A heteropentanuclear oxalato-bridged \([\text{Re}^{IV}\text{Gd}^{III}]\) complex: synthesis, crystal structure and magnetic properties

José Martínez-Lillo,*, Laura Cañadillas-Delgado,† Joan Cano,*,c Francesc Lloret,*, Miguel Julve* and Juan Faus*†

a) Departament de Química Inorgànica/Instituto de Ciencia Molecular, Facultat de Química de la Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain. E-mails: juan.faus@uv.es, lillo@uv.es
b) Instituto de Ciencia de Materiales de Aragón. CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12 E-50009 Zaragoza, Spain / Institut Laue Langevin, 6 Rue Jules Horowitz, B.P. 156, 38042 Grenoble, Cedex 9, France. Current address: Centro Universitario de la Defensa, Academia General Militar. Ctr. Huesca s/n, 50090 Zaragoza, Spain.
c) Fundació General de la Universitat de València (FGUV), Universitat de València, Valencia, Spain.

Preparation of compound 1.

All starting chemicals and solvents were purchased from commercial sources and used without further purification. The mononuclear precursor (NBu4)2[ReBr4(ox)] was prepared by following the procedure described for (PPh4)2[ReBr4(ox)] (PPh4+ = tetraphenylphosphonium cation) by using NBu4Cl instead of PPh4Cl as the precipitating agent (See Ref. 7c from the main text). Compound 1 was prepared by pouring a solution of 107.9 mg (0.1 mmol) of (NBu4)2[ReBr4(ox)] in a 2-propanol/MeCN (4:1, v/v, 25 mL) mixture into another one formed by 8.6 mg (0.025 mmol) of Gd(NO3)3·6H2O in 2-propanol (10 mL).

The resulting green–yellowish solution was allowed to evaporate at room temperature. X-ray suitable yellow crystals of 1 were grown after three weeks. They were filtered off and washed with diethyl ether. Yield: ca. 43%. Found: C, 28.2; H, 4.8; N, 1.9. Calc. for C88H184Br16N5O18GdRe4 (1): C, 28.0; H, 4.9; N, 1.9%. The 4:1 (Re:Gd) molar ratio in 1 was determined by X-ray microanalysis performed on a microcrystalline sample and by using a Philips XL-30 scanning electron microscope (SEM) equipped with an X-ray microanalysis system from the Central Service for the Support to Experimental Research (SCSIE) of the University of Valencia. IR (KBr pellet / cm\(^{-1}\)): bands associated to the oxalato ligand appear at 1700sh, 1682s, 1667vs (\(\nu_{\text{asCO}}\)) and 807s (\(\delta_{\text{OCO}}\)). Compound 1 is soluble at room temperature in common organic solvents such as acetone, acetonitrile and \(N,N'\)-dimethylformamide.
Figure S1. A view along the crystallographic b axis of the packing in 1 showing the arrangement of the $[\text{Gd} \{\text{ReBr}_4(\mu-\text{ox})\}_4(H_2O)]^5$ anions (polyhedra) and NBu$_4^+$ cations (sticks). Solvent H$_2$O molecules have been omitted for clarity.

Figure S2. (a) Shortest intermolecular Br···Br separation between pentanuclear $[\text{Gd} \{\text{ReBr}_4(\mu-\text{ox})\}_4(H_2O)]^5$ units. (b) View of a fragment of packing in 1 showing the arrangement of three chains of anions through the shortest intermolecular Br···Br interaction (dashed lines).
Figure S3. Field dependence of the magnetization at 2.0 K for 1 (the solid line is an eye guide).