Supplementary Information

Cobalt-catalyzed arylation of aldimines via chelation-assisted C–H bond functionalization

Ke Gao and Naohiko Yoshikai*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371, Singapore

Table of Contents

Materials and Methods	S2
Optimization of Reaction Conditions	
Addition of 2-Arylpyridine to Aromatic Aldimine (Table 1)	S4
Formation of Isoindolinones via Self-Coupling of Aldimine (Scheme 2)	S12
Synthesis of Indenones via Self-Coupling of Aldimines (Scheme 2 and Table 2)	S13
Proposed Mechanism for the Formation of Indenone	
NMR Spectra	

Materials and Methods

General. All reactions dealing with air- or moisture-sensitive compound were performed by standard Schlenk techniques in oven-dried reaction vessels under nitrogen atmosphere. Analytical thin-layer chromatography (TLC) was performed on Merck 60 F254 silica gel plates. Flash chromatography was performed using 40–63 μ m silica gel (Si 60, Merck). ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on Bruker AV-400 (400 MHz) NMR spectrometer. ¹H and ¹³C NMR spectra are reported in parts per million (ppm) downfield from an internal standard, tetramethylsilane (0 ppm) and CHCl₃ (77.0 ppm), respectively. Gas chromatographic (GC) analysis was performed on a Shimadzu GC-2010 system equipped with an FID detector and a capillary column, DB-5 (Agilent J&W, 0.25 mm i.d. x 30 m, 0.25 μ m film thickness). Gas chromatography–mass spectrometry (GC–MS) analysis was performed on a Shimadzu GCMS-QP2010 system equipped with a capillary column, Rxi[®]-5Sil MS (Restek, 0.25 mm i.d. x 30 m, 0.25 μ m film thickness). High-resolution mass spectra (HRMS) were obtained with a Q-Tof Premier LC HR mass spectrometer. Melting points were measured on a Büchi M-565 apparatus and uncorrected.

Materials. Unless otherwise noted, commercial reagents were purchased from Aldrich, Alfa Aesar, and other commercial suppliers and were used as received. Anhydrous cobalt(II) bromide (>99%) was purchased from Alfa Aesar, and was used as received. THF was distilled over Na/benzophenone. Grignard reagents except MeMgCl (purchased from Aldrich) were prepared from the corresponding halides and magnesium turnings in anhydrous THF and titrated before use. The 2-arylpyridine derivatives were prepared by nickel-catalyzed cross-coupling according to the procedure reported by Mongin et al.¹ The aldimines were prepared by condensation of the corresponding aldehydes and aniline or *p*-anisidine in EtOH.

Optimization of Reaction Conditions

Table S1. Screening conditions for the reaction of 1a with 2a or $2b^a$

	N +	CoBr ₂ (10 m ligand (10 m R RMgBr (1.8	nol %)	NHR
		`Ph THF, 60 °C,	6 h	Ph
1		$(R = Ph)$ $(R = 4\text{-}MeOC_6H_4)$	За,	b
Entry	Imine	Ligand	RMgX	Yield $(\%)^b$
1	2a	IPr•HCl	tBuCH ₂ MgBr	84 ^c
2^d	2b	IPr•HCl	tBuCH ₂ MgBr	81 ^c
3	2a	IMes•HCl	tBuCH ₂ MgBr	21
4	2a	L1	tBuCH ₂ MgBr	<1
5	2a	L2	tBuCH ₂ MgBr	<1
6	2a	IPr•HCl	MeMgCl	14
7	2a	IPr•HCl	<i>n</i> BuMgBr	2
8	2a	IPr•HCl	iPrMgBr	2
9	2a	IPr•HCl	Me ₃ SiCH ₂ MgCl	4
10^e	2a	IPr•HCl	tBuCH ₂ MgBr	0
$R^{3} \xrightarrow{R^{2}}_{R^{1}} \xrightarrow{R^{2}}_{R^{1}} R^{3} = H$ $R^{3} \xrightarrow{C\Gamma}_{R^{1}} R^{1} = R^{3} = R^{3} = H$ $L^{1} (R^{1} = R^{2} = R^{3} = H)$ $L^{2} (R^{1} = R^{2} = H, R^{3} = H)$ $L^{2} (R^{1} = R^{2} = H, R^{3} = H)$				

^{*a*} The reaction was performed on a 0.3 mmol scale. ^{*b*} Determined by GC using *n*-tridecane as an internal standard. ^{*c*} Isolated yield. ^{*d*} CoCl₂ was used instead of CoBr₂. The reaction time was 24 h. ^{*e*} CoBr₂ was omitted from the reaction.

Addition of 2-Arylpyridine to Aromatic Aldimine (Table 1)

A Typical Procedure: 4-Methoxy-*N*-(phenyl(2-(pyridin-2-yl)phenyl)methyl)aniline (3b). In a Schlenk tube were placed CoCl₂ (3.9 mg, 0.030 mmol), IPr•HCl (12.8 mg, 0.030 mmol), 2-phenylpyridine (1a, 43 μ L, 0.30 mmol), and THF (0.64 mL). To the mixture was added a THF solution of *t*BuCH₂MgBr (0.63 M, 0.86 mL, 0.54 mmol) dropwise at 0 °C. After stirring for 30 min, (*E*)-*N*-benzylidene-4-methoxyaniline (2b, 76.1 mg, 0.36 mmol) was added. The resulting mixture was stirred at 60 °C for 24 h, and then allowed to room temperature. The reaction was quenched by sequential addition of Et₂O (1 mL) and saturated aqueous solution of NH₄Cl (1 mL). The aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layer was dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (eluent: hexane/EtOAc/Et₃N = 10/1/0.1) to afford the title compound as a brown oil (89.0 mg, 81 %).

3b: R_f 0.17 (hexane/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): δ 3.71 (s, 3H), 4.28 (brs, 1H), 5.88 (s, 1H), 6.51 (d, J = 8.8 Hz, 2H), 6.71 (d, J = 8.8 Hz, 2H), 7.13-7.22 (m, 7H), 7.36-7.40 (m, 3H), 7.53-7.59 (m, 2H), 8.65 (d, J = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 55.8, 59.7, 114.6, 114.8, 122.0, 124.4, 126.9, 127.4, 127.7,

128.2, 128.4, 128.9, 130.2, 136.4, 140.5, 141.2, 141.8, 143.1, 149.1, 152.0, 159.7; HRMS (ESI) Calcd for $C_{25}H_{23}N_2O [M + H]^+$ 367.1810, found 367.1812.

N-(Phenyl(2-(pyridin-2-yl)phenyl)methyl)aniline (3a): The typical procedure

was applied to 2-phenylpyridine (**1a**, 43 μ L, 0.30 mmol) and (*E*)-*N*-benzylideneaniline (**2a**, 65.2 mg, 0.36 mmol) using CoBr₂ (6.6 mg, 0.030 mmol) at 60 °C for 6 h. Silica gel chromatography (eluent: hexane/EtOAc/Et₃N = 10/1/0.1) of the crude product afforded the title compound as a yellow oil (84.3 mg, 84 %).

 R_f 0.15 (hexane/EtOAc = 10/1); ¹H NMR (400 MHz, CDCl₃): δ 4.56 (brs, 1H), 6.01 (s, 1H), 6.58(d, J = 8.0 Hz, 2H), 6.70 (t, J = 7.2 Hz, 1H), 7.11-7.23 (m, 9H), 7.39-7.44 (m, 3H), 7.55-7.59 (m, 2H), 8.66-8.67 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 59.0, 113.5, 117.4, 122.0, 124.3, 127.0, 127.4, 127.7, 128.2, 128.4, 128.9, 129.2, 130.3, 136.4, 140.5, 141.0, 142.9, 147.4, 149.1, 159.6; HRMS (ESI) Calcd for C₂₄H₂₁N₂ [M + H]⁺ 337.1705, found 337.1702.

4-Methoxy-N-((5-methoxy-2-(pyridin-2-yl)phenyl)(phenyl)methyl)aniline (3c): The typical

procedure was applied to 2-(4-methoxyphenyl)pyridine (**1b**, 55.6 mg, 0.30 mmol) and (*E*)-*N*-benzylidene-4-methoxyaniline (**2b**, 76.1 mg, 0.36 mmol) for 14 h. Silica gel chromatography (eluent: hexane/EtOAc/Et₃N = 10/1/0.1-5/1/0.1) of the crude product afforded the title compound as a dark brown oil (90.4 mg, 76%).

OMe

ΗN

NMe₂

Ph

 $R_f 0.15$ (hexane/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): δ 3.71 (s, 3H), 3.79 (s, 3H), 4.28 (brs, 1H), 5.92 (s, 1H), 6.52 (app.d, J = 6.8 Hz, 2H), 6.71 (app.d, J = 6.8 Hz, 2H), 6.89 (dd, J = 8.4, 2.0 Hz, 1H), 7.12-7.26 (m, 8H), 7.34 (d, J = 8.4 Hz, 1H), 7.53-7.57 (m, 1H), 8.61-8.63 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 55.4, 55.8, 59.7, 112.2, 114.1, 114.7, 114.8, 121.7, 124.4, 127.0, 127.7, 128.4, 131.6, 133.2, 136.3, 141.8, 142.9, 143.0, 149.1, 152.1, 159.5, 160.0; HRMS (ESI) Calcd for C₂₆H₂₅N₂O₂ [M + H]⁺ 397.1916, found 397.1921.

N-((5-Fluoro-2-(pyridin-2-yl)phenyl)(phenyl)methyl)-4-methoxyaniline (3d): The typical procedure was applied to 2-(4-fluorophenyl)pyridine (1c, 52.0 mg, 0.30 mmol) and (*E*)-*N*-benzylidene-4-methoxyaniline (2b, 76.1 mg, 0.36 mmol) for 14 h. Silica gel chromatography (eluent: hexane/EtOAc/Et₃N = 10/1/0.1) of the crude product afforded the title compound as a dark brown oil (73.3 mg, 64%).

 $R_f 0.15$ (hexane/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): δ 3.71 (s, 3H), 4.12 (brs, 1H), 5.88 (s, 1H), 6.52 (app.d, J = 6.8 Hz, 2H), 6.71 (app.d, J = 6.8 Hz, 2H), 7.03-7.09 (m, 4H), 7.16-7.21 (m, 4H), 7.32-7.36 (m, 2H), 7.55-7.59 (m, 1H), 8.62-8.64 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 55.9, 59.7, 114.3 (d, ² $J_{C-F} = 21$ Hz), 114.8, 114.90 (d, ² $J_{C-F} = 20$ Hz), 114.91, 122.2, 124.5, 127.3, 127.8, 128.6 (two signals overlapping), 132.1 (d, ³ $J_{C-F} = 8$ Hz), 136.5, 141.5, 142.5, 144.1 (d, ³ $J_{C-F} = 7$ Hz), 149.2, 152.3, 158.9, 163.3 (d, ¹ $J_{C-F} = 246$ Hz); HRMS (ESI) Calcd for C₂₅H₂₂FN₂O [M + H]⁺ 385.1716, found 385.1719.

3-(((4-Methoxyphenyl)amino)(phenyl)methyl)-*N*,*N*-dimethyl-4-(pyridin-2-yl)aniline (3e):

The typical procedure was applied to *N*,*N*-dimethyl-4-(pyridin-2-yl)aniline (**1d**, 59.5 mg, 0.30 mmol) and (*E*)-*N*-benzylidene-4-methoxyaniline (**2b**, 76.1 mg, 0.36 mmol) for 24 h. Silica gel chromatography (eluent: hexane/EtOAc/Et₃N = 6/1/0.1-5/1/0.1) of the crude product afforded the title compound as a

brown solid (34.2 mg, 28%).

m.p. 125.0-126.1 °C; R_f 0.12 (hexane/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): δ 2.92 (s, 6H), 3.70 (s, 3H), 4.37 (brs, 1H), 5.92 (s, 1H), 6.51 (app.d, J = 6.8 Hz, 2H), 6.68-6.71 (m, 3H), 6.82 (d, J = 2.4Hz, 1H), 7.09-7.18 (m, 7H), 7.26-7.31 (m, 1H), 7.52-7.54 (m, 1H), 8.57-8.59 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 40.6, 55.9, 60.1, 111.2, 112.4, 114.7, 114.8, 121.2, 124.3, 126.7, 127.7, 128.3, 128.9, 131.4, 136.2, 142.1, 142.2, 143.5, 149.0, 150.9, 152.0, 160.1; HRMS (ESI) Calcd for C₂₇H₂₈N₃O [M + H]⁺ 410.2232, found 410.2230.

4-Methoxy-N-((4-methyl-2-(pyridin-2-yl)phenyl)(phenyl)methyl)aniline (3f): The typical

procedure was applied to 2-(*m*-tolyl)pyridine (**1e**, 49 μ L, 0.30 mmol) and (*E*)-*N*-benzylidene-4-methoxyaniline (**2b**, 76.1 mg, 0.36 mmol) for 16 h. Silica gel chromatography (eluent: hexane/EtOAc/Et₃N = 10/1/0.1) of the crude product afforded the title compound as a brown oil (53.9 mg, 47%).

ΗN

MeO

OMe

 $R_f 0.25$ (hexane/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): δ 2.38 (s, 3H), 3.71 (s, 3H), 4.26 (brs, 1H), 5.77 (s, 1H), 6.49 (app.d, J = 6.8 Hz, 2H), 6.70 (app.d, J = 6.8 Hz, 2H), 7.13-7.22 (m, 9H), 7.38 (d, J = 8.0 Hz, 1H), 7.54-7.58 (m, 1H), 8.63-8.65 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.2, 55.9, 59.5, 114.6, 114.8, 122.0, 124.3, 126.9, 127.8, 128.2, 128.4, 129.6, 130.9, 136.3, 137.0, 138.3, 140.4, 141.8, 143.3, 149.2, 152.0, 159.7; HRMS (ESI) Calcd for C₂₆H₂₅N₂O [M + H]⁺ 381.1967, found 381.1969.

4-Methoxy-N-((3-methoxy-2-(pyridin-2-yl)phenyl)(phenyl)methyl)aniline (3g): The typical

procedure was applied to 2-(2-methoxyphenyl)pyridine (**1f**, 52 μ L, 0.30 mmol) and (*E*)-*N*-benzylidene-4-methoxyaniline (**2b**, 76.1 mg, 0.36 mmol) for 24 h. Silica gel chromatography (eluent: hexane/EtOAc/Et₃N = 10/1/0.1–3/1/0.1) of the crude product afforded the title compound as a dark brown oil (83.4 mg, 70%).

 $R_f 0.06$ (hexane/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): δ 3.70 (s, 3H), 3.72 (s, 3H), 4.10 (d, J = 4.0 Hz, 1H), 5.31 (d, J = 4.4 Hz, 1H), 6.44 (app.d, J = 6.8 Hz, 2H), 6.67 (app.d, J = 6.8 Hz, 2H), 6.91 (d, J = 8.0 Hz, 1H), 6.96 (d, J = 7.6 Hz, 1H), 7.04-7.06 (m, 2H), 7.13-7.18 (m, 5H), 7.34 (t, J = 6.0 Hz, 1H), 7.51-7.53 (m, 1H), 8.62 (d, J = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 55.88, 55.91, 60.2, 110.1, 114.6, 114.8, 120.0, 122.0, 126.2, 127.1, 127.8, 128.4,

129.6, 129.7, 135.8, 141.9, 142.9, 143.0, 149.4, 152.0, 156.3, 157.3; HRMS (ESI) Calcd for $C_{26}H_{25}N_2O_2 [M + H]^+$ 397.1916, found 397.1920.

4-Methoxy-N-(phenyl(2-(pyridin-2-yl)thiophen-3-yl)methyl)aniline (3h): The typical procedure was applied to 2-(thiophen-2-yl)pyridine (1g, 48.4 mg, 0.30 mmol) and (E)-N-benzylidene-4-methoxyaniline (2b, 76.1 mg, OMe ΗN 0.36 mmol) for 24 h. Silica gel chromatography (eluent: Ph hexane/EtOAc/Et₃N = 10/1/0.1-7/1/0.1) of the crude product afforded the title compound as a dark brown solid (56.3 mg, 48%). m.p. 104.1-105.9 °C; $R_f 0.33$ (hexane/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): δ 3.70 (s, 3H), 4.25 (brs, 1H), 6.17 (s, 1H), 6.52 (app.d, J = 6.8 Hz, 2H), 6.71 (app.d, J = 6.8 Hz, 2H), 7.01 (d, J = 5.2 Hz, 1H), 7.15-7.18 (m, 1H), 7.26 (t, J = 6.8 Hz, 2H), 7.31 (t, J = 7.2 Hz, 2H), 7.43 (d, J= 7.6 Hz, 2H), 7.47 (d, J = 8.0 Hz, 1H), 7.61-7.63 (m, 1H), 8.63-8.65 (m, 1H); ¹³C NMR (100) MHz, CDCl₃): δ 55.8, 57.0, 114.7, 114.9, 122.0, 122.5, 126.2, 127.3, 127.5, 128.7, 129.6, 136.9, 139.4, 141.5, 141.9, 142.9, 149.7, 152.2, 152.8; HRMS (ESI) Calcd for $C_{23}H_{21}N_2OS [M + H]^+$ 373.1375, found 373.1376.

4-Methoxy-*N***-((2-(4-methylpyridin-2-yl)phenyl)(phenyl)methyl)aniline (3i):** The typical procedure was applied to 4-methyl-2-phenylpyridine (1h, 50.8 mg, ...

0.30 mmol) and (*E*)-*N*-benzylidene-4-methoxyaniline (**2b**, 76.1 mg, 0.36 mmol) for 24 h. Silica gel chromatography (eluent: hexane/EtOAc/Et₃N = 6/1/0.1) of the crude product afforded the title compound as a brown solid (76.5 mg, 67%).

m.p. 126.4-127.3 °C; R_f 0.20 (hexane/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): δ 2.35 (s, 3H), 3.71 (s, 3H), 4.26 (brs, 1H), 5.85 (s, 1H), 6.49 (app.d, J = 6.8 Hz, 2H), 6.70 (app.d, J = 6.8 Hz, 2H), 7.09 (d, J = 8.0 Hz, 1H), 7.16-7.21 (m, 5H), 7.35-7.41 (m, 4H), 7.49-7.51 (m, 1H), 8.48 (dd, J = 1.4, 0.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 18.3, 55.8, 59.6, 114.6, 114.8, 123.8, 126.9, 127.3, 127.7, 128.2, 128.4, 128.7, 130.2, 131.5, 136.9, 140.4, 141.2, 141.8, 143.2, 149.5, 152.0, 156.7; HRMS (ESI) Calcd for C₂₆H₂₅N₂O [M + H]⁺ 381.1967, found 381.1962.

4-Methoxy-*N***-((5-methoxy-2-(3-methylpyridin-2-yl)phenyl)(phenyl)methyl)aniline** (3j): The typical procedure was applied to 2-(4-methoxyphenyl)-3-methylpyridine (1i, 56 μ L, 0.30 mmol) and (*E*)-*N*-benzylidene-4-methoxyaniline (2b, 76.1 mg, 0.36 mmol) for 24 h. Silica gel

chromatography (eluent: hexane/EtOAc/Et₃N = 6/1/0.1) of the crude product afforded the title compound as a yellow oil (62.6 mg, 51%).

 R_f 0.16 (hexane/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): δ 1.63 (s, 3H), 3.70 (s, 3H), 3.80 (s, 3H), 4.32 (brs, 1H), 5.40 (s, 1H), 6.52 (brs, 2H), 6.70 (d, J = 8.8 Hz, 2H), 6.85 (dd, J = 8.4, 2.4 Hz, 1H), 6.93 (brs, 2H), 7.08-7.13 (m, 5H), 7.19-7.23 (m, 1H), 7.34 (d, J = 8.0 Hz, 1H), 8.45-8.47 (m, 1H); ¹³C NMR (100 MHz,

Me NHN Ph OMe

CDCl₃): δ 19.0, 55.5, 55.9, 60.8, 111.9, 114.7, 114.8, 122.4, 124.9, 127.1, 127.7, 128.4, 129.2, 130.7, 132.4, 132.9, 138.0, 141.9, 142.3, 146.5, 152.1, 158.8, 159.7; HRMS (ESI) Calcd for C₂₇H₂₇N₂O₂ [M + H]⁺411.2073, found 411.2076.

N-((2-(1*H*-pyrazol-1-yl)phenyl)(phenyl)methyl)aniline (3k): The typical procedure was applied to 1-phenyl-1*H*-pyrazole (1j, 40 μ L, 0.30 mmol) and (*E*)-*N*-benzylideneaniline (2b, 65.2 mg, 0.36 mmol) for 24 h. Silica gel chromatography (eluent: hexane/EtOAc/Et₃N = 15/1/0.1–10/1/0.1) of the crude product afforded the title compound as a light yellow oil (59.3 mg, 61%).

 $R_f 0.42$ (hexane/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): δ 4.35 (d, J = 2.8 Hz, 1H), 5.85 (d, J = 3.2 Hz, 1H), 6.30 (t, J = 2.0 Hz, 1H), 6.50 (d, J = 7.6 Hz, 2H), 6.72 (t, J = 7.2 Hz, 1H), 7.08-7.10 (m, 2H), 7.12-7.16 (m, 2H), 7.21-7.25 (m, 4H), 7.35 (td, J = 7.2, 1.6 Hz, 1H), 7.41 (td, J = 7.2, 1.6 Hz, 1H), 7.44 (td, J = 7.2, 1.6 Hz, 1H), 7.69 (dd, J = 7.6, 1.6 Hz, 1H), 7.74 (d, J = 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 57.6, 106.5, 113.6, 117.8, 127.2, 127.5, 127.6, 128.2, 128.59, 128.62, 129.26, 129.31, 131.2, 138.9, 139.5, 140.7, 142.1, 147.0; HRMS (ESI) Calcd for C₂₂H₂₀N₃ [M + H]⁺ 326.1657, found 326.1658.

4-Methoxy-N-((2-(pyridin-2-yl)phenyl)(p-tolyl)methyl)aniline (31): The typical procedure was applied to 2-phenylpyridine (1a, 43 µL, 0.30 mmol) and OMe (E)-4-methoxy-N-(4-methylbenzylidene)aniline (2c, 81.1 mg, 0.36 ΗN mmol) for 24 h. Silica gel chromatography (eluent: hexane/EtOAc/Et₃N = 7/1/0.1) of the crude product afforded the title Me compound as a dark red solid (97.3 mg, 85%).

m.p. 89.3-91.6 °C; R_f 0.25 (hexane/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): δ 2.28 (s, 3H), 3.69 (s, 3H), 4.21 (brs, 1H), 5.83 (s, 1H), 6.49 (app.d, J = 9.2 Hz, 2H), 6.69 (app.d, J = 8.8 Hz, 2H), 7.02 (s, 4H), 7.18-7.23 (m, 2H), 7.33-7.39 (m, 3H), 7.53-7.56 (m, 2H), 8.62-8.64 (m, 1H);

¹³C NMR (100 MHz, CDCl₃): δ 21.2, 55.8, 59.3, 114.6, 114.7, 122.0, 124.3, 127.2, 127.6, 128.0, 128.8, 129.1, 130.1, 136.3, 136.5, 140.1, 140.4, 141.3, 141.8, 149.1, 151.9, 159.6; HRMS (ESI) Calcd for $C_{26}H_{25}N_2O [M + H]^+$ 381.1967, found 381.1970.

OMe

OMe

4-Methoxy-N-((4-methoxyphenyl)(2-(pyridin-2-yl)phenyl)methyl)aniline (3m): The typical procedure was applied to 2-phenylpyridine (1a, 43 µL, 0.30 mmol) and (E)-4-methoxy-N-(4-methoxybenzylidene)aniline (2d, 86.9 mg, HN 0.36 mmol) for 24 h. Silica gel chromatography (eluent: hexane/EtOAc/Et₃N = 10/1/0.1-5/1/0.1) of the crude product afforded the title compound as a dark brown oil (92.8 mg, 78%).

 $R_f 0.13$ (hexane/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): δ 3.71 (s, 3H), 3.75 (s, 3H), 4.22 (brs, 1H), 5.83 (s, 1H), 6.51 (d, J = 9.2 Hz, 2H), 6.71-6.75 (m, 4H), 7.04 (d, J = 8.4 Hz, 2H), 7.15-7.20 (m, 2H), 7.35-7.40 (m, 3H), 7.56-7.60 (m, 2H), 8.65 (d, J = 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 55.3, 55.8, 59.0, 113.7, 114.6, 114.7, 121.9, 124.3, 127.2, 127.8, 128.8 (two signals overlapping), 130.1, 135.3, 136.3, 140.4, 141.3, 141.8, 149.1, 151.9, 158.5, 159.7; HRMS (ESI) Calcd for $C_{26}H_{25}N_2O_2$ [M + H]⁺ 397.1916, found 397.1918.

N-((4-Fluorophenyl)(2-(pyridin-2-yl)phenyl)methyl)-4-methoxyaniline (3n): The typical procedure was applied to 2-phenylpyridine (1a, 43 µL, 0.30 mmol) OMe and (E)-N-(4-fluorobenzylidene)-4-methoxyaniline (2e, 82.5 mg, 0.36 HN mmol) for 24 h. Silica gel chromatography (eluent: hexane/EtOAc/Et₃N = 10/1/0.1-7/1/0.1) of the crude product afforded the title compound as a brown oil (30.4 mg, 26%).

 $R_f 0.17$ (hexane/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): δ 3.71 (s, 3H), 4.25 (brs, 1H), 5.83 (s, 1H), 6.48 (app.d, J = 9.2 Hz, 2H), 6.70 (app.d, J = 9.2 Hz, 2H), 6.86 (t, J = 8.8 Hz, 2H), 7.06-7.09 (m, 2H), 7.15 (d, J = 8.0 Hz, 1H), 7.17-7.20 (m, 1H), 7.36-7.38 (m, 3H), 7.46-7.49 (m, 1H), 7.54-7.58 (m, 1H), 8.61-8.62 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 55.9, 59.0, 114.7, 114.9, 115.2 (d, ${}^{2}J_{C-F} = 21$ Hz), 121.1, 124.3, 127.5, 128.2, 129.0, 129.3 (d, ${}^{3}J_{C-F} = 8$ Hz), 130.3, 136.5, 138.9 (d, ${}^{4}J_{C-F} = 3$ Hz), 140.5, 141.1, 141.6, 149.1, 152.2, 159.7, 161.8 (d, ${}^{1}J_{C-F} = 244$ Hz); HRMS (ESI) Calcd for $C_{25}H_{22}FN_2O [M + H]^+ 385.1716$, found 385.1718.

4-Methoxy-N-((2-(pyridin-2-yl)phenyl)(m-tolyl)methyl)aniline (30): The typical procedure applied 2-phenylpyridine (1a,43 μL, 0.30 to mmol) and was

(*E*)-4-methoxy-*N*-(3-methylbenzylidene)aniline (**2f**, 81.1 mg, 0.36 mmol) for 13 h. Silica gel chromatography (eluent: hexane/EtOAc/Et₃N = 7/1/0.1) of the crude product afforded the title compound as a dark red oil (87.8 mg, 77%). R_f 0.20 (hexane/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): δ 2.24 (s, 3H), 3.71 (s, 3H), 4.21 (brs, 1H), 5.82 (s, 1H), 6.51 (app.d, *J* = 9.2 Hz, 2H), 6.71 (app.d, *J* = 9.2 Hz, 2H), 6.93 (s, 1H), 6.93 (d, *J* = 6.8 Hz, 1H), 6.99 (d, *J* = 7.2 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, 1H), 7.16-7.21 (m, 2H), 7.36-7.40 (m, 3H), 7.53-7.58 (m, 2H), 8.65-8.66 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.5, 55.8, 59.7, 114.6, 114.8, 122.0, 124.4, 124.8, 127.3, 127.7, 128.1, 128.3, 128.4, 128.9, 130.1, 136.3, 137.9, 140.5, 141.3, 141.9, 143.0, 149.1, 152.0, 159.7; HRMS (ESI) Calcd for C₂₆H₂₅N₂O [M + H]⁺ 381.1967, found 381.1962.

4-Methoxy-N-((2-(pyridin-2-yl)phenyl)(o-tolyl)methyl)aniline (3p): The typical procedure

was applied to 2-phenylpyridine (**1a**, 43 μ L, 0.30 mmol) and (*E*)-4-methoxy-*N*-(2-methylbenzylidene)aniline (**2g**, 81.1 mg, 0.36 mmol) for 24 h. Silica gel chromatography (eluent: hexane/EtOAc/Et₃N = 10/1/0.1–5/1/0.1) of the crude product afforded the title compound as a light yellow solid (88.3 mg, 77%).

m.p. 120.0-121.3 °C; R_f 0.19 (hexane/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): δ 1.96 (s, 3H), 3.71 (s, 3H), 4.07 (brs, 1H), 5.85 (s, 1H), 6.45 (app.d, J = 8.8 Hz, 2H), 6.71 (app.d, J = 9.2 Hz, 2H), 7.05-7.06 (m, 1H), 7.10-7.15 (m, 2H), 7.14-7.17 (m, 2H), 7.25-7.27 (m, 1H), 7.36-7.39 (m, 2H), 7.43-7.46 (m, 2H), 7.50-7.52 (m, 1H), 8.60 (d, J = 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 19.1, 55.8, 56.7, 114.1, 114.8, 121.9, 124.0, 126.0, 127.1, 127.4, 127.6, 128.2, 128.7, 130.0, 130.5, 136.2, 136.3, 139.9, 140.8, 140.9, 141.8, 149.2, 151.9, 159.5; HRMS (ESI) Calcd for C₂₆H₂₅N₂O [M + H]⁺ 381.1967, found 381.1972.

4-Methoxy-*N***-((2-methoxyphenyl)(2-(pyridin-2-yl)phenyl)methyl)aniline (3q):** The typical procedure was applied to 2-phenylpyridine (1a, 43 μL, 0.30 mmol)

and (*E*)-4-methoxy-*N*-(2-methoxybenzylidene)aniline (**2h**, 86.9 mg, 0.36 mmol) for 24 h. Silica gel chromatography (eluent: hexane/EtOAc/Et₃N = 10/1/0.1-5/1/0.1-3/1/0.1) of the crude product afforded the title compound as a dark brown oil (62.9 mg, 53%).

 $R_f 0.13$ (hexane/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): δ 3.52 (s, 3H), 3.70 (s, 3H), 4.22 (brs, 1H), 5.99 (s, 1H), 6.44 (app.d, J = 8.8 Hz, 2H), 6.67 (app.d, J = 8.8 Hz, 2H), 6.72 (d, J =

8.0 Hz, 1H), 6.84 (t, J = 7.2 Hz, 1H), 7.14-7.18 (m, 2H), 7.25-7.27 (m, 2H), 7.32-7.34 (m, 2H), 7.39-7.41 (m, 2H), 7.54-7.58 (m, 1H), 8.61-8.62 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 54.1, 55.3, 55.9, 110.6, 114.5, 114.8, 120.6, 121.8, 124.1, 127.2, 128.0, 128.21, 128.24, 128.6, 130.0, 130.9, 136.0, 140.76, 140.79, 141.9, 149.2, 151.9, 156.9, 159.7; HRMS (ESI) Calcd for C₂₆H₂₅N₂O₂ [M + H]⁺ 397.1916, found 397.1911.

N-([1,1'-Biphenyl]-2-yl(2-(pyridin-2-yl)phenyl)methyl)-4-methoxyaniline (3r): The typical

procedure was applied to 2-phenylpyridine (**1a**, 43 μ L, 0.30 mmol) and (*E*)-*N*-([1,1'-biphenyl]-2-ylmethylene)-4-methoxyaniline (**2i**, 103.4 mg, 0.36 mmol) for 48 h. Silica gel chromatography (eluent: hexane/EtOAc/Et₃N = 10/1/0.1–7/1/0.1) of the crude product afforded the title compound as a light yellow solid (46.7 mg, 35%).

m.p. 142.1-143.1 °C; R_f 0.16 (hexane/EtOAc = 5/1); ¹H NMR (400 MHz, CDCl₃): δ 3.71 (s, 3H), 4.22 (brs, 1H), 5.69 (s, 1H), 6.41 (app.d, J = 8.8 Hz, 2H), 6.67 (app.d, J = 8.8 Hz, 2H), 6.73 (d, J = 7.6 Hz, 1H), 6.90 (d, J = 7.2 Hz, 2H), 6.99-7.01 (m, 1H), 7.12-7.16 (m, 3H), 7.20 (d, J = 7.6 Hz, 1H), 7.24-7.27 (m, 3H), 7.28-7.32 (m, 2H), 7.34-7.47 (m, 2H), 7.47-7.49 (m, 1H), 8.27-8.28 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 55.8, 57.0, 114.5, 114.7, 121.6, 123.5, 126.9, 127.0, 127.3, 127.6, 128.0, 128.3, 128.4, 128.7, 129.1, 130.1, 130.4, 135.9, 139.9, 140.7, 140.8, 141.0, 141.5, 141.9, 149.0, 151.9, 159.0; HRMS (ESI) Calcd for C₃₁H₂₇N₂O [M + H]⁺ 443.2123, found 443.2127.

Formation of Isoindolinones via Self-Coupling of Aldimine (Scheme 2)

In a Schlenk tube were placed CoBr₂ (6.6 mg, 0.030 mmol), IPr•HCl (12.8 mg, 0.030 mmol), (E)-4-methoxy-N-(1-(p-tolyl)ethylidene)aniline (2c, 67.6 mg, 0.30 mmol), and THF (0.64 mL). To the mixture was added a THF solution of *t*BuCH₂MgBr (0.63 M, 0.86 mL, 0.54 mmol) dropwise at 0 °C. After stirring for 30 min, another portion of 2c (67.6 mg, 0.30 mmol) was added. The resulting mixture was stirred at 60 °C for 6 h, and then allowed to room temperature. The reaction was quenched by the addition of ether (1 mL) and H₂O (1 mL), followed by dilution with ethyl acetate (3 mL). The resulting mixture was stirred under air for 96 h, and then extracted with ethyl acetate (3 x 10 mL). The combined organic layer was dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by silica gel hexane/EtOAc 5/13/1chromatography (eluent: = to to 1/1)to afford 2-(4-methoxyphenyl)-5-methyl-3-(*p*-tolyl)isoindolin-1-one (5, 16.3 mg, 16 %) and 3-hydroxy-2-(4-methoxyphenyl)-5-methyl-3-(p-tolyl)isoindolin-1-one (6, 52.8 mg, 49%) both as off-white solids. Note that GC-MS analysis of the crude mixture obtained just after quenching gave a major peak at m/z = 327, indicating the formation of isoindole 4 (see Scheme 2). Attempted isolation of 4 by silica gel chromatography was not successful, resulting in the formation of 5, 6, and other intractable products.

2-(4-Methoxyphenyl)-5-methyl-3-(p-tolyl)isoindolin-1-one (5): m.p. 161.3-162.4 °C; Rf 0.29

(hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): δ 2.28 (s, 3H), 2.38 (s, 3H), 3.75 (s, 3H), 5.91 (s, 1H), 6.82 (app.d, J = 8.8 Hz, 2H), 7.01 (s, 1H), 7.04-7.09 (m, 4H), 7.28 (d, J = 8.0 Hz, 1H), 7.42 (app.d, J = 8.8 Hz, 2H), 7.83 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.3, 22.1, 55.5, 66.0, 114.3, 123.5, 123.9, 124.8, 127.3, 129.0, 129.7, 129.9, 130.9, 135.0,

HO

OMe

Me

138.3, 143.2, 146.4, 157.1, 168.1; HRMS (ESI) Calcd for $C_{23}H_{22}NO_2 [M + H]^+$ 344.1651, found 344.1650.

3-Hydroxy-2-(4-methoxyphenyl)-5-methyl-3-(p-tolyl)isoindolin-1-one (6): m.p. 208.8-210.1

°C; R_f 0.16 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, DMSO- d_6): δ 2.21 (s, 3H), 2.34 (s, 3H), 3.68 (s, 3H), 6.82 (app.d, J = 9.2 Hz, 2H), 7.05-7.07 (m, 3H), 7.21 (app.d, $J = Me^{-7}$ 8.4 Hz, 2H), 7.32-7.36 (m, 3H), 7.44 (s, 1H), 7.69 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ 21.1, 21.8, 55.6,

92.4, 114.0, 123.3, 123.5, 126.5, 128.0, 129.4 (two signals overlapping), 129.7, 130.5, 137.4,

137.7, 143.8, 150.6, 157.6, 166.8; HRMS (ESI) Calcd for $C_{23}H_{22}NO_3 [M + H]^+360.1600$, found 360.1596.

Synthesis of Indenones via Self-Coupling of Aldimines (Scheme 2 and Table 2)

A Typical Procedure: 2-(4-Methoxyphenyl)-5-methyl-3-(*p*-tolyl)-1*H*-inden-1-one (7a). In a Schlenk tube were placed CoBr₂ (6.6 mg, 0.030 mmol), IPr•HCl (12.8 mg, 0.030 mmol), (*E*)-4-methoxy-*N*-(1-(*p*-tolyl)ethylidene)aniline (2c, 67.6 mg, 0.30 mmol), and THF (0.71 mL). To the mixture was added a THF solution of *t*BuCH₂MgBr (0.68 M, 0.79 mL, 0.54 mmol) dropwise at 0 °C. After stirring for 30 min, another portion of 2c (67.6 mg, 0.30 mmol) was added. The resulting mixture was stirred at room temperature for 12 h, followed by the addition of H₂O (0.3 mL) and 4-methoxybenzaldehyde (73 μ L, 0.60 mmol). After stirring for 1 h, aq. HCl (3 M, 1 mL) was added, and the resulting mixture was stirred at 60 °C for 12 h. The reaction was cooled to room temperature, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layer was dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (eluent: hexane/EtOAc = 50/1) to afford the title compound as a red

solid (72.0 mg, 71% based on 2c).

7a: m.p. 173.5-174.3 °C; R_f 0.40 (hexane/EtOAc = 10/1); ¹H NMR (400 MHz, CDCl₃): δ 2.35 (s, 3H), 2.42 (s, 3H), 3.80 (s, 3H), 6.82 (app.d, J = 8.8 Hz, 2H), 6.94 (s, 1H), 7.05 (d, J = 7.2 Hz, 1H), 7.23-7.27 (m, 4H), 7.29 (app.d, J = 8.0 Hz,

2H), 7.46 (d, J = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.7, 22.3, 55.3, 113.8, 122.4, 123.0, 123.6, 128.6 (two signals overlapping), 128.7, 129.7, 130.3, 131.4, 132.1, 139.3, 144.4, 146.2, 153.8, 159.2, 196.9; HRMS (ESI) Calcd for C₂₄H₂₁O₂ [M + H]⁺ 341.1542, found 341.1540.

2-(4-Methoxyphenyl)-3-phenyl-1*H***-inden-1-one (7b):** The typical procedure was applied to (*E*)-*N*-benzylidene-4-methoxyaniline (**2b**, 126.8 mg, 0.60 mmol) and 4-methoxybenzaldehyde (73 μ L, 0.60 mmol). Silica gel chromatography (eluent: hexane/EtOAc = 50/1) of the crude product afforded the title compound as a light red solid (64.0 mg, 68%).

m.p. 116.8-117.5 °C (lit. 118-119 °C);² R_f 0.47 (hexane/EtOAc = 8/1); ¹H NMR (400 MHz,

CDCl₃): δ 3.79 (s, 3H), 6.81 (app.d, J = 8.8 Hz, 2H), 7.12 (d, J = 7.2 Hz, 1H), 7.24-7.28 (m, 3H), 7.36 (t, J = 7.2 Hz, 1H), 7.39-7.44 (m, 5H), 7.57 (d, J = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 55.4, 113.8, 121.1, 123.0, 123.3, 128.7, 128.8, 129.0, 129.3, 130.9, 131.5, 132.1, 133.2, 133.6, 145.7, 154.0, 159.4, 197.2; HRMS (ESI) Calcd for C₂₂H₁₇O [M + H]⁺ 313.1229, found 313.1226.

4-(1-Oxo-3-phenyl-1*H***-inden-2-yl)benzonitrile (7c):** The typical procedure was applied to (*E*)-*N*-benzylidene-4-methoxyaniline (**2b**, 126.8 mg, 0.60 mmol) and 4-cyanobenzaldehyde (78.7 mg, 0.60 mmol). Silica gel chromatography (eluent: hexane/EtOAc = 25/1) of the crude product afforded the title compound as a red solid (63.6 mg, 69%).

m.p. 139.1-139.9 °C (lit. 142-144 °C);³ R_f 0.27 (hexane/EtOAc = 10/1); ¹H NMR (400 MHz, CDCl₃): δ 7.18 (d, J = 7.2 Hz, 1H), 7.34-7.37 (m, 4H), 7.38-7.41 (m, 2H), 7.43-7.47 (m, 3H), 7.53 (app.d, J = 8.4 Hz, 2H), 7.61 (d, J = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 111.2, 119.0, 122.1, 123.5, 128.5, 129.3, 129.9, 130.2, 130.5 (two signals overlapping), 130.7, 132.0, 132.1, 134.0, 135.9, 144.7, 158.0, 195.6; HRMS (ESI) Calcd for C₂₂H₁₄NO [M + H]⁺ 308.1075, found 308.1078.

3-Phenyl-2-(4-(trifluoromethyl)phenyl)-1H-inden-1-one (7d): The typical procedure was

applied to (*E*)-*N*-benzylidene-4-methoxyaniline (**2b**, 126.8 mg, 0.60 mmol) and 4-trifluoromethylbenzaldehyde (82 μ L, 0.60 mmol). Silica gel chromatography (eluent: hexane/EtOAc = 100/1) of the crude product afforded the title compound as a light red oil (66.3 mg, 63%).

 R_f 0.53 (hexane/EtOAc = 10/1); ¹H NMR (400 MHz, CDCl₃): δ 7.18 (d, J = 7.2 Hz, 1H), 7.31-7.35 (m, 1H), 7.36-7.42 (m, 5H), 7.43-7.46 (m, 3H), 7.52 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 121.9, 123.5, 124.4 (q, ¹ J_{C-H} =248 Hz), 125.2 (q, ³ J_{C-H} =4.0 Hz), 128.4 (q, ² J_{C-H} =30 Hz), 128.6, 129.3, 129.7, 130.0, 130.2, 130.4, 130.8, 132.4, 133.9, 134.7, 145.0, 157.3, 196.0; HRMS (ESI) Calcd for C₂₂H₁₄F₃O [M + H]⁺ 351.0997, found 351.0999.

2-(2,6-Difluorophenyl)-3-phenyl-1*H***-inden-1-one** (7e): The typical procedure was applied to (*E*)-*N*-benzylidene-4-methoxyaniline (**2b**, 126.8 mg, 0.60 mmol) and 2,6-difluorobenzaldehyde (65 μ L, 0.60 mmol). Silica gel chromatography (eluent: hexane/EtOAc = 50/1) of the crude product afforded the title compound as a yellow solid (76.6 mg, 80%).

m.p. 133.3-134.5 °C; R_f 0.50 (hexane/EtOAc = 8/1); ¹H NMR (400 MHz, CDCl₃): δ 6.85-6.89 (m, 2H), 7.25-7.30 (m, 2H), 7.32-7.36 (m, 1H), 7.40-7.44 (m, 6H), 7.63 (d, J = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 109.2 (t, ² J_{C-F} = 10 Hz), 111.7 (dd, ² J_{C-F} = 19 Hz, ⁴ J_{C-F} = 6 Hz), 122.0, 123.5, 127.8, 128.9, 129.6, 130.1, 130.4 (t, ³ J_{C-F} = 10 Hz), 131.5, 132.6, 133.5, 144.8, 144.8, 160.1, 161.0 (dd, ¹ J_{C-F} = 249 Hz, ³ J_{C-F} = 7 Hz), 194.4; HRMS (ESI) Calcd for C₂₁H₁₃F₂O [M + H]⁺ 319.0934, found 319.0933.

2-(4-Methoxyphenyl)-3-phenyl-1H-inden-1-one (7f): The typical procedure was applied to

(*E*)-*N*-benzylidene-4-methoxyaniline (**2b**, 126.8 mg, 0.60 mmol) and 3,5-diiodo-4-hydroxybenzaldehyde (224.3 mg, 0.60 mmol). Silica gel chromatography (eluent: hexane/EtOAc = 3/1) of the crude product afforded the title compound as a dark red solid (91.5 mg, 55%).

m.p. 177.2-178.4 °C; R_f 0.55 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): δ 5.82 (brs, 1H), 7.13 (d, J = 4.8 Hz, 1H), 7.30 (d, J = 7.2 Hz, 1H), 7.36-7.39 (m, 3H), 7.46-7.47 (m, 3H), 7.57 (d, J = 6.8 Hz, 1H), 7.59 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 81.9, 121.7, 123.3, 127.2, 128.5, 128.8, 129.2, 129.5, 130.0, 130.6, 132.2, 133.9, 140.7, 145.0, 153.2, 156.0, 196.1; HRMS (ESI) Calcd for C₂₁H₁₃I₂O₂ [M + H]⁺ 550.9005, found 550.9000.

3-Phenyl-2-(pyridin-4-yl)-1H-inden-1-one (7g): The typical procedure

was applied to (*E*)-*N*-benzylidene-4-methoxyaniline (**2b**, 126.8 mg, 0.60 mmol) and 4-pyridinecaboxaldehyde (56 μ L, 0.60 mmol). Silica gel chromatography (eluent: hexane/EtOAc = 5/1) of the crude product afforded the title compound as an orange solid (64.9 mg, 76%).

m.p. 131.3-132.5 °C; R_f 0.20 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): δ 7.17-7.18 (m, 3H), 7.34-7.47 (m, 7H), 7.61 (dd, J = 7.2, 0.8 Hz, 1H), 8.49 (d, J = 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 122.2, 123.5, 124.4, 128.4, 129.3, 129.7, 130.0, 130.2, 130.8, 132.0, 133.9, 138.9, 144.7, 149.8, 158.7, 195.4; HRMS (ESI) Calcd for C₂₀H₁₄NO [M + H]⁺ 284.1075,

found 284.1078.

2-(Furan-2-yl)-3-phenyl-1*H***-inden-1-one (7h):** The typical procedure was applied to (*E*)-*N*-benzylidene-4-methoxyaniline (**2b**, 126.8 mg, 0.60 mmol) and furfural (50 μ L, 0.60 mmol). Silica gel chromatography (eluent: hexane/EtOAc = 50/1) of the crude product afforded the title compound as a dark red solid (27.3 mg, 33%).

m.p. 92.3-93.7 °C; R_f 0.55 (hexane/EtOAc = 8/1); ¹H NMR (400 MHz, CDCl₃): δ 6.43-6.44 (m, 1H), 7.02 (d, J = 7.2 Hz, 1H), 7.13 (d, J = 3.2 Hz,

CDCl₃): δ 6.43-6.44 (m, 1H), 7.02 (d, J = 7.2 Hz, 1H), 7.13 (d, J = 3.2 Hz, 1H), 7.22 (t, J = 7.2 Hz, 1H), 7.26-7.27 (m, 1H), 7.32 (td, J = 7.6, 0.8 Hz, 1H), 7.47-7.50 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 111.7, 112.7, 121.7, 122.1, 123.2, 128.4, 128.8, 128.9, 129.4, 131.0, 133.2, 134.0, 143.1, 146.6, 147.3, 150.9, 195.2; HRMS (ESI) Calcd for C₁₉H₁₃O₂ [M + H]⁺ 273.0916, found 273.0916.

CO₂Et

Ethyl 1-oxo-3-phenyl-1*H***-indene-2-carboxylate (7i):** The typical procedure was applied to (*E*)-*N*-benzylidene-4-methoxyaniline (**2b**, 126.8 mg, 0.60 mmol) and ethyl glyoxalate (50% solution in toluene, 120 μ L, 0.60 mmol). Silica gel chromatography (eluent: hexane/EtOAc =

30/1–10/1) of the crude product afforded the title compound as a yellow solid (34.0 mg, 41%). m.p. 84.0-84.8 °C (lit. 87-88 °C);⁴ R_f 0.20 (hexane/EtOAc = 10/1); ¹H NMR (400 MHz, CDCl₃): δ 1.16 (t, J = 7.2 Hz, 3H), 4.20 (q, J = 6.8 Hz, 2H), 7.19-7.21 (m, 1H), 7.39-7.42 (m, 2H), 7.50-7.54 (m, 5H), 7.59-7.61 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 14.1, 61.1, 123.6, 124.6, 128.3, 128.6, 130.6 (two signals overlapping) 130.7, 131.2, 131.7, 133.7, 143.3, 163.2, 165.1, 192.3; HRMS (ESI) Calcd for C₁₈H₁₅O₃ [M + H]⁺279.1021, found 279.1019.

5-Methoxy-2,3-bis(4-methoxyphenyl)-1*H***-inden-1-one (7j):** The typical procedure was applied to (*E*)-4-methoxy-*N*-(4-methoxybenzylidene)aniline (**2d**, 144.8 mg, 0.60 mmol) and 4-methoxybenzaldehyde (73 μ L, 0.60 mmol). Silica gel chromatography (eluent: hexane/EtOAc = 15/1 - 5/1) of the crude product afforded the title compound as an orange solid (94.9 mg, 81%). m.p. 169.4-170.1 °C (lit. 173-175 °C); ⁵ *R*_f 0.21 (hexane/EtOAc = 8/1); ¹H NMR (400 MHz, CDCl₃): δ 3.78 (s, 3H), 3.81 (s, 3H), 3.83 (s, 3H), 6.63 (dd, J = 8.0, 2.0 Hz, 1H), 6.70 (d, J = 2.0 Hz, 1H), 6.81 (app.d, J = 8.8 Hz, 2H), 6.92 (app.d, J = 8.8 Hz, 2H), 7.24 (d, J = 9.2 Hz, 2H), 7.32 (d, J = 8.8 Hz, 2H), 7.50 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 55.3, 55.4, 55.8, 110.0, 110.3, 113.7, 114.3, 123.7, 123.8, 124.7, 125.2, 130.3, 131.4, 132.7, 148.2, 151.7, 159.2, 160.3, 164.4, 195.7; HRMS (ESI) Calcd for C₂₄H₂₁O₄ [M + H]⁺ 373.1440, found 373.1439. The ¹H and ¹³C NMR spectra showed good agreement with the literature data.⁶

5-Fluoro-3-(4-fluorophenyl)-2-(4-methoxyphenyl)-1*H*-inden-1-one (7k): The typical

procedure was applied to (E)-*N*-(4-fluorobenzylidene)-4-methoxyaniline (**2e**, 137.6 mg, 0.60 mmol) and 4-methoxybenzaldehyde (73 µL, 0.60 mmol). Silica gel chromatography (eluent: hexane/EtOAc = 50/1) of the crude product afforded the title compound as a light red solid (59.6 mg, 57%).

m.p. 180.4-181.3 °C; R_f 0.38 (hexane/EtOAc = 8/1); ¹H NMR (400 MHz, CDCl₃): δ 3.79 (s, 3H), 6.78-6.83 (m, 3H), 6.87-6.92 (m, 1H), 7.10-7.15 (m, 2H), 7.20-7.22 (m, 2H), 7.34-7.38 (m, 2H), 7.54 (dd, J = 8.0, 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 55.4, 109.8 (d, ² J_{C-F} = 26 Hz), 114.0, 114.4 (d, ² J_{C-F} = 23 Hz), 116.4 (d, ² J_{C-F} = 21 Hz), 122.7, 125.0 (d, ³ J_{C-F} = 9 Hz), 126.6 (d, ⁴ J_{C-F} = 3 Hz), 128.7 (d, ⁴ J_{C-F} = 3 Hz), 130.6 (d, ³ J_{C-F} = 9 Hz), 131.5, 133.6, 148.9 (d, ³ J_{C-F} = 9 Hz), 150.6, 159.7, 162.3 (d, ¹ J_{C-F} = 249 Hz), 166.7 (d, ¹ J_{C-F} = 253 Hz), 195.2; HRMS (ESI) Calcd for C₂₂H₁₅F₂O₂ [M + H]⁺ 349.1040, found 349.1035.

2-(4-Methoxyphenyl)-6-methyl-3-(m-tolyl)-1H-inden-1-one (7l): The typical procedure was

applied to (*E*)-4-methoxy-*N*-(3-methylbenzylidene)aniline (**2f**, 135.2 mg, 0.60 mmol) and 4-methoxybenzaldehyde (73 μ L, 0.60 mmol). Silica gel chromatography (eluent: hexane/EtOAc = 50/1) of the crude product afforded a mixture of the title compound and its minor regioisomer

OMe

(2-(4-methoxyphenyl)-4-methyl-3-(m-tolyl)-1H-inden-1-one) as a dark red solid (67.1 mg, 66%). The ratio of the regioisomers was determined to be 2.7:1 by ¹H NMR analysis.

 R_f 0.48 (hexane/EtOAc = 8/1); ¹H NMR (400 MHz, CDCl₃, major isomer): δ 2.36 (s, 3H), 2.37 (s, 3H), 3.79 (s, 3H), 6.81 (d, J = 8.8 Hz, 2H), 6.99 (d, J = 7.6 Hz, 1H), 7.10-7.16 (m, 2H), 7.17-7.26 (m, 3H), 7.28 (s, 1H), 7.32 (t, J = 7.2 Hz, 1H), 7.38 (s, 1H); ¹³C NMR (100 MHz,

CDCl₃): δ 21.5, 21.6, 55.3, 113.7 (two signals overlapping), 121.0, 123.5, 124.1, 125.8, 128.6, 129.0, 130.0, 131.2, 131.28, 131.33, 133.5, 138.6, 139.0, 143.0, 154.5, 159.2, 197.6; HRMS (ESI) Calcd for C₂₄H₂₁O₂ [M + H]⁺ 341.1542, found 341.1537.

2-(4-Methoxyphenyl)-7-methyl-3-(o-tolyl)-1H-inden-1-one (7m): The typical procedure was

applied to (*E*)-4-methoxy-*N*-(2-methylbenzylidene)aniline (**2g**, 135.2 mg, 0.60 mmol) and 4-methoxybenzaldehyde (73 μ L, 0.60 mmol). Silica gel chromatography (eluent: hexane/EtOAc = 100/1) of the crude product afforded the title compound as a light red oil (21.7 mg, 21%).

 R_f 0.45 (hexane/EtOAc = 10/1); ¹H NMR (400 MHz, CDCl₃): δ 2.09 (s, 3H), 2.64 (s, 3H), 3.78 (s, 3H), 6.62 (d, J = 7.2 Hz, 1H), 6.78 (d, J = 8.8 Hz, 2H), 7.03 (d, J = 7.6 Hz, 1H), 7.19 (t, J = 7.2 Hz, 1H), 7.26-7.36 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 17.5, 20.1, 55.3, 113.8, 119.1, 124.1, 126.4, 126.9, 128.4, 128.8, 130.6, 131.0, 132.06, 132.14, 133.1, 133.4, 136.0, 137.8, 146.8, 153.4, 159.3, 198.5; HRMS (ESI) Calcd for C₂₄H₂₁O₂ [M + H]⁺ 341.1542, found 341.1537.

5-Methoxy-3-(4-methoxyphenyl)-2-(naphthalen-2-yl)-1*H*-in den-1-one (7n): The typical procedure was applied to (*E*)-4-methoxy-*N*-(4-methoxybenzylidene)aniline (2d, 144.8 mg, 0.60 mmol) and 2-naphthaldehyde (93.7 mg, 0.60 mmol). Silica gel chromatography (eluent: hexane/EtOAc = 10/1 - 5/1) of the crude product afforded the title compound as a red solid (84.2 mg, 72%).

m.p. 59.6-60.8 °C; R_f 0.18 (hexane/EtOAc = 10/1); ¹H NMR (400 MHz, CDCl₃): δ 3.83 (s, 3H), 3.85 (s, 3H), 6.69 (dd, J = 8.0, 2.0 Hz, 1H), 6.80 (d, J = 2.0 Hz, 1H), 6.90 (app.d, J = 8.8 Hz, 2H), 7.23 (dd, J = 8.4, 2.0 Hz, 1H), 7.35 (app.d, J = 8.8 Hz, 2H), 7.44-7.47 (m, 2H), 7.57 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.76-7.78 (m, 1H), 7.80-7.82 (m, 1H), 7.97 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 55.4, 55.9, 110.4, 110.7, 114.4, 124.0, 124.9, 125.0, 126.1, 126.4, 127.5, 127.6, 127.7, 128.6, 128.9, 129.9, 130.5, 132.8, 133.0, 133.4, 148.0, 153.4, 160.6, 164.5, 195.3; HRMS (ESI) Calcd for C₂₇H₂₁O₃ [M + H]⁺ 393.1491, found 393.1496.

Methyl 4-(5-methoxy-3-(4-methoxyphenyl)-1-oxo-1H-inden-2-yl)benzoate (70): The typical

procedure was applied to (E)-4-methoxy-*N*-(4-methoxybenzylidene)aniline (2d, 144.8 mg, 0.60 mmol) and methyl 4-formylbenzoate (98.5 mg, 0.60 mmol). Silica gel chromatography (eluent: hexane/EtOAc = 10/1 - 3/1) of the crude product afforded the title compound as an orange solid (88.7 mg, 74%).

m.p. 114.3-115.6 °C; R_f 0.30 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃): δ 3.825 (s, 3H), 3.833 (s, 3H), 3.88 (s, 3H), 6.68 (dd, J = 8.0, 2.4 Hz, 1H), 6.75 (d, J = 2.0 Hz, 1H), 6.91 (app.d, J = 8.8 Hz, 2H), 7.27 (app.d, J = 8.8 Hz 2H), 7.35 (app.d, J = 8.8 Hz, 2H), 7.53 (d, J = 8.0 Hz, 1H), 7.92 (app.d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 52.2, 55.5, 55.9, 110.8, 111.0, 114.5, 123.8, 124.4, 125.0, 129.0, 129.4, 130.1, 130.3, 132.1, 136.3, 147.5, 154.8, 160.8, 164.5, 167.1, 194.6; HRMS (ESI) Calcd for C₂₅H₂₁O₅ [M + H]⁺ 401.1389, found 401.1386.

2,2'-(1,3-Phenylene)bis(5-methyl-3-(p-tolyl)-1H-inden-1-one) (7p): In a Schlenk tube were placed CoBr₂ (13.2 mg, 0.060 mmol), IPr•HCl (23.6 Me Me 0.060 mg, mmol), (*E*)-4-methoxy-*N*-(1-(*p*-tolyl)ethylidene)aniline (2c,135.2 mg, 0.60 mmol), and THF (1.42 mL). To the added а THF solution mixture was of Mé Me

 $(CH_3)_3CCH_2MgBr$ (0.68 M, 1.58 mL, 1.08 mmol) dropwise at 0 °C. After stirring for 30 min, another portion of **2c** (135.2 mg, 0.60 mmol) was added. The resulting mixture was stirred at room temperature for 12 h, followed by the addition of H₂O (0.6 mL) and isophthalaldehyde (26.8 mg, 0.20 mmol). After stirring for 1 h, aq. HCl (3 M, 2 mL) was added, and the resulting mixture was stirred at 100 °C for 12 h. The reaction was cooled to room temperature, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layer was dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (eluent: hexane/EtOAc = 3/1) to afford the title compound as a dark red solid (75.3 mg, 69% based on isophthalaldehyde).

m.p. 193.4-194.5 °C; R_f 0.15 (hexane/EtOAc = 10/1); ¹H NMR (400 MHz, CDCl₃): δ 2.34 (s, 6H), 2.40 (s, 6H), 7.00 (s, 2H), 7.06 (d, J = 7.2 Hz, 2H), 7.09-7.12 (m, 3H), 7.21-7.26 (m, 8H), 7.32 (s, 1H), 7.44 (d, J = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 21.7, 22.3, 122.7, 123.1,

127.9, 128.7 (two signals overlapping), 129.0, 129.4, 129.6, 129.9, 131.2, 131.8, 132.6, 139.5, 144.3, 145.9, 155.3, 196.2; HRMS (ESI) Calcd for $C_{40}H_{31}O_2$ [M + H]⁺ 543.2324, found 543.2325.

1-(2-Benzoylphenyl)-3,3-dimethylbutan-1-one (7q): The typical procedure was applied to (*E*)-*N*-benzylidene-4-methoxyaniline (**2b**, 63.4 mg, 0.30 mmol) and pivalaldehyde (65 µL, 0.6 mmol). Silica gel chromatography (eluent: hexane/EtOAc = 20/1-5/1) of the crude product afforded the title compound as a red oil (39.0 mg, 46%).

 $R_f 0.20$ (hexane/EtOAc = 10/1); ¹H NMR (400 MHz, CDCl₃): $\delta 0.94$ (s, 9H),

2.75 (s, 2H), 7.39-7.42 (m, 3H), 7.50-7.54 (m, 1H), 7.55-7.59 (m, 2H), 7.72-7.74 (m, 2H), 7.82-7.84 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 29.8, 31.7, 51.5, 128.5, 128.7, 129.0, 129.6, 129.8, 131.7, 133.0, 137.6, 139.9, 141.0, 198.0, 201.3; HRMS (ESI) Calcd for $C_{19}H_{21}O_2$ [M + H]⁺281.1542, found 281.1545.

Proposed Mechanism for the Formation of Indenone

Below is shown a possible mechanism for the formation of indene, which is similar to that proposed for the reaction of isobenzofuran and benzaldehyde by Kuninobu and Takai.⁶ Formation of the diketone product 7q from pivalaldehyde can be explained by hydrolysis of the intermediate **A**.

Scheme S1. Proposed mechanism for the condensation of isoindole and aldehyde

- (1) (a) Mongin, F.; Mojovic, L.; Guillamet, B.; Trécourt, F.; Quéguiner, G. J. Org. Chem.
 2002, 67, 8991. (b) Rebstock, A.-S.; Mongin, F.; Trécourt, F.; Quéguiner, G. Tetrahedron
 2003, 59, 4973.
- (2) Bergman, E. D. J. Org. Chem. **1956**, 21, 461.
- (3) Koelsch, C. F. J. Am. Chem. Soc. **1936**, 58, 1331.
- (4) Yost, W. L.; Burger, A. J. Org. Chem. **1950**, 15, 1113.
- (5) Neunhoeffer, v. H.; Vötter, H.-D.; Gais-Mutterer, M. Tetrahedron Lett. 1973, 14, 219.
- (6) Kuninobu, Y.; Matsuki, T.; Takai, K. Org. Lett. 2010, 12, 2948.

NMR Spectra

GK03-408, 1H NMR CDC13 BBOF01 400 HZ

GK03-536, 1H NMR CDC13 BBF01 400MHz

GK03-582-2, 1H NMR CDC13 400 MHz BBOF01

GK03-582-2, 13C NMR CDC13 400 MHz BBOF01

57.27 56.28 55.02	1445-1445-1445-1445-1445-1445-1445-1445	22 - 17 22 - 17 2 - 2 2 - 2 2 2 - 2 2 2 2 - 2 2 2 2	60.21 55.91 55.88
	V/ \\\$\ //////	\vee	ΙV

GK04-03, 1H NMR CDC13 400MHz, BBF01

ppm

GK04-10, 1H NMR CDC13 400MHz, BBF01

S37

GK03-520-2 1H NMR 400 MHz BBF01 CDC13

6

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

7p

