Electronic Supplementary Information

Asymmetric Olefin Aziridination Using a Newly Designed Ru(CO)(salen) Complex as Catalyst

Chungsik Kim, Tatsuya Uchida and Tsutomu Katsuki*

Department of Chemistry, Faculty of Science, Graduate School, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan.
1. General

1H and 13C NMR spectra were recorded at JEOL JNM–AL–400 spectrometer at 400 and 270 MHz, respectively. All signals were expressed as ppm downfield from tetramethylsilane used as an internal standard (δ–value in CDCl$_3$). Optical rotations were measured with a JASCO P–1020 polarimeter. Enantiomeric excesses were determined by HPLC analysis using SHIMADZU LC–10AT–VP equipped with a chiral stationary phase. Column chromatography was conducted on a silica gel 60N (spherical, neutral), 63–210 mm, available from Kanto Chemical Co., Inc., or a Chromatorex® NH (spherical, basic), 100–200 mm, available from Fuji Silysia Chemical LTD.

Ru(CO)(salen) complex 3,1 and 2-(trimethylsilyl)ethanesulfonyl azide (SESN)$_3$1,2) were prepared according to the literatures.

1.1. Scheme for the synthesis of Ru(CO)(salen) complexes1

\[
\begin{align*}
\text{Ar} &= 3,5-(\text{CF}_3)_2\text{C}_6\text{H}_3 \\
\text{OH} \quad \text{OH} &\quad \text{aR} \quad \text{OH} \quad \text{OMOM} \quad \text{CH} = \text{CHO} \quad \text{OP(O)(OEt)}_2 \\
\text{OMOM} \quad \text{OMOM} &\quad \text{OH} \quad \text{Ar} \quad \text{Ar} \\
\end{align*}
\]

a) diisopropylethylamine, MOMCl, CH$_2$Cl$_2$, 0°C, 82%; b) n-BuLi, THF, -78°C; ClP(O)(OEt)$_2$, 76%; c) Li/naphthalene, THF, -78°C, 1,2-dibromoethane, THF, -78°C to r.t., 60%; d) Pd(PPh$_3$)$_4$ (5 mol %), 3,5-bis(trifluoromethyl)phenylboronic acid, 1M Na$_2$CO$_3$, toluene, reflux, 70%; e) TMEDA, n-BuLi, -78°C, DMF, THF, 65%; f) HCl/iPrOH (20%, w/w), THF, 99%; g) (1R, 2R)-diphenyl-1,2-diamine, EtOH, reflux, 95%; h) Ru$_3$(CO)$_{12}$, EtOH, N$_2$, 65%.

1.2 Synthesis of (aR, R)-Ru(CO)(salen) complex 3 1b

A solution of salen ligand (170 mg, 0.14 mmol) and triruthenium dodecacarbonyl (Ru$_3$(CO)$_{12}$, 180 mg, 2 eq) in dehydrated EtOH (6 mL) was refluxed under argon atmosphere for 48 h. The mixture was evaporated and subjected to chromatography on silica gel (hexanes/ethyl acetate = 4:1) to give 3 as a reddish-brown solid (122 mg, 65 % yield); IR (KBr) 3423, 3055, 1944, 1658, 1608, 1577,
1546, 1494, 1479, 1425, 1384, 1324, 1278, 1180, 1132, 1091, 954, 894, 815, 748, 705, 680, 536 cm⁻¹; HRMS (ESI-TOF): Ru(CO)(salen) m/z [M+H⁺] Calcd for [C₇₃H₄₃F₁₂N₂O₃Ru]⁺: 1324.2062; Found: 1324.2046; elemental analysis: Calcd (%) for C₇₃H₄₂F₁₂N₂O₃Ru•1.5H₂O: C 64.04, H 3.46, N 2.05; Found: C 64.00, H 3.59, N 1.97

2. Solvent screening

\[
\text{condition: M.S. 4A (50 mg), solvent (0.4 mL), r.t. to 40°C, 3 mol\% catalyst loading}
\]

<table>
<thead>
<tr>
<th>solvents</th>
<th>yield</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHCl₃</td>
<td>54 %</td>
<td>88%</td>
</tr>
<tr>
<td>EtOAc</td>
<td>51 %</td>
<td>88%</td>
</tr>
<tr>
<td>Toluene</td>
<td>54 %</td>
<td>90%</td>
</tr>
<tr>
<td>DCM</td>
<td>81 %</td>
<td>90%</td>
</tr>
</tbody>
</table>

3. Ru(CO)(salen) 3 – catalyst loading

\[
\text{condition: M.S. 4A (30 mg), DCM (0.2 mL), r.t., 6 hr}
\]

<table>
<thead>
<tr>
<th>catalyst amount</th>
<th>yield</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mol %</td>
<td>99 %</td>
<td>90%</td>
</tr>
<tr>
<td>2 mol %</td>
<td>99 %</td>
<td>90%</td>
</tr>
<tr>
<td>1 mol %</td>
<td>99 %</td>
<td>90%</td>
</tr>
<tr>
<td>0.5 mol %</td>
<td>99 %</td>
<td>90%</td>
</tr>
<tr>
<td>0.1 mol %</td>
<td>57 %</td>
<td>90%</td>
</tr>
</tbody>
</table>

\(^a\) Isolated yield.
4. Asymmetric aziridination of alkenes

4.1. Typical experiment for asymmetric aziridination of alkenes using a combination of Ru(CO)(salen) complex 3 with SESN3.

A dried Schlenk tube was charged with 4Å MS (50 mg) and then additionally dried with a heat gun for 10 min. The Schlenk tube was then evacuated, backfilled with nitrogen and equipped with a magnetic stir bar. To the Schlenk tube, were added Ru(CO)(salen) complex 3 (0.5 ~ 3 mol%) and 0.4 ml of solvent, followed by olefins (0.36 ~ 0.9 mmol) and the azide (0.3 mmol) at room temperature. After stirred for another 6 ~ 24 h, the mixture was filtered through a Celite pad. Evaporation of the resulting solution and chromatographic separation on silica gel (Hexane/AcOEt=10/1 ~ 5/1) gave the corresponding aziridination compounds.

4.2. (2S)-2-(Phenyl)-1-[[2-(trimethylsilyl)ethane]sulfonyl]aziridine (Table 1, entry 2)

![Chemical Structure]

Colorless oil (99%); 90% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/i-PrOH=97/03, 1.0mL/min), tR (Major)=15.0 min, tR (Minor)=21.4 min]; [α]D27.1 = +124.1 (c = 1.35, CDCl3); {[α]D25 = +115 (c = 1.3, CDCl3)}1a) 1H NMR (CDCl3, 400 MHz): δ 7.21-7.32 (m, 5H), 3.65 (dd, J = 4.4, 4.4 Hz, 1H), 3.05-3.10 (m, 2H), 2.92 (d, J = 6.8 Hz, 1H), 2.37 (d, J = 4.4 Hz, 1H), 1.06-1.11 (m, 2H), -0.017 (s, 9H); 13C NMR (CDCl3, 100 MHz): δ 135.2, 128.7, 128.4, 126.5, 49.1, 40.5, 35.1, 9.7, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]+) Calcd for C13H21NO2SSi: 306.0954; Found: 306.0960.

4.3. 2-Butyl-1-[[2-(trimethylsilyl)ethane]sulfonyl]aziridine (Table 2, entry 1)

![Chemical Structure]

Colorless oil (74%); >99% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL WHELK-O1 (Hexane/i-PrOH=97/03, 1.0 mL/min), tR (Major)=10.6]; [α]D23 = +20.0 (c 0.83, CHCl3); 1H NMR (CDCl3, 400 MHz): δ 3.03-3.08 (m, 2H), 2.70-2.72 (m, 1H), 2.58 (d, J = 6.8 Hz, 1H), 2.05 (d, J = 5.2 Hz, 1H), 1.33-1.57 (m, 6H), 1.11-1.14 (m,
2H), 0.91 (t, J=6.8 Hz, 3H), 0.05 (s, 9H); 13C NMR (CDCl$_3$, 100 MHz): δ 45.8, 39.1, 33.6, 31.2, 28.9, 22.8, 14.0, 9.7, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]$^+$) Calcd for C$_{11}$H$_{25}$NO$_2$SSi: 286.1267; Found: 286.1266.

4.4. 2-Cyclohexyl-1-[[2-(trimethylsilyl)ethane]sulfonyl]aziridine (Table 2, entry 2)

![Chemical Structure Image]

Colorless oil (45%); >99% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL WHELK-O1 (Hexane/i-PrOH=99/01, 1.0 mL/min), t$_r$ (Major)=13.8 min]; $[\alpha]_D^{22} = +18.47$ (c 1.12, CHCl$_3$); 1H NMR (CDCl$_3$, 400 MHz): δ 3.00-3.06 (m, 2H), 2.50-2.54 (m, 2H), 2.21 (d, J=4.4 Hz, 1H), 1.63-1.80 (m, 5H), 1.11-1.23 (m, 8H), 0.04 (s, 9H). 13C NMR (CDCl$_3$, 100 MHz): δ 48.6, 43.8, 39.4, 32.3, 30.4, 29.7, 26.0, 25.6, 25.4, 9.7, -2.0 ppm.; HRMS [ESI-TOF] ([M + Na]$^+$) Calcd for C$_{13}$H$_{27}$NO$_2$SSi: 312.1426; Found: 312.1460.

4.5. 2-(5-Methylhex-4-en-1-yl)-1-[[2-(trimethylsilyl)ethane]sulfonyl]aziridine (Table 2, entry 3)

![Chemical Structure Image]

Colorless oil (54%); 89% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/i-PrOH=97/03, 1.0 mL/min), t$_r$ (Major)=6.3 min, t$_r$ (Minor)=7.4 min]; $[\alpha]_D^{22} = +8.94$ (c 0.96, CHCl$_3$); 1H NMR (CDCl$_3$, 400 MHz): δ 4.99-5.05 (m, 1H), 2.96-3.03 (m, 2H), 2.63-2.67 (m, 1H), 2.52 (d, J=10.4 Hz, 1H), 2.00 (d, J=4.28 Hz, 1H), 1.61 (s, 3H), 1.53 (s, 3H), 1.38-1.51 (m, 6H), 1.04-1.11 (m, 2H), 0.00 (s, 9H). 13C NMR (CDCl$_3$, 100 MHz): δ 132.2, 123.8, 48.4, 39.0, 33.4, 30.9, 27.4, 26.9, 25.7, 17.7, 9.8, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]$^+$) Calcd for C$_{14}$H$_{29}$NO$_2$SSi: 325.1580; Found: 326.1238.

4.6. 2-Butyl-1-[[2-(trimethylsilyl)ethane]sulfonyl]aziridine (Table 2, entry 4)

![Chemical Structure Image]
Colorless oil (58%); 91% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/i-PrOH=97/03, 1.0 mL/min), t_r (Major)=6.41 min, t_r (Minor)=7.1 min]; [α]_D^{24} = +25.8 (c 1.72, CHCl_3); ^1H NMR (CDCl_3, 400 MHz): δ 5.56-5.62 (m, 1H), 5.40-5.46 (m, 1H), 3.03-3.08 (m, 2H), 2.71-2.76 (m, 1H), 2.60 (d, J=8.0 Hz, 1H), 2.18-2.28 (m, 2H), 2.10 (d, J=4 Hz, 1H), 1.68 (dd, J=8.0 Hz, 3H), 1.11-1.15 (m, 2H), 0.07 (s, 9H); ^13C NMR (CDCl_3, 100 MHz): δ 128.8, 125.4, 48.3, 39.2, 34.3, 32.3, 18.0, 9.6, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]^+) Calcd for C_{11}H_{23}NO_2SiS: 284.1111; Found: 284.1164.

4.7. 2-Benzyl-1-[[2-(trimethylsilyl)ethane]sulfonyl]aziridine (Table 2, entry 6)

\[
\begin{align*}
\text{O} & \quad \text{SiMe}_3 \\
\text{O} & \quad \text{N} \\
\text{O} & \quad \text{S} \\
\text{O} & \quad \text{SiMe}_3 \\
\end{align*}
\]

Colorless oil (91%); 90% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/i-PrOH=97/03, 1.0 mL/min), t_r (Major)=16.9 min, t_r (Minor)=24.1 min]; [α]_D^{22} = +19.2 (c 0.76, CHCl_3); ^1H NMR (CDCl_3, 400 MHz): δ 7.22-7.30 (m, 5H), 2.70-2.98 (m, 3H), 2.60-2.68 (m, 3H), 2.17 (d, J=4.4 Hz, 1H), 0.85-1.02 (m, 2H), -0.05 (s, 9H); ^13C NMR (CDCl_3, 100 MHz): δ 137.2, 128.9, 128.7, 127.1, 48.4, 40.9, 37.7, 32.3, 8.9, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]^+) Calcd for C_{14}H_{23}NO_2Si: 320.1111; Found: 320.1122.

4.8. 2-(4-Bromobutyl)-1-[[2-(trimethylsilyl)ethane]sulfonyl]aziridine (Table 2, entry 6)

\[
\begin{align*}
\text{Br} & \quad \text{N} \\
\text{O} & \quad \text{S} \\
\text{O} & \quad \text{SiMe}_3 \\
\end{align*}
\]

Colorless oil (95%); 91% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL WHELK-O1 (Hexane/i-PrOH=97/03, 1.0 mL/min), t_r (Major)=35.5 min, t_r (Minor)=42.4 min]; [α]_D^{22} = +14.7 (c 0.68, CHCl_3); ^1H NMR (CDCl_3, 400 MHz): δ 3.42 (t, J=8.0 Hz, 3H), 3.04-3.09 (m, 2H), 2.73 (m, 1H), 2.59 (d, J=8.0 Hz, 1H), 2.10 (d, J=4.4 Hz, 1H), 1.91-1.93 (m, 2H), 1.61-1.65 (m, 4H), 1.11-1.16 (m, 2H), 0.07 (s, 9H); ^13C NMR (CDCl_3, 100 MHz): δ 48.9, 38.3, 33.6, 33.2, 31.9, 30.5, 25.4, 9.7, -2.04 ppm.; HRMS [ESI-TOF] ([M + Na]^+) Calcd for C_{14}H_{24}BrNO_2SiS: 364.0373; Found: 364.0384.
4.9. 2-[3-(Benzyloxy)propyl]-1-[2-(trimethylsilyl)ethane sulfonyl]aziridine (Table 2, entry 7)

![Chemical Structure]

Colorless oil (65%); 87% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/i-PrOH=75/95, 1.0 mL/min), \(t_r (\text{Major}) = 25.8 \) min, \(t_r (\text{Minor}) = 29.3 \) min]; \([\alpha]_D^{22} = +17.64 (c 0.8, \text{CHCl}_3); 1^H \text{NMR (CDCl}_3, 270 \text{ MHz)}: \delta 7.23-7.32 (m, 5H), 4.46 (s, 2H), 3.45 (t, \(J = 6.0 \) Hz, 2H), 2.99-3.06 (m, 2H), 2.67 (m, 1H), 2.55 (d, \(J = 6.8 \) Hz, 1H), 2.04 (d, \(J = 4.3 \) Hz, 1H), 2.00-2.05 (m, 6H), 1.07-1.14 (m, 2H), 0.03 (s, 9H).; 13C \text{NMR (CDCl}_3, 100 \text{ MHz)}: \delta 138.5, 128.4, 127.6, 127.5, 72.9, 69.9, 48.8, 38.8, 33.5, 31.2, 29.3, 23.6, 9.7 -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]^+) Calcd for C\text{18}H\text{31}NO\text{3}SSi: 392.1686; Found: 392.1714.

4.10. 2-(\(o\)-Tolyl)-1-[2-(trimethylsilyl)ethane sulfonyl]aziridine (Table 3, entry 1)

![Chemical Structure]

Colorless oil (99%); 97% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/i-PrOH=97/3, 1.0 mL/min), \(t_r (\text{Major}) = 10.1 \) min, \(t_r (\text{Minor}) = 11.3 \) min]; \([\alpha]_D^{20.0} = +126.2 (c 0.9, \text{CDCl}_3); 1^H \text{NMR (CDCl}_3, 400 \text{ MHz)}: \delta 7.13 -7.22 (m, 4H), 3.77 (dd, \(J = 4.4, 5.2 \) Hz, 1H), 3.09-3.14 (m, 2H), 2.93 (d, \(J = 7.2 \) Hz, 1H), 2.40 (s, 3H), 2.29 (d, \(J = 4.4 \) Hz, 1H), 1.11-1.16 (m, 2H), 0.03 (s, 9H); 13C \text{NMR (CDCl}_3, 100 \text{ MHz)}: \delta 136.8, 111.4, 130.1, 128.1, 126.2, 125.5, 49.1, 38.3, 34.9, 19.1, 9.7, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]^+) Calcd for C\text{14}H\text{23}NO\text{3}SSi: 320.1111; Found: 320.1271.

4.11. 2-(\(m\)-Tolyl)-1-[2-(trimethylsilyl)ethane sulfonyl]aziridine (Table 3, entry 2)

![Chemical Structure]

Colorless oil (99%); >90% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/i-PrOH=97/3, 1.0 mL/min), \(t_r (\text{Major}) = 11.6 \) min, \(t_r (\text{Minor}) = 13.8 \) min]; \([\alpha]_D^{20.0} = +131.0 (c 0.8, \text{CDCl}_3); 1^H \text{NMR (CDCl}_3, 270 \text{ MHz)}: \delta 7.23-7.32 (m, 5H), 4.46 (s, 2H), 3.45 (t, \(J = 6.0 \) Hz, 2H), 2.99-3.06 (m, 2H), 2.67 (m, 1H), 2.55 (d, \(J = 6.8 \) Hz, 1H), 2.04 (d, \(J = 4.3 \) Hz, 1H), 2.00-2.05 (m, 6H), 1.07-1.14 (m, 2H), 0.03 (s, 9H).; 13C \text{NMR (CDCl}_3, 100 \text{ MHz)}: \delta 138.5, 128.4, 127.6, 127.5, 72.9, 69.9, 48.8, 38.8, 33.5, 31.2, 29.3, 23.6, 9.7 -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]^+) Calcd for C\text{18}H\text{31}NO\text{3}SSi: 392.1686; Found: 392.1714.
(Minor)=16.9 min.; [α]D \text{20} = +115.8 (c = 1.17, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.05-7.22 (m, 4H), 3.62 (dd, J=4.4, 4.4 Hz, 1H), 3.05-3.10 (m, 2H), 2.91 (d, J=7.2 Hz, 1H), 2.37 (d, J=5.2 Hz, 1H), 2.3 (s, 3H), 1.07-1.12 (m, 2H), -0.01 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 138.4, 135.0, 129.2, 128.6, 127.1, 123.6, 49.1, 40.5, 35.0, 21.3, 9.6, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na⁺]) Calcd for C₁₄H₂₃NO₂SSi: 320.1111; Found: 320.1117.

4.12. (2S)-2-(p-Toly)-1-[[2-(trimethylsilyl)ethane]sulfonyl]azidine (Table 3, entry 3)

![Structure of (2S)-2-(p-Toly)-1-[[2-(trimethylsilyl)ethane]sulfonyl]azidine](image)

White solid (99%); 89% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/PrOH=90/10, 1.0 mL/min), t₁ (Major)=12.3 min, t₂ (Minor)=19.4 min]; [α]D \text{20} = +125.1 (c = 0.96, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.11-7.23 (m, 4H), 3.64 (dd, J=6.8, 6.8 Hz, 1H), 3.05-3.11 (m, 2H), 2.92 (d, J=10.8 Hz, 1H), 2.37 (d, J=6.8 Hz, 1H), 2.32 (s, 3H), 1.07-1.14 (m, 2H), 0.00 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 138.3, 129.3, 126.4, 49.1, 40.5, 34.9 21.2, 9.6, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na⁺]) Calcd for C₁₄H₂₃NO₂SSi: 320.1111 Found: 320.1113.

Single crystals of the aziridine product [Table 3 (entry 3)] for X-ray diffraction experiments were obtained by recrystallization from Et₂O. The data were collected at 100 K on a Bruker SMART APEX II diffractometer equipped with APEX II 4K CCD area detector, a graphite monochromator and a rotating-anode X-ray tube (Mo-Kα radiation, λ = 0.71073) focused with Helios multilayer optics for Mo-Kα radiation operating at 50 kV and 24 mA. The data collection was performed by APEX2 software program.⁴ The cell refinement and the data reduction were carried out using SAINT-NT.⁵ The absorption correction was carried out using SADABES.⁶ The structure was solved by direct methods and refined by full-matrix least-squares based on all data using F² with SHELXXLTL.⁷ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed from the difference map and refined with geometrical and isotropic displacement parameters. Molecular plot was obtained with ORTEP-3.⁸ Crystallographic data for Table 3 (entry 3): C₁₇H₂₃NO₂SSi, colorless block, 0.15x0.08x0.08 mm³, monoclinic, P2₁, a = 10.8858(17), b = 5.9432(9), c = 12.636(2) Å, V = 808.8(2) Å³, Z = 2, Flack = 0.04(6), R = 0.0325 and Rw = 0.0735.
CCDC 870579 contains the supplementary crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure S1. ORTEP view (50% probability) of (2S)-2-(p-Tolyl)-1-[[2-(trimethylsilyl)ethane]sulfonyl]aziridine.

4.13. 2-(3-Bromophenyl)-1-[[2-(trimethylsilyl)ethane]sulfonyl]aziridine (Table 3, entry 4)

Colorless oil (95 %); 90% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/i-PrOH=97/03, 1.0 mL/min), \(t_r \) (Major)=23.1 min, \(t_r \) (Minor)=29.7 min]; [\(\alpha \)]D \text{21}^\text{[1]} = +115.4 (c = 0.94, CHCl\text{3}); \(^1\)H NMR (CDCl\text{3}, 400 MHz): \(\delta \) 7.15-7.42 (m, 4H), 3.62 (dd, \(J \)=4.4, 4.4 Hz, 1H), 3.06-3.11 (m, 2H), 2.91 (d, \(J \)=7.2 Hz, 1H), 2.32 (d, \(J \)=5.2 Hz, 1H), 1.02-1.16 (m, 2H), 0.00 (s, 9H).; \(^{13}\)C NMR (CDCl\text{3}, 100 MHz): \(\delta \) 137.6, 131.6, 130.2, 129.4, 125.4, 122.8, 49.2, 39.3, 34.5, 9.7, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]\text{+}) Calcd for C\text{13}H\text{20}BrNO\text{2}Si: 384.0060; Found: 384.0082.
4.14. 2-(4-chlorophenyl)-1-[[2-(trimethylsilyl)ethane]sulfonyl]aziridine (Table 3, entry 5)

![Aziridine structure]

Colorless oil (96%); 90% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/i-PrOH=97/03, 1 mL/min), \(t_r \) (Major)=15.8 min, \(t_r \) (Minor)=24.8 min]; \([\alpha]_D^{21} = +121.2 \) (c = 1.12, CHCl\(_3\)); \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta \) 7.28 (d, \(J = 8.8 \) Hz, 2H), 7.19 (d, \(J = 8.79 \) Hz, 2H), 3.62 (dd, \(J = 4.4, 4.4 \) Hz, 1H), 3.04-3.10 (m, 2H), 2.91 (d, \(J = 7.6 \) Hz 2H), 2.32 (d, \(J = 8.4 \) Hz, 1H), 1.05-1.10 (m, 2H), -0.01 (s, 9H); \(^13\)C NMR (CDCl\(_3\), 100 MHz): \(\delta \) 134.4, 133.8, 128.9, 127.9, 49.1, 39.4, 9.7, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na\(^+\])

Calcd for C\(_{13}\)H\(_{23}\)ClNO\(_2\)SSi: 340.0565; Found: 340.0573.

4.15. (2S)-2-(naphthalen-2-yl)-1-[[2-(trimethylsilyl)ethane]sulfonyl]aziridine (Table 3, entry 6)

![Aziridine structure]

White solid (99%); 91% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/i-PrOH=97/03, 1.0 mL/min), \(t_r \) (Major)=54.8 min, \(t_r \) (Minor)=126.3 min]; \([\alpha]_D^{21} = +125.1 \) (c = 1.17, CHCl\(_3\)); \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta \) 7.81 (m, 4H), 7.22-7.49 (m, 3H), 3.84-3.87 (dd, \(J = 4.4, 4.4 \) Hz, 1H), 3.11-3.16 (m, 2H), 3.02 (d, \(J = 6.8 \) Hz, 1H), 1.12-1.16 (m, 2H), 0.00 (s, 9H); \(^13\)C NMR (CDCl\(_3\), 100 MHz): \(\delta \) 133.2, 132.5, 128.6, 127.8, 126.6, 126.2, 123.6, 49.1, 40.7 35.2, 9.7, -2.0 ppm.; HRMS [ESI-TOF] ([M + Na\(^+\])

Calcd for C\(_{17}\)H\(_{25}\)NO\(_2\)SSi: 356.1111; Found: 356.1127.

4.15.1. Crystal structure analysis of (2S)-2-(Naphthalen-2-yl)-1-[[2-(trimethylsilyl)ethane]sulfonyl]aziridine (Table 3, entry 6)

Single crystals of the aziridine product [Table 3 (entry 6)] for X-ray diffraction experiments were obtained by recrystallization from CH\(_2\)Cl\(_2\)/Hexane. The data were collected at 100 K on a Bruker SMART APEX II diffractometer equipped with APEX II 4K CCD area detector, a graphite monochromator and a rotating-anode X-ray tube (Mo-K\(\alpha\) radiation, \(l = 0.71073 \)) focused with Helios multilayer optics for Mo-K\(\alpha\) radiation operating at 50 kV and 24 mA. The data collection
was performed by APEX2 software program. The cell refinement and the data reduction were carried out using SAINT-NT. The absorption correction was carried out using SADABS. The structure was solved by direct methods and refined by full-matrix least-squares based on all data using \mathcal{F}^2 with SHELXLTL. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed from the difference map and refined with geometrical and isotropic displacement parameters. Molecular plot was obtained with ORTEP-3. Crystallographic data for Table 3 (entry 6): C$_{17}$H$_{23}$NO$_2$SSi, colorless block, 0.15x0.10x0.05 mm3, orthorhombic, $P2_12_12_1$, $a = 6.0186(10)$, $b = 11.5512(18)$, $c = 24.941(4)$ Å, $V = 1733.9(5)$ Å3, $Z = 4$, Flack = 0.05(6), $R = 0.0281$ and $R_w = 0.0682$. CCDC 870052 contains the supplementary crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure S2. ORTEP view (50% probability) of (2S)-2-(naphthalen-2-yl)-1-{{2-(trimethylsilyl)ethan}sulfonyl}aziridine.

4.16. 2-Methyl-3-phenyl-1-{{2-(trimethylsilyl)ethane}sulfonyl}aziridine (Table 3, entry 7)

Colorless oil (72%); 99% ee [determined by HPLC analysis using a chiral stationary phase column, DICEL CHIRALCEL OJ-H (Hexane/i-PrOH=97/03, 1.0 mL/min), t_r (Major)=8.4 min, t_r (Minor)=12.2 min]; $[\alpha]_D^{22} = +124.1$ (c = 1.00, CHCl$_3$); 1H NMR (CDCl$_3$, 400 MHz): δ 7.26-7.38 (m, 4H), 3.90 (d, J=8.0 Hz, 1H), 3.10-3.17 (m, 3H), 1.13-1.19 (m, 2H), 1.10 (d, J=8.0 Hz, 3H), 0.05 (s, 9H). 13C NMR (CDCl$_3$, 100 MHz): δ 128.4, 127.9, 127.5, 49.1, 45.7, 40.9, 11.8, 9.8, -2.1 ppm.; HRMS [ESI-TOF] ([M + Na]$^+$) Calcd for C$_{14}$H$_{23}$NO$_2$SSi: 320.1111; Found: 320.1118.
4.16.1 Deprotection of the 2-Methyl-3-phenyl-1-\{[2-(trimethylsilyl)ethane]sulfonyl\}aziridine and determination of its configuration

A solution of 2-methyl-3-phenyl-1-\{[2-(trimethylsilyl)ethane]sulfonyl\}aziridine (38 mg, 0.12 mmol) and TASF (150 mg, 4 equiv.) in DMF (0.5 mL) was stirred at room temperature overnight, and chromatographed on silica gel (hexanes : ethyl acetate = 1:2) to obtain the deprotected aziridine product (11.4 mg, 67%) as a white solid. Its spectroscopic data were identical to those previously reported: \([\alpha]_D^{24} = +68.5\) (c = 0.7, CHCl\(_3\)), \([\alpha]_D^{22} = +69.1\) (c 4.43 × 10\(^{-3}\), CHCl\(_3\)) for \((2R,3S)-2\)-methyl-3-phenylaziridine. \(^{1}\)H NMR (CDCl\(_3\), 400 MHz): \(\delta\) 7.17-7.30 (m, 3H), 3.21 (d, \(J = 8.0\) Hz, 1H), 2.37 (m, 1H), 0.87 (d, \(J = 8.0\) Hz, 3H) HRMS [ESI-TOF] \([\text{M} + \text{H}]^+\) Calcd for C\(_9\)H\(_{12}\)N: 134.0964; Found: 134.1082.

4.17. 1-\{[2-(Trimethylsilyl)ethane]sulfonyl\}-1,1a,6,6a-tetrahydroindenophenolate[1,2-b]aziridine (Table 3, entry 8)

Colorless oil (66%); 97% ee [determined by HPLC analysis using a chiral stationary phase column, DICEK CHIRALCEL OJ-H (Hexane/i-PrOH=97/03, 1.0 mL/min), \(t_r\) (Major)=15.2 min, \(t_r\) (Minor)=18.1 min]; \([\alpha]_D^{22} = +26.5\) (c = 2.1, CHCl\(_3\)); \(^{1}\)H NMR (CDCl\(_3\), 400 MHz): \(\delta\) 7.46 (d, \(J = 6.8\) Hz, 1H), 7.21-7.26 (m, 3H), 4.20 (d, \(J = 4.8\) Hz, 1H), 3.88 (m, 1H), 3.21 (m, 1H), 3.05-3.09 (m, 2H), 1.07-1.12 (m, 2H), 0.02 (s, 9H).\(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta\) 143.5, 127.8, 126.8, 125.7, 124.9, 49.6, 49.5, 43.5, 34.8, 9.7, -2.1 ppm.; HRMS [ESI-TOF] \([\text{M} + \text{Na}]^+\) Calcd for C\(_{14}\)H\(_{21}\)NO\(_2\)SSi: 318.0954; Found: 318.0963.

References
1) a) H. Kawabata, K. Omura and T. Katsuki, Tetrahedron Lett., 2006, 47, 1571; (b) H. Kawabata,

3) Bruker APEX2, Version 2008.5-0; Bruker AXS Inc.: Madison, WI (USA), 2005.

4) Bruker SAINT-NT (includes XPREP and SADABS), Version 6.0; Madison, WI (USA), 2005.

5) G. M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen (Germany), 1996.

5. 1H and 13C NMR spectra

5.1. (2S)-2-(Phenyl)-1-[[2-(trimethylsilyl)ethane]sulfonyl]aziridine (Table 1, entry 2)
5.2. 2-Butyl-1-\{[2-(trimethylsilyl)ethane)sulfonyl]aziridine (Table 2, entry1)
5.3. 2-Cyclohexyl-1-[[2-(trimethylsilyl)ethane|sulfonyl]aziridine (Table 2, entry 2)
5.4. 2-(5-Methylhex-4-en-1-yl)-1-[[2-(trimethylsilyl)ethane sulfonyle]aziridine (Table 2, entry 3)
5.5. 2-Butyl-1-[(2-(trimethylsilyl)ethane)sulfonyl]aziridine (Table 2, entry 4)
5.6. 2-Benzyl-1-[(2-(trimethylsilyl)ethane)sulfonyl]aziridine (Table 2, entry 5)
5.7. 2-(4-Bromobutyl)-1-[[2-(trimethylsilyl)ethane]sulfonyl]aziridine (Table 2, entry 6)
5.8. 2-[(3-Benzoyloxy)propyl]-1-[[2-(trimethylsilyl)ethane)sulfonyl]aziridine (Table 2, entry 7)
5.9. 2-(o-Tolyl)-1-[[2-(trimethylsilyl)ethane)sulfonyl]aziridine (Table 3, entry 1)
5.10. 2-(m-Tolyl)-1-[[2-(trimethylsilyl)ethyl]sulfonyl]aziridine (Table 3, entry 2)
5.11. (2S)-2-(p-Tolyl)-1-[[2-(trimethylsilyl)ethane)sulfonyl]aziridine (Table 3, entry 3)
5.12. 2-(3-Bromophenyl)-1-[[2-(trimethylsilyl)ethane sulfonyl]aziridine (Table 3, entry 4)
5.13. 2-(4-Chlorophenyl)-1-[[2-(trimethylsilyl)ethanesulfonyl]aziridine (Table 3, entry 5)
5.14. (2S)-2-(Naphthalen-2-yl)-1-[(2-(trimethylsilyl)ethane)sulfonyl]aziridine (Table 3, entry 6)
5.15. 2-Methyl-3-phenyl-1-\{[2-(trimethylsilyl)ethane-sulfonyl]aziridine (Table 3, entry 7)
5.16. 1-[[2-(Trimethylsilyl)ethane)sulfonyl]-1,1a,6,6a-tetrahydroindeno[1,2-b]aziridine (Table 3, entry 8)