Supplementary Information

Dampened Circumrotation by CH…π Interactions in Hydrogen Bonded [2]Rotaxanes

Jose Berná,*^a Mateo Alajarín,^a Juan S. Martínez-Espin,^a Lilian Buriol,^{a,b} Marcos A. P. Martins^b and Raúl-Ángel Orenes^c

^{*a*} Departamento de Quimica Organica, Facultad de Quimica, Universidad de Murcia, Campus de Espinardo, Murcia-30100, Spain. Fax: +34 868 884149; Tel: +34 868 888195; E-mail: ppberna@um.es

^b Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria-RS, Brazil

^c Servicio de Apoyo a la Investigación (SAI), Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain

0. Table of Contents	2
1. General experimental section	3
2. Materials	4
3. Synthesis of <i>tert</i> -butyl 3,5-bis(chlorocarbonyl)benzoate	4
4. Experimental procedure and characterization of the succinamide-based [2]rotaxa-	4-7
nes 1a-e	• •
5. Stacked plot of the ¹ H-NMR spectra of rotaxanes 1c and 1e and their corresponding	
threads	7
6. 2D ROESY spectrum of rotaxane 1a	8
7. Variable temperature ¹ H NMR spectra of the [2]rotaxanes 1a-c and 1e	9
8. General crystal data and structure refinement for the [2]rotaxane 1a	10-11
9. Hirsfield surface analysis for the visualization of the CH/ π interactions in the	
[2]rotaxane 1a	12
10. References	13

1. General Experimental Section

Unless stated otherwise, all reagents were purchased from Aldrich Chemicals and used without further purification. HPLC grade solvents (Scharlab) were nitrogen saturated and were dried and deoxygenated using an Innovative Technology Inc. Pure-Solv 400 Solvent Purification System. Column chromatography was carried out using silica gel (60 Å, 70-200 µm, SDS) as stationary phase, and TLC was performed on precoated silica gel on aluminun cards (0.25 mm thick, with fluorescent indicator 254 nm, Fluka) and observed under UV light. All melting points were determined on a Kofler hot-plate melting point apparatus and are uncorrected. Infrared (IR) spectra were recorded as nujol emulsions on a Nicolet Impact 400 spectrophotometer. ¹H- and ¹³C-NMR spectra were recorded at 298 K on a Bruker Avance 300, 400 MHz and 600 MHz instruments. ¹H NMR chemical shifts are reported relative to Me₄Si and were referenced via residual proton resonances of the corresponding deuterated solvent whereas ¹³C NMR spectra are reported relative to Me₄Si using the carbon signals of the deuterated solvent. Signals in the ¹H and ¹³C NMR spectra of the synthesized compounds were assigned with the aid of DEPT, APT, or two-dimensional NMR experiments (COSY, HMQC and HMBC). Abbreviations of coupling patterns are as follows: br, broad; s, singlet; d, doublet; t, triplet; q, quadruplet; m, multiplet. Mass spectra were recorded with Agilent 5973 (EI), Agilent VL (ESI) and HPLC/MS TOF 6220 mass spectrometers. Microanalyses were performed on a Carlo Erba EA-1108 instrument.

2. Materials

Compounds 5-(*tert*-butoxycarbonyl)isophthalic acid,¹ 3,5-pyridinedicarbonyl dichloride,^{2, 3} N,N,N',N'-tetrakis[(cyclohexyl)methyl]succinamide⁴ and N,N,N',N'-tetrabenzylsuccinamide⁵ and rotaxane 1d⁵ were prepared following previously reported procedures.

3. Synthesis of tert-butyl 3,5-bis(chlorocarbonyl)benzoate

To a suspension of 5-(*tert*-butoxycarbonyl)isophthalic acid (2.12 g, 7.95 mmol) in dry dichloromethane (50 mL) under nitrogen was added oxalyl chloride (1.5 mL, 17.5 mmol). Then a few drops of DMF were added to the reaction mixture. After the reaction mixture was stirred for 22 h at 40°C, a clear solution was obtained. The evaporation of excess oxalyl chloride and solvent gave a solid residue, which was recrystallized, from hexane to yield the titled compound (2.4 g, 85%) as colorless needles. $C_{13}H_{12}Cl_2O_4$ (MW 302.14). M.p.: 248-250 °C (hexane). ¹H NMR (400 MHz; CDCl₃): $\delta = 1.56$ (s, 9H, (CH₃)₃), 8.82-8.84 (m, 3H, Ar); ¹³C NMR (100 MHz; CDCl₃): $\delta = 166.6$ (C=O), 162.4 (C=O), 137.2 (Ph), 136.1, 134.6, 134.4, 83.4 (*C*(CH₃)₃), 27.9 (C(*C*H₃)₃).

4. Experimental procedure and characterization of the succinamide-based [2]rotaxanes 1a-e

The thread (1 equiv.) and Et_3N (24 equiv.) in anhydrous CHCl₃ (150 mL) were stirred vigorously whilst solutions of *p*-xylylenediamine (8 equiv.) in anhydrous CHCl₃ (20 mL) and the corresponding acid dichloride (8 equiv.) in anhydrous CHCl₃ (20 mL) were simultaneously added over a period of 4 h using motor-driven syringe pumps. After a further 4 h the resulting suspension was filtered through a Celite pad and the solvent removed under reduced pressure. The resulting solid was subjected to column chromatography (silica gel) using CHCl₃/MeOH (95/5) mixture as eluent to give the [2]rotaxanes.

Rotaxane 1a: Yield: 23%; M.p. 212 - 214 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.84 (s, 2H, CH_C), 8.38 (dd, *J* = 7.8 Hz, 2H, CH_B), 7.68 (t, *J* = 5.7 Hz, 4H, NH_D), 7.66 (t, *J* = 7.8 Hz, 2H, CH_A), 7.11 (s, 8H, CH_F), 5.43 (s, 4H, CH_E), 3.72 (s, 4H, CH_E), 3.11 (d, *J* = 6.9 Hz, 4H, CH_b), 2.64 (d, *J* = 7.5 Hz, 4H, CH_b), 1.77-1.15 (m, 21H, H_{Cy}), 1.10 (s, 4H, CH_a), 1.01-0.68 (m, 19H, H_{Cy}), 0.32-0.22 (m, 4H, H_{Cy}).; ¹³C NMR (100 MHz, CDCl₃): δ = 173.76 (CO_{thread}), 165.13 (CO_{macrocycle}), 138.59 (*q*), 133.27 (*q*), 132.50, 129.45, 128.91, 122.33, 56.10 (CH₂N), 54.71 (CH₂N), 43.13 (ArCH₂N), 37.46 (CH), 36.80 (CH), 31.49, 30.89, 28.46 (CH₂CO), 26.03, 25.93, 25.66, 25.41; IR (Nujol): *v* = 3387 (w), 3331 (w), 3020 (s), 2950 (w), 1664 (m), 1590 (m), 1556 (m), 1425 (w), 1225 (vs), 767 (s) cm⁻¹; HRMS (ESI) calcd for C₆₄H₈₅N₆O₆ [M + H]⁺ 1033.6531, found 1033.6529.

Rotaxane 1b: Yield: 10%; M.p. >300 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.94 (br s, 6H, CH_C + CH_B), 7.66 (t, *J* = 5.1 Hz, 4H, NH_D), 7.10 (s, 8H, CH_F), 5.40 (br s, 4H, CH_E), 3.74 (br s, 4H, CH_E), 3.10 (d, *J* = 6.6 Hz, 4H, CH_b), 2.61 (d, *J* = 7.3 Hz, 4H, CH_b), 1.63 (s, 18H, (CH₃)₃), 1.82-1.45 (m, 21H, H_{Cy}), 1.35-1,10 (m, 8H, H_{Cy}), 1.06 (s, 4H, CH_a),

0.99-0.73 (m, 11H, H_{Cy}), 0.17-0.28 (m, 4H, H_{Cy}); ¹³C NMR (100 MHz, CDCl₃): δ = 173.8 (CO_{thread}), 164.4 (CO_{macrocycle}), 164.3 (COO^tBu), 138.5 (q), 133.9 (q), 133.7 (q), 133.3, 128.9, 125.6, 81.95 (*C*(CH₃)₃), 56.1 (CH₂N), 54.6 (CH₂N), 43.2 (ArCH₂N), 37.5 (CH), 36.7 (CH), 31.5, 30.9, 28.5 (CH₂CO), 28.2 (C(CH₃)₃), 26.0, 25.9, 25.6, 25.4; IR (CHCl₃): v = 3351 (w), 2921 (s), 2842 (w), 1719(s), 1658 (s), 1589 (s), 1537 (m), 1451 (w), 1276 (m), 761 (m) cm⁻¹; HRMS (ESI) calcd for C₇₄H₁₀₁N₆O₁₀ [M + H]⁺ 1233.7579, found 1233.7593

Rotaxane 1c: Yield: 21%; M.p. >300 °C; ¹H NMR (400 MHz, CDCl₃): δ = 9.51 (d, *J* = 1.9 Hz, 4H, CH_B), 9.16 (t, *J* = 2.0 Hz, 2H, CH_C), 7.51 (t, *J* = 5.6 Hz, 4H, NH_D), 7.13 (s, 8H, CH_F), 5.31 (br s, 4H, CH_{E'}), 3.95 (br s, 4H, CH_E), 3.11 (d, *J* = 6.7 Hz, 4H, CH_b), 2.65 (d, *J* = 7.3 Hz, 4H, CH_{b'}), 1.82-1.50 (m, 16, H_{Cy}), 1.33-1.14 (m, 12, H_{Cy}) 1.11 (s, 4H, CH_a), 1.03-0.71 (m, 12, H_{Cy}), 0.40-0.25 (m, 4H, H_{Cy}); ¹³C NMR (100 MHz, CDCl₃): δ = 173.61 (CO_{thread}), 163.65 (CO_{macrocycle}), 153.42, 138.27 (*q*), 129.83, 129.11, 127.70 (*q*), 55.93 (CH₂N), 54.31 (CH₂N), 43.18 (ArCH₂N), 37.34 (CH), 36.85 (CH), 31.43, 31.08, 28.42 (CH₂CO), 25.96, 25.89, 25.71, 25.34; IR (Nujol): *v* = 3387 (w), 3358 (w), 3023 (s), 2937 (m), 2852 (w), 1667 (s), 1593 (m), 1556 (m), 1540 (m), 1425 (w), 1213 (vs), 767 (s) cm⁻¹; HRMS (ESI) calcd for C₆₂H₈₃N₈O₆ [M + H]⁺ 1035.6436, found 1035.6442.

Rotaxane 1e: Yield: 12%; M.p. >300 °C; ¹H NMR (400 MHz, CDCl₃): δ = 9.40 (br s, 4H, CH_B), 8.65 (br s, 2H, CH_C), 7.40-7.16 (m, 12H, Ph), 7.08-7.00 (m, 4H, Ph), 7.04 (t, *J* = 7.0 Hz, 4H, NH_D), 6.86 (s, 8H, CH_F), 6.72 (d, *J* = 7.4 Hz, 4H, Ph), 4.46 (s, 4H, CH_b), 4.31 (br s, 8H, H_E + H_{E'}), 4.19 (s, 4H, CH_{b'}), 0.97 (s, 4H, CH_a); ¹³C NMR (100 MHz, CDCl₃): δ = 173.65 (CO_{thread}), 163.75 (CO_{macrocycle}), 153.22, 138.28 (*q*), 136.41, 134.32, 129.41 (*q*), 129.23, 129.04, 128.69, 128.41, 127.76 (*q*), 125.13, 51.75 (CH₂Ph), 51.63 (CH₂Ph), 43.21 (ArCH₂N), 28.13 (CH₂CO).; IR (Nujol): *v* = 3387 (w), 3326 (w), 3023 (vs), 1707 (m), 1667 (m), 1614 (m), 1531 (m), 1425 (m), 1365 (w), 1221 (vs), 1078 (w), 1029 (w), 953 (w), 755 (vs) cm⁻¹; HRMS (ESI) calcd for C₆₂H₅₉N₈O₆ [M + H]⁺ 1011.4558, found 1011.4560.

5. Stacked plot of the ¹H-NMR spectra of rotaxanes 1c and 1e and their corresponding threads.

Figure S1. ¹H NMR spectra (400 MHz, $CDCl_3$, 298 K) of a) *N*,*N*,*N*',*N*'-tetrakis[(cyclohexyl)methyl]succinamide, b) rotaxane **1c**, c) *N*,*N*,*N*',*N*'-tetrabenzylsuccinamide and d) [2]rotaxane **1e**.

6. 2D ROESY spectrum of rotaxane 1a.

The ROESY spectrum was measured on a solution of rotaxane 1a in CDCl₃ by using a 400 MHz Bruker AVANCE spectrometer at 293K. A spin-lock pulse of 500 ms was used. The number of scans per increment was 80, and 240 experiments were acquired in the second dimension. Total experimental time was approximately 8 h.

Figure S2. Section of the ¹H, ¹H ROESY spectrum of a solution of rotaxane **1a** in CDCl₃ at 293 K. The cross peaks corresponding to the resonances assigned to the protons of the cyclohexyl group (in lower-case letters) and the protons of the isophthalimide moiety (in upper-case letters) of **1a** are shown. The assignments correspond to the lettering shown in Fig. 2 of the main text.

7. Variable temperature ¹H NMR spectra of the [2]rotaxanes 1a-c and 1e

Figure S3. Variable temperature ¹H NMR spectra (stacked expansions of the aliphatic region, 400 MHz) of **1a-c** and **1e** in CD₂Cl₂ at 223-300 K and $C_2D_2Cl_4$ at 300 - 370K.

Free energies of activation were calculated using the Eyring equation, $\Delta G_c^{\neq} = -RT_c \cdot ln(k_c h/k_b T_c)$, where $k_c = (\pi \Delta \upsilon)/\sqrt{2}$ or $k_c = \pi \sqrt{(\Delta \upsilon^2 + 6J^2)}/\sqrt{2}$ and *R*, *h* and k_b are the gas, Planck and Boltzmann constants, respectively.⁶⁻⁸

8. General crystal data and structure refinement for the [2]rotaxane 1a

Figure S4: Molecular structure of 1a (hydrogen atoms omitted for clarity) with thermal ellipsoids drawn at 50% probability.

Table S1.	Crystal	data an	d structure	e refinement	for	1a.	ş
-----------	---------	---------	-------------	--------------	-----	-----	---

Empirical formula	$C_{66}H_{86}Cl_6N_6O_6$ [1a·2CHCl ₃]		
Formula weight	1272.11		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 9.9123(13) Å	α= 73.492(2)°	
	b = 11.7727(16) Å	$\beta = 73.172(2)^{\circ}$	

	c = 14.746(2) Å	$\gamma = 86.333(2)^{\circ}$
Volume	1578.9(4) Å ³	
Ζ	1	
Density (calculated)	1.338 Mg/m ³	
Absorption coefficient	0.329 mm ⁻¹	
F(000)	674	
Crystal size	0.33 x 0.28 x 0.06 mm ³	
Theta range for data collection	1.80 to 28.68°	
Index ranges	-13<=h<=13, -15<=k<=1	5, - 18<=l<=18
Reflections collected	19245	
Independent reflections	7391 [R(int) = 0.0402]	
Completeness to theta = 26.00°	99.5 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.9805 and 0.8992	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	7391 / 16 / 416	
Goodness-of-fit on F ²	1.153	
Final R indices [I>2sigma(I)]	R1 = 0.0830, wR2 = 0.162	29
R indices (all data)	R1 = 0.1065, wR2 = 0.172	36
Largest diff. peak and hole	0.663 and -0.582 e.Å-3	

[§] CCDC reference number 872249

X-ray Structure Determinations. Intensities were registered at low temperature on a Bruker SMART APEX CCD diffractometer using monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Absorption corrections were based on multiscans (program SADABS). The structure was refined anisotropically on F^2 using SHELXL-97 (G. M. Sheldrick, *Acta Crystallogr., Sect. A* 2008, *64*, 112). The refinement of hydrogen atoms was carried out using the riding model except for those of the NH groups which were refined freely. A CH₂ fragment of the cyclohexane in s-*cis* disposition to the carbonyl oxygen atom of the amide function was disordered over two positions (ca 55:45%) and the carbon atoms of the disordered part were refined isotropically.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(1)-H(01)O(3)	0.87(4)	2.21(4)	3.084(3)	173(3)	
N(2)-H(02)O(3)#1	0.82(4)	2.40(4)	3.204(4)	165(3)	
C(6)-H(6)O(3)	0.93	2.27	3.193(4)	175.6	
C(37)-H(37A)O(2)#2	0.97	2.49	3.385(6)	154.2	
C(99)-H(99)O(1)	0.98	2.17	3.000(4)	141.0	

Table S2. Hydrogen bonds for 1a [Å and (°)].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+2,-z #2 -x+2,-y+2,-z

9. Hirsfield surface analysis for the visualization of CH/ π interactions in rotaxane 1a.

A convenient way to view and quantify CH/π interactions is by mapping a Hirshfeld surface⁹ onto the thread of rotaxane **1a** using the program CrystalExplorer¹⁰ and then rendering the corresponding 2D fingerprint plot.^{11, 12}

Figure S5: Hirshfeld surface (a) and its fingerprint plot (b) of crystal structure of [2]rotaxane 1a.

10. References

- 1. T. Ema, D. Tanida, K. Sugita, T. Sakai, K.-i. Miyazawa and A. Ohnishi, *Org. Lett.*, 2008, **10**, 2365-2368.
- 2. M. Chen, S. Han, L. Jiang, S. Zhou, F. Jiang, Z. Xu, J. Liang and S. Zhang, *Chem. Commun. (Cambridge, U. K.)*, 2011, **46**, 3932-3934.
- 3. H. Meyer and H. Tropsch, Monatsh. Chem., 1914, 35, 781-786.
- 4. P. Bodis, S. Yeremenko, J. Berna, W. J. Buma, D. A. Leigh and S. Woutersen, *J. Chem. Phys.*, 2011, **134**, 134504/134501-134504/134507.
- 5. A. Altieri, F. G. Gatti, E. R. Kay, D. A. Leigh, D. Martel, F. Paolucci, A. M. Z. Slawin and J. K. Y. Wong, *J. Am. Chem. Soc.*, 2003, **125**, 8644-8654.
- 6. F. P. Gasparro and N. H. Kolodny, J. Chem. Educ., 1977, 54, 258-261.
- 7. J. Sandstrom, Dynamic NMR Spectroscopy, Academic Press, New York, 1982.
- 8. M. Õki, *Applications of Dynamic NMR Spectroscopy to Organic Chemistry, VCH, Weinheim*, 1985.
- 9. M. A. Spackman and P. G. Byrom, Chem. Phys. Lett., 1997, 267, 215-220.
- 10. S. K. Wolff, D. J. Grimwood, J. J. McKinnon, D. Jayatilaka and M. A. Spackman, *CrystalExplorer 2.1, University of Western Australia, Perth*, 2007.
- 11. M. A. Spackman and D. Jayatilaka, *CrystEngComm*, 2009, **11**, 19-32.
- 12. J. J. McKinnon, D. Jayatilaka and M. A. Spackman, Chem. Commun. (Cambridge, U. K.), 2007, 3814-3816.