Supporting information for

Approaching a Stable, Green Twisted Heteroacene Through “Clean reaction” Strategy

Gang Li,† Hieu M. Duong,‡ Zhonghan Zhang,† Jinchong Xiao,† Lei Liu,§ Yanli Zhao,§ Hua Zhang,† Fengwei Huo,† Shuzhou Li,‡ Jan Ma,† Fred Wudl,”* Qichun Zhang†*

†School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); ‡Department of Chemistry, University of California, Los Angeles, CA, 90095; §School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); ”Department of Chemistry and biochemistry, University of California, Santa Barbara, CA, 93106.

qc.zhang@ntu.edu.sg ; Wudl@chem.ucsb.edu

Contents

1. General methods 2
2. Synthesis 2-3
3. Figure S1. The IR spectrum of compound 6 4
4. Figure S2. The MS (ESI) spectrum of compound 6 5
5. Figure S3. The 1H-NMR spectrum of compound 6 6
6. Figure S4. The 13C-NMR spectrum of compound 6 7
7. Figure S5. (a) The 1H-NMR spectrum of compound 3 8
8. Figure S6. The 13C-NMR spectrum of compound 3 9
9. Figure S7. The FT-IR spectrum of compound 3 10
10. Figure S8. The MS-ESI spectrum of compound 3 11
11. Figure S9. The MS-HiResMAIDI-TOF plot of compound 3 12
12. Figure S10. The TGA analysis of compound 3 12
13. X-ray crystallographic data of compound 6 13-16
14. References 16
1. General methods

1.1 Measurements. The NMR spectra were taken on a Bruker ARX 400 and 500 spectrometer. Electrochemistry was carried out with a BAS 100B/W potentiostat, employing a platinum button (diameter: 1.6 mm; area 0.02 cm2), a platinum wire and a 0.01 M Ag/AgNO$_3$ (Ag/Ag$^+$) as working, counter and reference electrode, respectively. 0.1 M of tetrabutylammonium perchlorate (TBAP) in ODCB was used as the electrolyte. Since compound 3 was not very soluble in ODCB at room temperature, CV measurements were conducted at higher temperatures (ca. 150 °C).

Single-crystal data set of precursor 6 was collected at 103 K on a Bruker SMART APEX II CCD fitted with graphite monochromatized Mo K$_\alpha$ radiation (λ = 0.71073 Å). Data processing (APEXII and SMART) and absorption correction (SADABS) were accomplished by standard methods. The structure was solved by direct-methods using SHELXS-97 and refinement (anisotropic displacement parameters, hydrogen atoms in the riding model approximation and a weighting scheme of the form $w = 1/[\sigma^2(F_0^2) + (0.064P)^2 + 0.376P]$ for $P = (F_0^2 + 2F_c^2)/3$) was on F^2 by means of SHELXL-97. CCDC number for compound 6 is 858853.

Materials. Meso-ionic pyrimidines (5)1 and 3-amino-5,12-diphenyl-6:7,10:11-bisbenzotetracene-2-carboxylic acid (4)2 were prepared from reported procedures. All solvents were used without further purification.

2. Synthesis

2.1 Lactam cycloadduct 6. To mesoion 5 (114 mg, 0.39 mmol) and isoamyl nitrite (0.060 mL, 0.40 mmol) in 20 mL DCE was added a suspension of 3-amino-5,12-diphenyl-6:7,10:11-
bisbenzotetracene-2-carboxylic acid (4) (100 mg, 0.20 mmol) in 10 mL DCE over a span of 1h. After refluxing for an additional hour, DCE was removed. The resulting brown residue was purified by silica-gel column chromatography using dichloromethane : diethyl ether (9:1) as eluent to yield the lactam 6 (88 mg, 60%) as a tan powder; 1H-NMR (500 MHz, CDCl$_3$) δ 8.12 (d, 2H), 8.05 (s, 1H), 7.88-7.85 (m, 6H), 7.79 (bs, 2H), 7.54-7.24 (bm, 19H), 2.71 (d, 6H); 13C-NMR (400 MHz, CDCl$_3$) δ 171.90, 142.13, 141.21, 137.06, 136.81, 134.73, 131.92, 131.72, 131.62, 131.42, 131.10, 130.81, 130.55, 130.22, 130.1, 130.01, 129.93, 129.82, 129.26, 129.07, 128.80, 128.60, 127.68, 127.61, 127.46, 126.96, 126.86, 126.13, 125.86, 125.78, 125.28, 124.79, 124.73, 119.99, 81.06, 65.99, 33.93; IR (DRIFT) 3053, 2921, 1715, 1675, 1490, 1367, 1206, 1072, 831, 751, 694, 544 cm$^{-1}$. MS (ESI): 745.01 (M$^+$ + H), calcd 745.28 (M$^+$ + H); Elemental analysis, found C, 86.86; H, 4.95; N, 3.55; calcd C, 87.07; H, 4.87; N, 3.76.

2.2 2-Methyl-1,4,6,13-tetraphenyl-7:8,11:12-bisbenzo-anthro[g]isoquinolin-3(2H)-one 3.

A neat sample of the lactam cycloadduct 6 (117 mg, 0.16 mmol) was purged 3x using nitrogen gas before heating at 220 °C under vacuum for 4h to give a green powder as 3 (105 mg, 100%). An alternate method is as follows: the lactam cycloadduct 6 was dispersed in tetrahydronaphthalene solvent. The solution was heated up to 220 °C for 4 hours and slow cooled to room temperature will give dark green crystals (98%). 1H-NMR (400 MHz, CDCl$_3$) δ 7.89 (s, 1H), 7.81-7.44 (m, 11H), 7.44-7.21 (m, 18H), 3.81 (s, 3H); 13C-NMR (400 MHz, CDCl$_3$) δ 158.24, 153.97, 141.18, 141.10, 136.82, 135.76, 135.65, 133.26, 132.17, 131.92, 131.78, 131.01, 130.79, 130.72, 130.43, 130.37, 130.17, 129.72, 129.60, 129.22, 129.07, 128.83, 128.76, 128.14, 127.48, 127.31, 126.80, 126.71, 126.19, 125.06, 125.00, 119.99, 117.40, 115.82, 37.18; IR (DRIFT): 3053, 2923, 1703, 1630, 1447, 1382, 1350, 1012, 829, 750, 701; MS (ESI): 688.47 (M$^+$ + H), calcd 688.26 (M$^+$ + H); MS (HiResMALDI-TOF): 688.2637 (M$^+$ + H), calcd 688.2640 (M$^+$ + H). Elemental analysis, found C, 90.56; H, 4.65; N, 2.11; calcd C, 90.80; H, 4.84; N, 2.04.
Figure S1. The IR spectrum of compound 6.
Figure S2. The MS (ESI) spectrum of compound 6.
Figure S3. The 1H-NMR spectrum of compound 6.
Figure S4. The 13C-NMR spectrum of compound 6.
Figure S5. (a) The 1H-NMR spectrum of compound 3. (b) The magnified part of 1H-NMR spectrum.
Figure S6. The 13C-NMR spectrum of compound 3.
Figure S7. The FT-IR spectrum of compound 3.
Figure S8. The MS-ESI spectrum of compound 3.
Figure S9. The MS-HiResMALDI-TOF plot of compound 3.

Figure S10. The TGA analysis of compound 3.
3. X-ray crystallographic data of compound 6

Table S1. Cell data parameters of Compound 6

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C55 H37Cl3 N2 O2</td>
</tr>
<tr>
<td>Color and Habit</td>
<td>colorless plate</td>
</tr>
<tr>
<td>Crystal Size (mm)</td>
<td>0.20×0.18×0.06</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.887(4)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>11.448(4)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>17.595(6)</td>
</tr>
<tr>
<td>alpha (deg.)</td>
<td>102.152(5)</td>
</tr>
<tr>
<td>beta (deg.)</td>
<td>96.560(5)</td>
</tr>
<tr>
<td>gamma (deg.)</td>
<td>104.691(5)</td>
</tr>
<tr>
<td>Volume (Å³)</td>
<td>2041.0(11)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Formula weight</td>
<td>864.22</td>
</tr>
<tr>
<td>Density (cal.)(g/cm³)</td>
<td>1.406</td>
</tr>
<tr>
<td>Absorption coefficient(mm⁻¹)</td>
<td>0.274</td>
</tr>
<tr>
<td>F(000)</td>
<td>896</td>
</tr>
<tr>
<td>Radiation</td>
<td>MoKα 0.71073Å</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>100(2)</td>
</tr>
<tr>
<td>Theta range (deg.)</td>
<td>1.90 to 28.29</td>
</tr>
<tr>
<td>Reflections measured</td>
<td>18317</td>
</tr>
<tr>
<td>Index ranges of measured data</td>
<td>-14<=h<=14, -14<=k<=15, -22<=l<=22</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>9525 (R_{int} = 0.0403)</td>
</tr>
<tr>
<td>Observed Reflection</td>
<td>6235 (>2sigma(I))</td>
</tr>
<tr>
<td>Final R indices (obs.)</td>
<td>R1 = 0.0484, wR2 = 0.1068</td>
</tr>
<tr>
<td>R indices (all)</td>
<td>R1 = 0.0902, wR2 = 0.1323</td>
</tr>
<tr>
<td>Goodness-of-fit</td>
<td>0.769</td>
</tr>
</tbody>
</table>
Table S2. Bond lengths (Å) and angles (deg.).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length</th>
<th>Bond</th>
<th>Length</th>
<th>Bond</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)-C(30)</td>
<td>1.214(3)</td>
<td>C(22)-C(39)</td>
<td>1.424(3)</td>
<td>C(1)-C(50)</td>
<td>1.395(3)</td>
</tr>
<tr>
<td>O(2)-C(38)</td>
<td>1.222(3)</td>
<td>C(22)-C(23)</td>
<td>1.547(3)</td>
<td>C(2)-C(3)</td>
<td>1.376(4)</td>
</tr>
<tr>
<td>N(1)-C(30)</td>
<td>1.378(3)</td>
<td>C(23)-C(24)</td>
<td>1.527(3)</td>
<td>C(3)-C(4)</td>
<td>1.395(4)</td>
</tr>
<tr>
<td>N(1)-C(53)</td>
<td>1.473(3)</td>
<td>C(23)-C(38)</td>
<td>1.548(3)</td>
<td>C(4)-C(51)</td>
<td>1.424(3)</td>
</tr>
<tr>
<td>N(1)-C(31)</td>
<td>1.498(3)</td>
<td>C(23)-C(30)</td>
<td>1.570(3)</td>
<td>C(4)-C(5)</td>
<td>1.442(4)</td>
</tr>
<tr>
<td>N(2)-C(38)</td>
<td>1.356(3)</td>
<td>C(24)-C(29)</td>
<td>1.394(4)</td>
<td>C(5)-C(6)</td>
<td>1.346(4)</td>
</tr>
<tr>
<td>N(2)-C(54)</td>
<td>1.467(3)</td>
<td>C(24)-C(25)</td>
<td>1.399(4)</td>
<td>C(5)-C(7)</td>
<td>1.434(4)</td>
</tr>
<tr>
<td>N(2)-C(31)</td>
<td>1.483(3)</td>
<td>C(25)-C(26)</td>
<td>1.391(4)</td>
<td>C(7)-C(8)</td>
<td>1.401(4)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.394(3)</td>
<td>C(26)-C(27)</td>
<td>1.382(4)</td>
<td>C(7)-C(52)</td>
<td>1.433(3)</td>
</tr>
<tr>
<td>C(1)-C(50)</td>
<td>1.395(3)</td>
<td>C(27)-C(28)</td>
<td>1.386(4)</td>
<td>C(8)-C(9)</td>
<td>1.374(4)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.395(4)</td>
<td>C(28)-C(29)</td>
<td>1.392(4)</td>
<td>C(9)-C(10)</td>
<td>1.398(4)</td>
</tr>
<tr>
<td>C(4)-C(51)</td>
<td>1.424(3)</td>
<td>C(31)-C(32)</td>
<td>1.519(3)</td>
<td>C(10)-C(11)</td>
<td>1.394(3)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.442(4)</td>
<td>C(31)-C(39)</td>
<td>1.531(3)</td>
<td>C(11)-C(52)</td>
<td>1.419(3)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.346(4)</td>
<td>C(32)-C(33)</td>
<td>1.398(4)</td>
<td>C(11)-C(12)</td>
<td>1.490(3)</td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.434(4)</td>
<td>C(33)-C(34)</td>
<td>1.389(4)</td>
<td>C(12)-C(13)</td>
<td>1.402(3)</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.401(4)</td>
<td>C(34)-C(35)</td>
<td>1.387(4)</td>
<td>C(13)-C(14)</td>
<td>1.497(3)</td>
</tr>
<tr>
<td>C(7)-C(52)</td>
<td>1.433(3)</td>
<td>C(35)-C(36)</td>
<td>1.384(4)</td>
<td>C(14)-C(15)</td>
<td>1.389(4)</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.374(4)</td>
<td>C(36)-C(37)</td>
<td>1.384(4)</td>
<td>C(14)-C(19)</td>
<td>1.399(3)</td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.398(4)</td>
<td>C(37)-C(29)</td>
<td>1.392(4)</td>
<td>C(15)-C(16)</td>
<td>1.394(4)</td>
</tr>
<tr>
<td>C(10)-C(11)</td>
<td>1.394(3)</td>
<td>C(40)-C(41)</td>
<td>1.430(3)</td>
<td>C(16)-C(17)</td>
<td>1.387(4)</td>
</tr>
<tr>
<td>C(11)-C(52)</td>
<td>1.419(3)</td>
<td>C(41)-C(42)</td>
<td>1.423(3)</td>
<td>C(17)-C(18)</td>
<td>1.379(4)</td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.490(3)</td>
<td>C(42)-C(49)</td>
<td>1.409(3)</td>
<td>C(18)-C(19)</td>
<td>1.382(4)</td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>1.402(3)</td>
<td>C(42)-C(43)</td>
<td>1.495(3)</td>
<td>C(20)-C(41)</td>
<td>1.413(3)</td>
</tr>
<tr>
<td>C(12)-C(49)</td>
<td>1.443(3)</td>
<td>C(43)-C(48)</td>
<td>1.386(3)</td>
<td>C(20)-C(21)</td>
<td>1.432(3)</td>
</tr>
<tr>
<td>C(13)-C(20)</td>
<td>1.422(3)</td>
<td>C(43)-C(44)</td>
<td>1.397(3)</td>
<td>C(21)-C(22)</td>
<td>1.368(3)</td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.497(3)</td>
<td>C(44)-C(45)</td>
<td>1.388(4)</td>
<td>C(21)-C(53)</td>
<td>114.2(2)</td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.389(4)</td>
<td>C(45)-C(46)</td>
<td>1.384(4)</td>
<td>C(25)-C(41)</td>
<td>121.0(3)</td>
</tr>
<tr>
<td>C(14)-C(19)</td>
<td>1.399(3)</td>
<td>C(46)-C(47)</td>
<td>1.387(4)</td>
<td>C(27)-C(39)-C(40)</td>
<td>135.4(3)</td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>1.394(4)</td>
<td>C(47)-C(48)</td>
<td>1.392(4)</td>
<td>C(27)-C(39)-C(30)</td>
<td>120.5(3)</td>
</tr>
<tr>
<td>C(16)-C(17)</td>
<td>1.387(4)</td>
<td>C(49)-C(50)</td>
<td>1.487(3)</td>
<td>C(27)-C(30)-N(1)</td>
<td>123.4(2)</td>
</tr>
<tr>
<td>C(17)-C(18)</td>
<td>1.379(4)</td>
<td>C(50)-C(51)</td>
<td>1.427(3)</td>
<td>C(27)-C(30)-O(1)</td>
<td>122.9(2)</td>
</tr>
<tr>
<td>C(18)-C(19)</td>
<td>1.382(4)</td>
<td>C(51)-C(52)</td>
<td>1.431(3)</td>
<td>C(28)-C(30)-N(1)</td>
<td>113.5(2)</td>
</tr>
<tr>
<td>C(20)-C(41)</td>
<td>1.413(3)</td>
<td>C(1S)-Cl(3)</td>
<td>1.758(3)</td>
<td>C(28)-C(30)-O(1)</td>
<td>106.83(19)</td>
</tr>
<tr>
<td>C(20)-C(21)</td>
<td>1.432(3)</td>
<td>C(1S)-Cl(1)</td>
<td>1.756(3)</td>
<td>C(29)-C(30)-N(1)</td>
<td>108.8(2)</td>
</tr>
<tr>
<td>C(21)-C(22)</td>
<td>1.368(3)</td>
<td>C(1S)-Cl(2)</td>
<td>1.767(3)</td>
<td>C(30)-C(30)-N(1)</td>
<td>113.4(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)</td>
<td>119.9(2)</td>
<td>N(2)-C(31)-C(39)</td>
<td>107.2(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(3)-C(4)-C(51)</td>
<td>120.0(2)</td>
<td>N(1)-C(31)-C(39)</td>
<td>103.44(19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(51)-C(4)-C(5)</td>
<td>119.5(2)</td>
<td>C(33)-C(32)-C(37)</td>
<td>118.3(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(6)-C(5)-C(4)</td>
<td>121.3(2)</td>
<td>C(33)-C(32)-C(31)</td>
<td>122.0(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(5)-C(6)-C(7)</td>
<td>121.2(2)</td>
<td>C(37)-C(32)-C(31)</td>
<td>119.4(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(8)-C(7)-C(52)</td>
<td>119.9(2)</td>
<td>C(35)-C(36)-C(37)</td>
<td>119.9(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(8)-C(7)-C(6)</td>
<td>121.0(2)</td>
<td>C(35)-C(36)-C(31)</td>
<td>120.3(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(9)-C(8)-C(7)</td>
<td>120.0(2)</td>
<td>C(35)-C(36)-C(31)</td>
<td>120.4(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(8)-C(9)-C(10)</td>
<td>120.4(2)</td>
<td>O(2)-C(38)-N(2)</td>
<td>123.1(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10)-C(11)-C(52)</td>
<td>118.1(2)</td>
<td>O(2)-C(38)-C(23)</td>
<td>125.3(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10)-C(11)-C(12)</td>
<td>122.6(2)</td>
<td>N(2)-C(38)-C(23)</td>
<td>111.6(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(52)-C(11)-C(12)</td>
<td>119.2(2)</td>
<td>C(40)-C(39)-C(22)</td>
<td>120.5(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(13)-C(12)-C(49)</td>
<td>119.6(2)</td>
<td>C(40)-C(39)-C(31)</td>
<td>127.5(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(13)-C(12)-C(11)</td>
<td>121.9(2)</td>
<td>C(22)-C(39)-C(31)</td>
<td>111.6(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(49)-C(12)-C(11)</td>
<td>118.5(2)</td>
<td>C(39)-C(40)-C(41)</td>
<td>121.0(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(12)-C(13)-C(20)</td>
<td>120.3(2)</td>
<td>C(20)-C(41)-C(42)</td>
<td>120.3(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(12)-C(13)-C(14)</td>
<td>122.1(2)</td>
<td>C(20)-C(41)-C(40)</td>
<td>118.8(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20)-C(13)-C(14)</td>
<td>117.5(2)</td>
<td>C(42)-C(41)-C(40)</td>
<td>120.8(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15)-C(14)-C(19)</td>
<td>119.1(2)</td>
<td>C(49)-C(42)-C(41)</td>
<td>120.1(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15)-C(14)-C(13)</td>
<td>118.8(2)</td>
<td>C(49)-C(42)-C(43)</td>
<td>124.8(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(19)-C(14)-C(13)</td>
<td>122.2(2)</td>
<td>C(41)-C(42)-C(43)</td>
<td>115.1(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14)-C(15)-C(16)</td>
<td>120.5(3)</td>
<td>C(48)-C(43)-C(44)</td>
<td>118.6(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(17)-C(16)-C(15)</td>
<td>119.7(3)</td>
<td>C(48)-C(43)-C(42)</td>
<td>120.9(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(18)-C(17)-C(16)</td>
<td>120.1(3)</td>
<td>C(44)-C(43)-C(42)</td>
<td>120.4(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(19)-C(18)-C(17)</td>
<td>120.5(3)</td>
<td>C(45)-C(44)-C(43)</td>
<td>121.1(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(18)-C(19)-C(14)</td>
<td>120.2(3)</td>
<td>C(46)-C(45)-C(44)</td>
<td>119.6(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(41)-C(20)-C(13)</td>
<td>119.0(2)</td>
<td>C(45)-C(46)-C(47)</td>
<td>120.0(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(41)-C(20)-C(21)</td>
<td>118.8(2)</td>
<td>C(46)-C(47)-C(48)</td>
<td>120.2(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(13)-C(20)-C(21)</td>
<td>122.2(2)</td>
<td>C(43)-C(48)-C(47)</td>
<td>120.5(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(22)-C(21)-C(20)</td>
<td>120.9(2)</td>
<td>C(42)-C(49)-C(12)</td>
<td>118.5(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21)-C(22)-C(39)</td>
<td>119.9(2)</td>
<td>C(42)-C(49)-C(50)</td>
<td>123.3(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21)-C(22)-C(23)</td>
<td>126.2(2)</td>
<td>C(12)-C(49)-C(50)</td>
<td>118.2(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(39)-C(22)-C(23)</td>
<td>113.6(2)</td>
<td>C(1)-C(50)-C(51)</td>
<td>117.2(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(24)-C(23)-C(22)</td>
<td>113.6(2)</td>
<td>C(1)-C(50)-C(49)</td>
<td>123.3(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(24)-C(23)-C(38)</td>
<td>117.5(2)</td>
<td>C(51)-C(50)-C(49)</td>
<td>119.4(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(22)-C(23)-C(38)</td>
<td>107.21(19)</td>
<td>C(4)-C(51)-C(50)</td>
<td>120.1(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(24)-C(23)-C(30)</td>
<td>111.4(2)</td>
<td>C(4)-C(51)-C(52)</td>
<td>119.0(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(22)-C(23)-C(30)</td>
<td>100.95(19)</td>
<td>C(50)-C(51)-C(52)</td>
<td>120.9(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(38)-C(23)-C(30)</td>
<td>104.55(19)</td>
<td>C(11)-C(52)-C(7)</td>
<td>119.3(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(29)-C(24)-C(25)</td>
<td>117.8(2)</td>
<td>C(11)-C(52)-C(51)</td>
<td>120.8(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(29)-C(24)-C(23)</td>
<td>124.1(2)</td>
<td>C(7)-C(52)-C(51)</td>
<td>119.9(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(25)-C(24)-C(23)</td>
<td>118.1(2)</td>
<td>Cl(3)-C(1S)-Cl(1)</td>
<td>110.21(15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(26)-C(25)-C(24)</td>
<td>121.6(2)</td>
<td>Cl(3)-C(1S)-Cl(2)</td>
<td>110.11(15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(27)-C(26)-C(25)</td>
<td>120.0(3)</td>
<td>Cl(1)-C(1S)-Cl(2)</td>
<td>111.30(15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(26)-C(27)-C(28)</td>
<td>119.2(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. References
