Electronic Supplementary Information

Temperature responsive phosphorescent small unilamellar vesicles

Mouchumi Bhuyan, Burkhard Koenig*1

Institut für Organische Chemie, Universität Regensburg, Regensburg, 93040 Germany

General methods and materials

All reagent-grade chemicals were used without purification unless otherwise specified. Diethylenetriaminepentaacetic dianhydride (DTPAA), tryptamine, Tb(CF₃SO₃)₃ were obtained from Aldrich and used as received.

NMR Spectra

NMR spectra were measured with Bruker Avance 600 (1H: 600.1 MHz, 13C: 150.1 MHz, T = 300 K), Bruker Avance 400 (1H: 400.1 MHz, 13C: 100.6 MHz, T = 300 K), Bruker Avance 300 (1H: 300.1 MHz, 13C: 75.5 MHz, T = 300 K). The chemical shifts are reported in δ [ppm] relative to external standards (solvent residual peak). The spectra were analysed by first order, the coupling constants are given in Hertz [Hz]. Characterisation of the signals: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, dd = double doublet. Integration is determined as the relative number of atoms. The solvent used is reported for each spectrum.

Mass Spectra

Mass spectra were obtained with Varian CH-5 (EI), Finnigan MAT 95 (CI; FAB and FD), Finnigan MAT TSQ 7000 (ESI). Xenon serves as the ionisation gas for FAB.

IR Spectra

IR spectra were recorded with a Bio-Rad FTS 2000 MX FT-IR and Bio-Rad FT-IR FTS 155.

Absorption Spectroscopy

Absorption were recorded on a Varian Cary BIO 50 UV/VIS/NIR Spectrometer with temperature control by use of a 1 cm quartz cuvettes (Hellma) and aqueous buffered solution (HEPES 25 mmol, pH = 7.4).

1 Corresponding address, Email: burkhard.koenig@chemie.uni-regensburg.de
Emission Spectroscopy
Luminescence intensity and lifetime measurements were performed with aqueous buffered solution (HEPES 25 mmol, pH = 7.4) in 1 cm quartz cuvettes (Hellma) and recorded on a Varian ‘Cary Eclipse’ fluorescence spectrophotometer with temperature control.

5

Dynamic light scattering
Photon correlation spectroscopy (PCS) measurements were performed on a Malvern Zetasizer 3000 at 25°C using 1cm disposable polystyrene fluorescence cuvettes (VWR). Three subsequent measurements of 60 s each were performed for each sample. Data analysis was performed using the 10 Malvern PCS software.

Synthetic Scheme for amphiphilic Tb(III) complex

Scheme S1: Synthesis of Tb-1. (a) DCM, (Boc)₂O, NEt₃ [quantitative yield]; (b) DMF, 1-bromooctadecane, NaH [Yield: 93%]; (c) DCM, trifluoroacetic acid [Yield: 95%]; (d) DMF, CHCl₃, 40°C, 24h [Yield: 55%]; (e) CH₃OH, Tb(CF₃SO₃), 24h [Yield: 98%]
Experimental Section

Synthesis of compound 1-Boc: To a yellow suspension of tryptamine (1.00 g, 6.24 mmol) in 1, 4-dioxane (5 mL) was added Et3N (1.80 mL, 12.9 mmol). A solution of (Boc)2O (1.50 g, 6.87 mmol) in 1,4-dioxane (5 mL) then was added to the reaction mixture. This mixture was stirred for 1 h and the resulting yellow solution was concentrated to dryness under reduced pressure. The crude residue was purified by column chromatography on silica gel (30% ethylacetate in petrolether) to give the desired 1-Boc amine as an amorphous white solid (yield: quantitative).

\[^1H \text{NMR}\ (300 \text{ MHz, CDCl}_3) = 1.54\ (s, 9H), 3.00\ (t, 2H), 3.53\ (d, 2H), 4.85\ (br, s, 1H), 6.97\ (s, 1H), 7.15-7.28\ (m, 1H), 7.37\ (d, 1H), 7.65\ (d, 1H), 8.68\ (br, 1H) \text{ ppm} \]

\[^{13}C \text{NMR}\ (75 \text{ MHz, CDCl}_3) = 14.29, 21.16, 25.86, 28.57, 41.10, 60.60, 67.12, 111.45, 112.73, 118.80, 119.28, 121.69, 122.37, 127.44, 136.56, 156.33, 171.49 \text{ ppm} \]

Synthesis of compound 2: To a stirred suspension of NaH (60% dispersion in mineral oil, 0.05g, 2.37mmol) in THF (5mL), was added a solution of 1-Boc (0.50 g, 1.97mmol) in THF (5mL). After stirring at room temperature for 10 min, 1-bromooctadecane (0.76g, 2.37mmol) was added, and stirring was continued for 3h. Water was then added, and the mixture was extracted with ethylacetate. The organic layer was washed with brine, dried over MgSO\(_4\), and concentrated under vacuum. The residue was chromatographed on silica gel, eluting with 10% ethylacetate in petrolether to give 2-Boc as an amorphous solid (yield: 93%).

\[^1H \text{NMR}\ (300 \text{ MHz, CDCl}_3) = 0.93\ (t, 3H), 1.30\ (s, 28H), 1.48\ (s, 9H), 1.86\ (t, 2H), 2.98\ (t, 2H), 3.50\ (t, 2H), 4.08\ (2H), 6.96\ (s, 1H), 7.10-7.16\ (m, 1H), 7.21-7.27\ (m, 1H), 7.33\ (d, 1H), 7.62(d, 1H) \text{ ppm} \]

\[^{13}C \text{NMR}\ (75 \text{ MHz, CDCl}_3) = 14.20, 22.77, 25.81, 27.12, 28.25, 28.85, 29.53, 29.57, 32.00, 44.96, 65.84, 109.34, 111.50, 118.73, 121.47, 125.69, 127.93, 136.42, 155.93, 161.00, 177.52 \text{ ppm} \]

Synthesis of compound 2-H: Compound 2 (0.54g, 1.78mmol) was dissolved in dichloromethane (5mL). Trifluoroacetic acid (2ml 24.9mmol) was added and the solution was stirred for 6h. The solvent was then evaporated of under vacuum pressure. The colourless oil obtained, which is a trifluoroacetate salt was then dissolved in methanol: water mixture (1:1) and passed through basic ion exchange resin. The solvent was removed and the compound 2 was recovered as an amorphous white solid (yield: 95%).

\[^1H \text{NMR}\ (300 \text{ MHz, CDCl}_3) = 0.82\ (t, 3H), 1.20\ (s, 28H), 1.68\ (t, 2H), 2.86-2.96\ (m, 4H), 3.96(t, 2H, 6.95-7.05\ (m, 3H), 7.20\ (d, 1H), 7.48(d, 1H) \text{ ppm} \]

\[^{13}C \text{NMR}\ (75 \text{ MHz, CDCl}_3) =14.59, 23.81, 27.59, 34.96, 44.96, 65.84, 109.34, 111.50, 118.73, 121.47, 125.69, 127.93, 136.42, 155.93, 161.00, 177.52 \text{ ppm} \]

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2012
Synthesis of compound 4: Diethylenetriaminepentaacetic dianhydride (1) (0.12 g, 0.35 mmol) was dissolved in 5 mL of dry DMF. Compound 2 (0.29 g, 0.69 mmol) was dissolved in 5 mL of dry chloroform; added drop wise to the solution and the mixture was left to stir at 40 °C for 24 h. On cooling to room temperature, a precipitate was formed, which was collected. The white solid was stirred in water at ~ 80 °C for one hour, isolated, stirred in diethyl ether for one hour and isolated. The crude product was recrystallised from 50:50 chloroform:methanol. On cooling a white solid was formed, which was isolated by filtration, washed with diethyl ether and dried under vacuum (yield: 55%).

\[^1H \text{NMR} (400 \text{ MHz, CD}_3\text{OD:CDCl}_3= 1:1) = 0.84 (t, 6H), 1.22 (s, 60H), 1.69 (t, 4H), 2.89-2.99 (m, 12H), 3.33-3.47 (m, 18H), 3.95 (t, 4H), 6.88(s, 2H), 6.99(m, 2H), 7.09(t, 2H), 7.22(d, 2H), 7.52(d, 2H) \text{ppm} \]

\[^{13}C \text{NMR} (100 \text{ MHz, CD}_3\text{OD:CDCl}_3= 1:1) = 14.49, 23.21, 27.29, 28.01, 30.34, 31.12, 32.98, 42.02, 47.04, 50.10, 53.33, 55.08, 56.72, 58.59, 110.59, 111.34, 119.87, 122.35, 127.04, 129.01, 138.24 \text{ppm} \]

Synthesis of compound Tb-1: Compound 4 (0.1 g, 0.08 mmol) was dissolved in approximately 10 mL of a hot 1:1 CHCl₃/CH₃OH mixture. Tb(CF₃SO₃)₃ (0.05 g, 0.09 mmol), dissolved in 2 mL CH₃OH, was added and the mixture was stirred at 50 °C for 8 hours. The solvent was removed under vacuum and the white solid obtained was washed with water and dried (yield: 98%).

\[\text{MS (EI MS)} m/z = 1183.1 [M^+] (\text{Calc.} = 1182.7) \]

Preparation of LNTs

LNT, vesicular solutions were prepared by using the previously reported film hydration method. According to that a 2 mM solution of phospholipid with 10% Tb complex in dichloromethane was evaporated by a stream of air. An appropriate amount of buffered aqueous solution was added to get a 2mM solution. This solution was then heated around the phase transition temperature of the constituent phospholipid to yield a cloudy self-assembled vesicular solution. This was then extruded through definite filters (100nm) while hot to yield a unilamellar vesicular solution. The average sizes of the vesicular solutions were measured by dynamic light scattering (DLS). All the intensity and lifetime based measurements were carried out by using a diluted vesicular solution with 5 µM conc. of Tb complex.
Supporting Data

1H and 13C NMR of the synthesised compounds:

1H NMR of compound 2 (300MHz, CDCl$_3$)

13C NMR of compound 2 (75MHz, CDCl$_3$)
1H NMR of compound 4 (400MHz, CD$_3$OD:CDCl$_3$= 1:1)

Excitation and Emission Spectra:

![Excitation and emission spectra](image)

Fig. S-1 Excitation and emission spectra of LNT [excitation spectra: Tb(III) complex (5%)+DSPC) vesicle at 25°C, conc. of Tb(III) = 5 x 10$^{-6}$ M; emission spectra: (a) [Tb(III) complex (5%)+DSPC] vesicle at 25°C, conc. of Tb(III) = 5 x 10$^{-6}$ M, (b) [Tb(III) complex (5%)+DOPC] vesicle at 25°C, conc. of Tb(III) = 5 x 10$^{-6}$ M, (c) Tb(III) complex at 25°C, conc. of Tb(III) = 1 x 10$^{-4}$ M]
Temperature dependent emission intensity and lifetime measurements:

Fig. S-2 Photograph of change in emission intensity of LNT 2 (conc. of vesicular solution = 2mM, conc. of Tb(III) = 1 x 10^{-4} M) with temperature. Phosphorescence was recorded at different temperature by using a UV table (λ_{ex} = 315 nm)

Fig. S-3. Photographs of luminescent membranes at different temperature spread on a glass surface. The letters were written on a glass surface by using a solution of LNT 1 (2mM). After drying with blowing air the phosphorescence of the surface was recorded at different temperatures by using a UV table (λ_{ex} = 315 nm)
Fig. S-4: [Left] Temperature dependence of emission intensity measurements for LNT2 (conc. of Tb(III) = 5 x 10^{-6} M)

LNT2 at 0°C
\[\lambda_{ex} = 285 \text{ nm} \]
\[\lambda_{em} = 545 \text{ nm} \]
\[\tau = 1.7 \text{ ms (± 0.003)} \]

Fig. S-5: Luminescence decay vs. Time plot for LNT2 at 0°C

Fig. S-6: Change in lifetime (± s.d.) (ms) with change in temperature [left: LNT4, right: LNT2]
Types of buffer, pH and salt concentration dependent studies:

Fig. S-7: Change in intensity of LNT3 with change in temperature in different buffer, at different pH and salt concentrations (changes at 545 nm wavelength are shown)

Fig S-8: Effect of pH on change in intensity of LNT3 with change in temperature (changes at 545 nm wavelength are shown)
Emission Intensity based measurements in cell culture medium

Fig S-9: Change in luminescence with change in temperature for LNT3 in cell culture medium (DMEM, 10% FCS)

Change in intensity in temperature range 34-43°C

Fig S-10: Applicability of LNT2 in 37-40°C, the most important range for human body (changes at 545 nm emission wavelength are shown)
Dynamic light scattering measurements:

<table>
<thead>
<tr>
<th></th>
<th>Diam. (nm)</th>
<th>% Intensity</th>
<th>Width (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-Average (d.nm):</td>
<td>95.42</td>
<td>98.8</td>
<td>32.84</td>
</tr>
<tr>
<td>Pdi:</td>
<td>0.212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept:</td>
<td>0.919</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1:</td>
<td>89.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 2:</td>
<td>5384</td>
<td>1.1</td>
<td>320.2</td>
</tr>
<tr>
<td>Peak 3:</td>
<td>0.000</td>
<td>0.0</td>
<td>0.000</td>
</tr>
<tr>
<td>Result quality</td>
<td>Good</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. S-11: Dynamic light scattering measurements for LNT3

<table>
<thead>
<tr>
<th></th>
<th>Diam. (nm)</th>
<th>% Intensity</th>
<th>Width (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-Average (d.nm):</td>
<td>89.86</td>
<td>100.0</td>
<td>35.07</td>
</tr>
<tr>
<td>Pdi:</td>
<td>0.096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept:</td>
<td>0.912</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1:</td>
<td>100.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 2:</td>
<td>0.000</td>
<td>0.0</td>
<td>0.000</td>
</tr>
<tr>
<td>Peak 3:</td>
<td>0.000</td>
<td>0.0</td>
<td>0.000</td>
</tr>
<tr>
<td>Result quality</td>
<td>Good</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. S-12: Dynamic light scattering measurements for LNT4