Combined two-photon excitation and d→f energy-transfer in Ir/lanthanide dyads with time-gated selection from a two-component emission spectrum

R. M. Edkins, D. Sykes, A. Beeby* and M. D. Ward*

Supporting Information:

Experimental information for the Two-photon absorption (TPA) spectroscopy

The two-photon cross-section of [Ir(F$_2$ppy)$_2$(py-pz)]$^+$ was measured using the femtosecond TPA induced fluorescence method. A mode-locked, cavity dumped (APE Pulse switch) Ti:sapphire laser (Coherent MIRA) was pumped by the 2nd harmonic (532 nm) of a CW Nd:YAG laser (Coherent Verdi V6) at a power of 4.5 W to create a pulsed excitation source. The pulse characteristics were: a temporal full width at half maximum (FWHM) of ~150 fs, average power 10 mW at a repetition rate of ~2.5 MHz and an energy of 4 nJ pulse$^{-1}$. A variable ND filter (Edmund Optics) mounted on a translation stage was used to control the light intensity incident on the sample, with the power monitored by splitting the beam to a photodiode of known response, calibrated against a free standing power meter. Gold mirrors, highly reflective of NIR radiation, were used with a 20x objective (Olympus LWD C A20) to focus the source onto the sample. A 55 μM sample of the nitrate salt of the complex in aerated dichloromethane was prepared in a 1 cm path length quartz cuvette. Two-photon excited photoluminescence spectra were collected with a dichroic mirror (Semrock FF735) and detected with a 100 μm core fibre optic cable coupled CCD spectrograph (Avantes Avaspec 2048FT) fitted with a 700 nm shortpass filter to remove extraneous laser light. The TPA cross section (σ_2) was measured relative to fluorescein as a reference, as per the standard methodology of Webb et al.,1 using the equation:

$$\sigma_2^S = \frac{\Phi_2^R c^R n^R F^R(\lambda)}{\Phi_2^S c^S n^S F^S(\lambda)}$$

The superscripts R and S refer to the reference and sample respectively, Φ_P is the one photon photoluminescence quantum yield, c is the concentration, n is the solvent refractive index and $F(\lambda)$ is the integrated two-photon emission spectrum. The sample and reference were recorded under identical pulse conditions. The concentration of the reference fluorescein was measured by UV-visible spectroscopy using $\varepsilon(492 \text{ nm}) = 88,000 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$, and a literature value1 for fluorescein of $\sigma_2 = 37 \text{ GM}$ at 780 nm in 0.1 M NaOH$_{aq}$ with $\Phi_P = 0.9$ was used. The system was calibrated to correct for the dark noise of the detector and the photoluminescence spectrum was averaged over 100
measurements of 250 ms integration time. In-house software was used for data collection and analysis. Estimated error ± 20%.

The time-gated two-photon excited photoluminescence spectra were acquired with a lower repetition rate of 25 kHz and energy of 30 nJ pulse\(^{-1}\). The emission was detected using a photomultiplier tube (Hamamatsu H10682-01) attached to a dual-grating scanning monochromator (Princeton Instruments Acton SP2150). The TTL signal from the detector was gated using an AND logic gate with the timing being achieved using a variable duration TTL pulse synchronised with the laser cavity dumper driver. Spectra were recorded at 1 nm intervals with a 1 second integration time and are the average of 16 scans. Spectra are corrected for spectral response and dark background.

To confirm that a two-photon process had been observed, the integrated two-photon induced emission spectrum of the Ir complex was recorded as a function of laser intensity. To achieve this, a variable ND filter (Edmund Optics), mounted on a translation stage, was used to control the light intensity incident on the sample, with the power monitored by a free standing power meter whilst a series of spectra were recorded. The result is shown below (Fig. S1): the log(intensity) vs. log(power) graph is linear with a slope of 1.9 ± 0.1 \((R^2 = 0.99)\), as required for a two-photon process.

![Fig. S1. Relationship of emission intensity from the Ir complex as a function of laser intensity at 780 nm, confirming the presence of a two-photon excitation process.](image-url)