Electronic Supplementary Information for

"Nonclassical oxygen atom transfer reactions of oxomolybdenum(VI) bis(catecholate)"

Travis Marshall-Roth, Sean C. Liebscher, Karl Rickert, Nicholas J. Seewald, Allen G. Oliver and Seth N. Brown*

251 Nieuwland Science Hall, Department of Chemistry and Biochemistry University of Notre Dame, Notre Dame, IN 46556-5670 USA

Table of Contents:

General procedures		S2
Preparation and characterization of MoO(3,5-DBCat) ₂ (Opic)		S2
Measurement of kinetics of nonclassical OAT reactions of MoO(3,5-DBCat) ₂ (ONC ₅ H ₄ R)		S3
Fig. S1.	VT NMR of MoO(3,5-DBCat) ₂ (Opic) (CH ₂ Cl ₂ , -90 °C to 10 °C)	S4
Fig. S2.	VT NMR of MoO(3,5-DBCat) ₂ (Opic) in the presence of excess Opic (toluene- d_8 ,	S5
	23 °C to 65 °C)	
Fig. S3.	Dependence of k_{obs} for Opic exchange in MoO(3,5-DBCat) ₂ (Opic) on [Opic]	S6
Fig. S4.	Eyring plot for Opic exchange in MoO(3,5-DBCat) ₂ (Opic)	S6
Fig. S5.	Dependence of k_{obs} for MoO(3,5-DBCat) ₂ (Opy) oxidation on [py]	S7
Fig. S6.	Eyring plot for MoO(3,5-DBCat) ₂ (Opy) oxidation	S7
Reference	References	

S 2

General Procedures. When necessary, CH₂Cl₂ was dried over molecular sieves, followed by CaH₂. Toluene was dried over sodium metal. Solvents were vacuum transferred from their drying agents and stored in an inert-atmosphere glovebox before use. Deuterated solvents (Cambridge Isotope Laboratories) were dried in the same manner as their protio analogues. Dioxomolybdenum bis(acetylacetonate) (Strem) and 4-picoline-N-oxide, 4cyanopyridine-N-oxide, and 4-chloropyridine-N-oxide (Aldrich) were used as received. Pyridine-N-oxide (Acros) and 4-methoxy- and 4-dimethylaminopyridine-N-oxide (Aldrich) were sublimed before use. Mo₂O₂(3,5-DBCat)₄ was prepared by a literature method.¹ Routine ¹H and ¹³C{¹H} NMR spectra (referenced to tetramethylsilane) were obtained on a Varian VXR-300 spectrometer. IR spectra were measured on a Jasco-6300 FT-IR spectrometer as powders on ATR plates and are reported in cm⁻¹. UV-visible spectra were measured using toluene solutions in 1-cm quartz cuvettes with a Beckman DU-7500 diode array spectrophotometer. The temperature of the solutions was regulated by circulation of ethylene glycol from a thermostatted bath through the metal cell block; temperatures were measured using a thermocouple inserted in a cuvette in the cell block. Elemental analyses were performed by M-H-W Laboratories (Phoenix, AZ).

Oxobis(3,5-di-*tert*-butylcatecholato)(4-picoline-*N*-oxide)molybdenum(VI), MoO(3,5-DBCat)₂(Opic). In the drybox, MoO₂(acac)₂ (Strem, 1.0064 g, 3.086 mmol), 3,5-di-*tert*butylcatechol (1.42 g, 6.387 mmol, 2.07 equiv), and picoline-*N*-oxide (0.3450 g, 3.164 mmol, 1.02 equiv) are dissolved in CH_2Cl_2 (8 mL) in a 50-mL round-bottom flask. The solution is layered with 16 mL cyclohexane in the air and allowed to stand 18 h at room temperature. The mixture is evaporated to dryness, the residue washed with cyclohexane (2 × 5 ml) and then recrystallized in a minimum of benzene and cyclohexane. The dark purple solid is isolated by vacuum filtration, washed with 10 mL cyclohexane, and air-dried 15 min to yield 2.082 g
$$\begin{split} \text{MoO}(3,5\text{-}\text{DBCat})_2(\text{Opic}) &(85\%). \ ^1\text{H NMR (CDCl}_3, 20 \ ^\circ\text{C}): \ \delta \ 1.24, 1.26 \ (\text{s}, 18\text{H each}, '\text{Bu}), 2.55 \\ &(\text{s}, 3\text{H}, CH_3), 6.59 \ (\text{sl br}, 2\text{H}, \text{DBCat Ar}H), 6.65 \ (\text{d}, 2 \text{ Hz}, 2\text{H}, \text{DBCat Ar}H), 7.69 \ (\text{d}, 7 \text{ Hz}, 2\text{H}, \text{Opic } 3, 5\text{-}\text{H}), 8.69 \ (\text{d}, 7 \text{ Hz}, 2\text{H}, \text{Opic } 2, 6\text{-}\text{H}). \ ^{13}\text{C}\{^1\text{H}\} \text{ NMR (CDCl}_3, 20 \ ^\circ\text{C}): \ \delta \ 21.58 \ (\text{Opic} \ CH_3), 29.81, 31.89 \ (\text{C}(C\text{H}_3)_3), 34.69, 34.79 \ (C(C\text{H}_3)_3), 109.78, 116.66 \ (\text{br}), 127.59, 136.08 \ (\text{br}), 140.72, 147.96 \ (\text{v br}), 151.05, 156.75 \ (\text{br}), 161.20 \ (\text{br}). \ \text{IR}: \ 2956 \ (\text{s}), 2906 \ (\text{m}), 2869 \ (\text{m}), 1738 \ (\text{br}, \text{m}), 1582 \ (\text{m}), 1495 \ (\text{m}), 1411 \ (\text{m}), 1387 \ (\text{w}), 1362 \ (\text{m}), 1312 \ (\text{m}), 1284 \ (\text{m}), 1255 \ (\text{w}), 1233 \ (\text{s}), 1198 \ (\text{s}, \text{v}_{\text{N-O}}), 1172 \ (\text{w}), 1099 \ (\text{m}), 1028 \ (\text{m}), 997 \ (\text{w}), 980 \ (\text{m}), 923 \ (\text{s}, \text{v}_{\text{Mo=O}}), 853 \ (\text{s}), 831 \ (\text{s}), 815 \ (\text{w}), 765 \ (\text{w}), 753 \ (\text{m}), 665 \ (\text{w}), 636 \ (\text{s}), 586 \ (\text{m}). \ \text{Anal. Calcd for} \ C_{34}\text{H}_{47}\text{MoNO}_6: \ \text{C}, 61.72; \ \text{H}, 7.16; \ \text{N}, 2.12. \ \text{Obsd: C}, 62.17; \ \text{H}, 7.32; \ \text{N}, 2.15. \end{split}$$

Measurement of kinetics of nonclassical OAT reactions of MoO(3,5-

DBCat)₂(**ONC**₅**H**₄**R**). A solution of the desired pyridine-*N*-oxide dissolved in 2.0 mL toluene (5 - $50 \times 10^{-3} \text{ mol } \text{L}^{-1}$) was placed in a cuvette sealed with a silicone septum and allowed to thermally equilibrate in the UV-Visible spectrophotometer. The reaction was initiated by injecting 0.100 mL of a solution of Mo₂O₂(3,5-DBCat)₄ into the cuvette to give a final molybdenum concentration of 0.5 - $1.0 \times 10^{-4} \text{ mol } \text{L}^{-1}$. Absorbances at 500 and 800 nm were monitored and gave satisfactory fits to exponential decay over at least four half-lives.

Fig. S1. ¹H NMR (500 MHz, CD_2Cl_2 , aromatic region) of MoO(3,5-DBCat)₂(Opic) as a function of temperature.

Fig. S2. ¹H NMR (500 MHz, toluene- d_8 , aromatic region) of MoO(3,5-DBCat)₂(Opic) in the presence of free Opic (0.0344 mol L⁻¹).

Fig. S3. Dependence of k_{obs} for exchange of free and bound Opic in MoO(3,5-DBCat)₂(Opic) on the concentration of free Opic (toluene- d_8). Values of k_{obs} were determined by NMR lineshape simulation using the program *g*NMR.²

Fig. S4. Eyring plot for exchange of bound Opic in $MoO(3,5-DBCat)_2(Opic)$ with free Opic (toluene- d_8).

Fig. S5. Dependence of k_{obs} for oxidation of MoO(3,5-DBCat)₂(Opy) on [py] (toluene, 85 °C, [Opy] = 0.050 mol L⁻¹).

Fig. S6. Eyring plot for oxidation of MoO(3,5-DBCat)₂(Opy) in toluene.

References

- (S1) R. M. Buchanan and C. G. Pierpont, *Inorg. Chem.*, 1979, **18**, 1616-1620.
- (S2) P. H. M. Budzelaar, *gNMR*, v. 3.5.6., Cherwell Scientific Publishing, 1996.