1H), 2.20-2.21 (m, 6H), 2.14 (s, 3H), 1.75-1.78 (m, 6H); 13C NMR (125 MHz, CDCl$_3$) δ 165.1, 136.6, 128.3, 124.4, 122.5, 121.3, 119.3, 113.2, 112.3, 50.2, 42.2, 36.5, 29.6; HRMS (ESI): Exact mass calcd for C$_{19}$H$_{22}$N$_2$ONa [$M+Na]^+$ 317.1624, Found 317.1623.

N-tert-butyl-3-methyl-1H-indole-2-carboxamide (3z)

1H NMR (400 MHz, CDCl$_3$) δ 9.45 (br, 1H), 7.61 (d, $J = 8.0$ Hz, 1H), 7.40 (d, $J = 8.0$ Hz, 1H), 7.25-7.29 (m, 1H), 7.11-7.15 (m, 1H), 5.95 (br, 1H), 2.55 (s, 3H), 1.54 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 162.0, 135.0, 128.7, 128.4, 124.3, 119.8, 119.6, 111.7, 110.5, 51.7, 29.1, 10.2; HRMS (ESI): Exact mass calcd for C$_{14}$H$_{18}$N$_2$ONa [$M+Na]^+$ 253.1311, Found 253.1312.

N-tert-butyl-2-methyl-1H-indole-3-carboxamide (3aa)

1H NMR (400 MHz, DMSO-d$_6$) δ 11.32 (br, 1H), 7.66-7.68 (m, 1H), 7.29-7.32 (m, 1H), 7.02-7.08 (m, 2H), 6.78 (s, 1H), 2.55 (s, 3H), 1.41 (s, 9H); 13C NMR (125 MHz, DMSO-d$_6$) δ 165.2, 138.5, 134.5, 126.3, 120.8, 119.7, 110.8, 109.1, 50.3, 28.9, 13.1; HRMS (ESI): Exact mass calcd for C$_{14}$H$_{19}$N$_2$O [$M+H]^+$ 231.1492, Found 231.1493.

N-tert-butyl-2-phenyl-1H-indole-3-carboxamide (3ab)

1H NMR (400 MHz, CDCl$_3$) δ 8.64 (br, 1H), 8.12-8.14 (m, 1H), 7.59-7.61 (m, 1H), 7.42-7.47 (m, 3H), 7.18-7.24 (m, 2H), 5.38 (br, 1H), 1.28 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 164.8, 137.9, 135.3, 121.7, 129.3, 128.9, 127.8, 123.1, 121.5, 121.4, 110.8, 51.0, 28.8; HRMS (ESI): Exact mass
calcd for C_{19}H_{20}N_{2}O_{2}Na [M\text{+Na}]^{+} 315.1468, Found 315.1466.

\textit{N-acetyl-N-tert-butyl-1-methyl-1H-indole-3-carboxamide (4a)}

\begin{tikzpicture}
 \node at (0,0) {\textbf{N}};
 \node at (1,0) {O};
 \node at (2,0) {O};
 \node at (1,-1) {N};
 \node at (1,-2) {\textbf{N}};
 \node at (2,-2) {\textbf{N}};
\end{tikzpicture}

1H NMR (400 MHz, CDCl$_3$) δ 8.29-8.31 (m, 1H), 7.86 (s, 1H), 7.36-7.41 (m, 3H), 3.89 (s, 3H), 1.99 (s, 3H), 1.54 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 170.5, 169.0, 138.0, 137.9, 126.5, 124.1, 123.3, 122.0, 115.2, 110.2, 57.7, 33.8, 25.5, 25.3; HRMS (ESI): Exact mass calcd for C$_{16}$H$_{20}$N$_{2}$O$_{2}$Na [M\text{+Na}]^{+} 295.1417, Found 295.1420.

\textit{N-acetyl-N-tert-butyl-1H-indole-3-carboxamide (4b)}

\begin{tikzpicture}
 \node at (0,0) {\textbf{N}};
 \node at (1,0) {O};
 \node at (2,0) {O};
 \node at (1,-1) {N};
 \node at (1,-2) {H};
\end{tikzpicture}

1H NMR (400 MHz, CDCl$_3$) δ 10.81 (br, 1H), 8.31-8.33 (m, 1H), 7.87 (d, $J = 3.2$ Hz, 1H), 7.52-7.55 (m, 1H), 7.34-7.39 (m, 2H), 2.07 (s, 3H), 1.59 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 170.6, 169.7, 137.3, 134.8, 125.8, 124.4, 123.2, 121.6, 116.1, 112.3, 58.0, 25.5, 25.3; HRMS (ESI): Exact mass calcd for C$_{15}$H$_{18}$N$_{2}$O$_{2}$Na [M\text{+Na}]^{+} 281.1260, Found 281.1261.

\textit{N-acetyl-N-tert-butyl-5-methyl-1H-indole-3-carboxamide (4c)}

\begin{tikzpicture}
 \node at (0,0) {\textbf{N}};
 \node at (1,0) {O};
 \node at (2,0) {O};
 \node at (0,-1) {H};
\end{tikzpicture}

1H NMR (400 MHz, CDCl$_3$) δ 10.26 (br, 1H), 8.13 (s, 1H), 7.78 (d, $J = 3.2$ Hz, 1H), 7.39 (d, $J = 8.0$ Hz, 1H), 2.50 (s, 3H), 2.04 (s, 3H), 1.57 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 170.6, 169.6, 135.4, 134.6, 133.1, 126.0, 126.0, 121.4, 111.8, 57.9, 28.5, 25.3, 21.6; HRMS (ESI): Exact mass calcd for C$_{16}$H$_{20}$N$_{2}$O$_{2}$Na [M\text{+Na}]^{+} 295.1417, Found 295.1413.

\textit{N-acetyl-N-tert-butyl-5-methoxy-1H-indole-3-carboxamide (4d)}

\begin{tikzpicture}
 \node at (0,0) {\textbf{O}};
 \node at (1,0) {\textbf{O}};
 \node at (0,-1) {H};
\end{tikzpicture}
1H NMR (400 MHz, CDCl$_3$) δ 10.39 (br, 1H), 7.77-7.79 (m, 2H), 7.79 (d, $J = 8.8$ Hz, 1H), 6.98 (dd, $J = 8.8$, 2.4 Hz, 1H), 3.90 (s, 3H), 2.04 (s, 3H), 1.57 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 170.6, 169.6, 156.8, 134.6, 131.9, 126.7, 116.0, 114.9, 113.1, 120.9, 57.9, 55.7, 28.4, 25.3; HRMS (ESI): Exact mass calcd for C$_{16}$H$_{20}$N$_2$O$_3$Na $[M+Na]^+$ 311.1366, Found 311.1369.

N-acetyl-N-tert-butyl-2-methyl-$1H$-indole-3-carboxamide (4aa)

1H NMR (400 MHz, CDCl$_3$) δ 12.31 (br, 1H), 7.83-7.85 (m, 1H), 7.42-7.44 (m, 1H), 7.18-7.23(m, 2H), 2.69 (s, 3H), 1.81 (s, 3H), 1.43 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 170.9, 169.4, 135.8, 133.8, 127.6, 125.6, 123.6, 123.2, 119.5, 117.1, 57.9, 28.5, 25.4, 23.9, 10.0; HRMS (ESI): Exact mass calcd for C$_{16}$H$_{20}$N$_2$O$_2$Na $[M+Na]^+$ 295.1417, Found 295.1418.

N-acetyl-N-(2, 6-dimethylphenyl)-$1H$-indole-3-carboxamide (4x)

1H NMR (400 MHz, CDCl$_3$) δ 8.62 (br, 1H), 8.42 (d, $J = 8.0$ Hz, 1H), 7.19-7.31(m, 4H), 7.11 (d, $J = 7.6$ Hz, 2H), 6.25 (d, $J = 3.2$ Hz, 1H), 2.68 (s, 3H), 2.17 (s, 6H); 13C NMR (125 MHz, CDCl$_3$) δ 174.2, 166.5, 138.4, 136.8, 135.3, 130.0, 129.0, 128.8, 127.6, 123.6, 122.5, 122.2, 111.4, 110.5, 26.6, 18.2; HRMS (ESI): Exact mass calcd for C$_{19}$H$_{18}$N$_2$O$_2$ $[M+Na]^+$ 329.1260, Found 329.1260.

IV. X-ray Structures of 4a and 3a

4a: The deposition number at the Cambridge Crystallographic Data Centre is CCDC 858032.
3a: The deposition number at the Cambridge Crystallographic Data Centre is CCDC 862590.

V. References

VI. Copies of 1H NMR and 13C NMR Spectra
3a
015112

--- Bruker Spectrometer Output ---

Spectrum: 3b

- **1H NMR**
 - **Solvent**: DMSO-d6
 - **Temperature**: 298 K
 - **Field Strength**: 500 MHz
 - **Chemical Shifts**:
 - 0.80 ppm (9H, s)
 - 1.30 ppm (3H, t)
 - 1.30 ppm (3H, m)
 - 2.00 ppm (2H, q)
 - 2.40 ppm (2H, t)
 - 3.50 ppm (2H, q)
 - 4.00 ppm (1H, q)
 - 7.00 ppm (3H, m)

--- Additional Data ---

Elemental Analysis

- **Calculated**
 - C: 70.82%
 - H: 6.17%
 - N: 13.51%

- **Found**
 - C: 70.42%
 - H: 6.10%
 - N: 13.47%

--- References ---

This spectrum was generated using Bruker NMR equipment and processed with Bruker Topspin software.