Electronic supplementary information for the manuscript

“Arbuzov chemistry with chlorofullerene C\textsubscript{60}Cl\textsubscript{6}: a powerful method for selective synthesis of highly functionalized [60]fullerene derivatives”

Anastasiya A. Yurkova,a Ekaterina A. Khakina,a Sergey I. Troyanov,b Alexander Chernyak,c Lyubov Shmygleva,a Alexander A. Peregudov,d Vyacheslav M. Martynenko,a Yury A. Dobrovolskiy,a and Pavel A. Troshin*a

Table of contents:

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental procedures</td>
<td>4</td>
</tr>
<tr>
<td>Selected spectroscopic data</td>
<td>7</td>
</tr>
<tr>
<td>X-ray crystallography for 1a</td>
<td>10</td>
</tr>
<tr>
<td>Fig. S1. ESI MS spectrum of compound 1a</td>
<td>11</td>
</tr>
<tr>
<td>Fig. S2. 1H NMR spectrum of compound 1a</td>
<td>11</td>
</tr>
<tr>
<td>Fig. S3. 1H{31P} NMR spectrum of compound 1a</td>
<td>12</td>
</tr>
<tr>
<td>Fig. S4. 31P NMR spectrum of compound 1a</td>
<td>12</td>
</tr>
<tr>
<td>Fig. S5. 31P{1H} NMR spectrum of compound 1a</td>
<td>13</td>
</tr>
<tr>
<td>Fig. S6. High-field part of the 13C NMR spectrum of compound 1a</td>
<td>13</td>
</tr>
<tr>
<td>Fig. S7. Low-field part of the 13C NMR spectrum of compound 1a</td>
<td>14</td>
</tr>
<tr>
<td>Fig. S8. H-H COSY NMR spectrum of compound 1a</td>
<td>14</td>
</tr>
<tr>
<td>Fig. S9. H-P HMBC NMR spectrum of compound 1a</td>
<td>15</td>
</tr>
<tr>
<td>Fig. S10. H-C HSQC NMR spectrum of compound 1a</td>
<td>15</td>
</tr>
<tr>
<td>Fig. S11. ESI mass spectrum of compound 1b</td>
<td>16</td>
</tr>
<tr>
<td>Fig. S12. 1H NMR spectrum of compound 1b</td>
<td>16</td>
</tr>
<tr>
<td>Fig. S13. 31P{1H} NMR spectrum of compound 1b</td>
<td>17</td>
</tr>
<tr>
<td>Fig. S14. High-field part of the 13C NMR spectrum of compound 1b</td>
<td>17</td>
</tr>
<tr>
<td>Fig. S15. Low-field part of the 13C NMR spectrum of compound 1b</td>
<td>18</td>
</tr>
<tr>
<td>Fig. S16. H-P HMBC NMR spectrum of compound 1b</td>
<td>18</td>
</tr>
<tr>
<td>Fig. S17. H-C HSQC NMR spectrum of compound 1b</td>
<td>19</td>
</tr>
<tr>
<td>Fig. S18. H-C HMBC NMR spectrum of compound 1b</td>
<td>19</td>
</tr>
<tr>
<td>Fig. S19. ESI mass spectrum of compound 1c</td>
<td>20</td>
</tr>
<tr>
<td>Fig. S20. 1H NMR spectrum of compound 1c</td>
<td>20</td>
</tr>
</tbody>
</table>
Fig. S21. 1H-31P NMR spectrum of compound 1c
Fig. S22. 31P NMR spectrum of compound 1c
Fig. S23. 31P-1H NMR spectrum of compound 1c
Fig. S24. High-field part of the 13C NMR spectrum of compound 1c
Fig. S25. A part of the high-field part of the 13C NMR spectrum of compound 1c
Fig. S26. Low-field part of the 13C NMR spectrum of compound 1c
Fig. S27. H-H COSY NMR spectrum of compound 1c
Fig. S28. H-P HMBC NMR spectrum of compound 1c
Fig. S29. 31P-31P COSY NMR spectrum of compound 1c
Fig. S30. ESI mass spectrum of compound 1d
Fig. S31. 1H NMR spectrum of compound 1d
Fig. S32. 1H-31P NMR spectrum of compound 1d
Fig. S33. 31P NMR spectrum of compound 1d
Fig. S34. 31P-1H NMR spectrum of compound 1d
Fig. S35. High-field part of the 13C NMR spectrum of compound 1d
Fig. S36. Low-field part of the 13C NMR spectrum of compound 1d
Fig. S37. H-H COSY NMR spectrum of compound 1d
Fig. S38. H-P HMBC NMR spectrum of compound 1d
Fig. S39. H-C HSQC NMR spectrum of compound 1d
Fig. S40. ESI MS spectrum of compound 2b
Fig. S41. 1H NMR spectrum of compound 2b
Fig. S42. 1H-31P NMR spectrum of compound 2b
Fig. S43. 31P NMR spectrum of compound 2b
Fig. S44. 31P-1H NMR spectrum of compound 2b
Fig. S45. High-field part of the 13C NMR spectrum of compound 2b
Fig. S46. Low-field part of the 13C NMR spectrum of compound 2b
Fig. S47. H-H COSY NMR spectrum of compound 2b
Fig. S48. H-H NOESY NMR spectrum of compound 2b
Fig. S49. H-P HMBC NMR spectrum of compound 2b
Fig. S50. H-C HSQC NMR spectrum of compound 2b
Fig. S51. H-C HMBC NMR spectrum of compound 2b
Fig. S52. ESI MS spectrum of compound 3c (m/z=1132 corresponds to the [M+CN]$^-$ anion)
Fig. S53. 1H NMR spectrum of compound 3c
Fig. S54. 31P NMR spectrum of compound 3c
Fig. S55. High-field part of the 13C NMR spectrum of compound 3c
Fig. S56. Low-field part of the 13C NMR spectrum of compound 3c
Fig. S57. H-H COSY NMR spectrum of compound 3c
Fig. S58. H-C HSQC NMR spectrum of compound 3c
Fig. S59. ESI mass spectrum of compound 4
Fig. S60. 1H{31P} NMR spectrum of compound 4
Fig. S61. 31P NMR spectrum of compound 4
Fig. S62. Low field part of the 13C NMR spectrum of compound 4
Fig. S63. High field part of the 13C NMR spectrum of compound 4
Fig. S64. Optical absorption spectra of compounds 1a-d and 4
Fig. S65. Optical absorption spectra of compounds 2b and 3c
Fig. S66. Cole-cole diagram of impedance for compound 4 measured under different relative humidity values. Inset shows impedance locus for compound 4 under RH=15 %.
Fig. S67. Temperature dependence of the specific conductivity of compound 4 under different relative humidity values/
Fig. S68. TG/DSC decomposition curves for compound 4 along with the mass spectrometric profiles confirming liberation of water at 120-220 ℃
Experimental procedures

1. **Synthesis of C₆₀[P(O)(OEt)₂]₅H (1a)**

Chlorofullerene C₆₀Cl₆ (933 mg, 1 mmol) was dissolved in 800 mL of toluene under stirring in air for 1 h. Triethyl phosphite (1.66 g, 10 mmol) was added in one portion to the chlorofullerene solution. The reaction mixture changed the color from bright red to dark brown (immediately after addition of triethyl phosphite) and then to wine red (within 5-10 minutes after the triethyl phosphite addition). The course of the reaction was monitored by HPLC (C18 reversed phase, Phenomenex Luna C18 5 um). Typically, the reaction was accomplished in 10-15 minutes after addition of triethyl phosphite. It was also observed that larger excess of the reagent (up to 50 mmol) improves the selectivity of the reaction with respect to the formation of the target C₆₀[P(O)(OEt)₂]₅H. The reaction mixture was concentrated at the rotary evaporator. The viscous red-orange oily residue was dissolved in deionized water and the resulting aqueous solution was filtered through a tight paper filter (“blue tape”). It seems that byproducts C₆₀[P(O)(OEt)₂]ₙHₘ (n=3 and m=1; n=2 and m=0; n=1 and m=1) formed in small amounts are not soluble in water and can be separated by filtration procedure. The aqueous filtrate was extracted several times with ethyl acetate until inorganic phase became almost colorless. The combined organic extracts were dried over anhydrous MgSO₄ and concentrated to dryness at the rotary evaporator. The obtained red glassy residue was further dried in vacuum (10⁻³ mbar) at room temperature until the sample reached a constant weight.

Alternatively, the reaction mixture obtained after the addition of triethyl phosphite to C₆₀Cl₆ was poured on the top of silica gel (Acros Organics, 40-60 um, 60 A). Following elution with toluene-ethanol mixtures (toluene/EtOH v/v ratio was gradually changed from 10:1 to 1:10) produced trace amounts of brown and reddish byproducts followed by bright orange-red fraction of the target C₆₀[P(O)(OEt)₂]₅H. The solution of C₆₀[P(O)(OEt)₂]₅H eluted from the column was
concentrated to dryness at the rotary evaporator and then further dried in vacuum (10^{-3} mbar) at room temperature until the sample reached a constant weight. The isolated yield of 1a was 1.125-1.294 g (80-92%).

2. Synthesis of 1b-d, 2b and 3c

Chlorofullerene C_{60}Cl_6 (933 mg, 1 mmol) was dissolved in 800 mL of toluene under stirring in air for 1 h. A corresponding trialkyl phosphite (10-50 mmol) was added in one portion to the chlorofullerene solution. The reaction mixture changed the color from bright red to dark brown (immediately after addition of trialkyl phosphite) and then to wine red (within 10-120 minutes after the trialkyl phosphite addition). To ensure completion of the reaction, the reagent mixtures were stirred for 2-3 hrs or left overnight at room temperature. Afterwards, the reaction mixtures were poured on the top of silica gel (Acros Organics, 40-60 um, 60 A) column. Following elution with toluene-ethanol mixtures (toluene/EtOH v/v ratio was gradually changed from 99:1 to 1:1) produced trace amounts of brown (3c and similar compounds) and reddish (2b and similar compounds) byproducts followed by bright orange-red fraction of the target C_{60}[P(O)(OR)_2]_5H. The solution of C_{60}[P(O)(OR)_2]_5H eluted from the column was concentrated to dryness at the rotary evaporator and then further dried in vacuum (10^{-3} mbar) at room temperature until the sample reached a constant weight. The isolated yields of 1b-d were 75-94%.

3. Synthesis of 4

Compound 1a (1.4 g, 1 mmol) was dissolved in anhydrous dichloromethane in argon atmosphere. The reagent TMSBr (4.59 g, 30 mmol) was added in one portion. The resulting mixture was heated at reflux for 80 hrs and then was concentrated to dryness at the rotary evaporator. The oily residue was dissolved in methanol-toluene mixture (1:1 v/v). Solid cesium fluoride (800 mg) was added to
the solution and the mixture was sonicated for 30 min. The precipitated cesium salt of 4 was separated by centrifugation, dissolved in deionized water and precipitated with addition of 40 ml of 8M hydrochloric acid. The precipitate of 4 was separated by centrifugation, dissolved in water and concentrated to dryness at the rotary evaporator. The dissolving-concentration cycle was repeated four times to ensure complete removal of hydrochloric acid. The obtained residue was dried in vacuum (10⁻³ mbar) at room temperature until the sample reached a constant weight. The isolated yield of 4 was 50-65%.

4. Proton conductivity measurements for compound 4

The powder of 4 was molded in a pellet with the diameter of 5 mm and the thickness of 0.6 mm under the pressure of 30 MPa at room temperature. The pellet was sandwiched between two carbon electrodes to form symmetrical C/compound 4/C diode cell suitable for the measurements. The cell with the film of compound 4 was stored at a certain value of ambient humidity and at a certain temperature. The temperature control was provided by Huber CC2 Thermostat (± 0.1°C). The frequency response was obtained in the frequency range 1.0 Hz – 2.0 MHz using Z-2000 (LLS “Elins”) impedance meter. The frequency dependence of impedance was analyzed using a previously reported graphical analytical procedure [N.G. Bukun, A.E. Ukshe, E.A. Ukshe. *Russ. J. Electrochem.*, 1993, **29**, 146].
Selected spectroscopic data:

1a. 1H NMR (500 MHz, CDCl$_3$, δ, ppm): 1.28-1.38 (m, 30H), 4.19-4.28 (m, 2H), 4.28-4.44 (m, 18H), 5.57-5.65 (m, 1H).

31P NMR (202 MHz, CDCl$_3$, δ, ppm, J/Hz): 15.73-15.9 (m, 2P), 16.07-16.21 (m, 2P), 21.03 (t, 1P, 5J$_{P-P}$=4.4).

13C NMR (126 MHz, CDCl$_3$, δ, ppm): 16.41-16.45 (m, C$_{sp3}$ fullerene cage-H), 16.63-16.82 (m, C$_{sp3}$ fullerene cage-P, 1J$_{P-P}$=142.8), 54.73 (m, C$_{sp3}$ fullerene cage-H), 57.55 (d, C$_{sp3}$ fullerene cage-P, 1J$_{P-P}$=148.4), 59.92 (d, C$_{sp3}$ fullerene cage-P, 1J$_{P-P}$=151.2), 63.93-64.00 (m, C$_{sp3}$ fullerene cage-P, 1J$_{P-P}$=152.2), 64.27-64.33 (m, C$_{sp3}$ fullerene cage-P, 1J$_{P-P}$=152.2), 64.39-64.45 (m, C$_{sp3}$ fullerene cage-P, 1J$_{P-P}$=152.2), 64.60-64.66 (m, C$_{sp3}$ fullerene cage-P, 1J$_{P-P}$=152.2), 64.75 (m, C$_{sp3}$ fullerene cage-P, 1J$_{P-P}$=152.2), 64.89 (m, C$_{sp3}$ fullerene cage-P, 1J$_{P-P}$=152.2), 64.95 (m, C$_{sp3}$ fullerene cage-P, 1J$_{P-P}$=152.2), 138.69, 143.34, 143.36, 143.46, 144.04, 144.07, 144.47, 144.50, 144.57, 144.95, 145.00, 145.52, 145.54, 145.81, 146.75, 146.97, 147.06, 148.16, 148.23, 148.31, 148.39, 148.47, 148.74, 148.77, 149.10, 149.34, 150.83.

FTIR (KBr pellet, ν, cm$^{-1}$): 428 (VW), 448 (VW), 502 (W), 540 (M), 558 (S), 570 (M), 606 (M), 636 (S), 658 (VW), 744 (W), 758 (W), 772 (W), 790 (W), 862 (VW), 970 (S), 1018 (VS), 1048 (VS), 1098 (S), 1162 (M), 1200 (W), 1254 (S), 1368 (W), 1390 (M), 1418 (W), 1440 (W), 1460 (W), 1474 (W), 2338 (W), 2360 (W), 2864 (W), 2906 (M), 2928 (M), 2978 (M).

ESI MS: m/z=1405 ([M-H]$^-$). m.p.>250 $^\circ$C (with decomposition)

1b. 1H NMR (500 MHz, CD$_3$OD:CDCl$_3$ 4:1, δ, ppm): 1.28-1.40 (m, 30H), 1.43-1.53 (m, 30H), 5.00-5.07 (m, 4H), 5.07-5.16 (m, 4H), 5.16-5.22 (m, 2H).

31P{1H} NMR (202 MHz, CD$_3$OD:CDCl$_3$ 4:1, δ, ppm, J/Hz): 15.46 (d, 2P, 5J$_{P-P}$=24.4), 17.99 (t, 1P, 5J$_{P-P}$=3.8).

13C{1H} NMR (126 MHz, CD$_3$OD:CDCl$_3$ 4:1, δ, ppm, J/Hz): 24.34 (C$_{sp3}$ fullerene cage-H), 24.38 (C$_{sp3}$ fullerene cage-P, 1J$_{P-P}$=141.6), 58.83 (d, C$_{sp3}$ fullerene cage-P, 1J$_{P-P}$=151.2), 61.22 (d, C$_{sp3}$ fullerene cage-P, 1J$_{P-P}$=152.2), 74.28-74.34 (m, C$_{sp3}$ fullerene cage-P, 1J$_{P-P}$=152.2), 74.49-74.55 (m, C$_{sp3}$ fullerene cage-P, 1J$_{P-P}$=152.2), 74.89-74.96 (m, C$_{sp3}$ fullerene cage-P, 1J$_{P-P}$=152.2), 140.25, 143.96, 143.97, 144.32, 144.75, 144.76, 144.91, 145.27, 145.30, 145.65, 145.66, 145.73, 145.81, 146.58, 146.89, 147.75, 147.93, 148.02, 149.02, 149.07, 149.27, 149.33, 149.35, 149.60, 149.88, 149.94, 150.07, 151.76.

FTIR (KBr pellet, ν, cm$^{-1}$): 530 (W), 541 (M), 558 (M), 607 (M), 637 (M), 896 (W), 939 (M), 998 (VS), 1103 (M), 1143 (W), 1176 (W), 1250 (M), 1375 (W), 1386 (M), 1419 (VW), 1461 (W), 2851 (W), 2928 (M), 2979 (M).

ESI MS: m/z=1548 ([M+H]$^+$). m.p.>250 $^\circ$C (with decomposition)

1c. 1H NMR (500 MHz, CDCl$_3$, δ, ppm): 0.80-0.90 (m, 30H), 1.23-1.41 (m, 20H), 1.58-1.74 (m, 20H), 4.14-4.36 (m, 20H), 5.62-5.67 (m, 1H).

31P{1H} NMR (202 MHz, CDCl$_3$, δ, ppm, J/Hz): 15.46 (d, 2P, 5J$_{P-P}$=25.2), 15.93 (dd, 2P, 5J$_{P-P}$=25.2, 5J$_{P-P}$=4.1), 20.49 (t, 1P, 5J$_{P-P}$=4.1).
\(^{13}\)C NMR (126 MHz, CDCl\(_3\), \(\delta\), ppm, J/Hz): 13.77 (CH\(_3\)), 13.85 (CH\(_3\)), 13.88 (CH\(_3\)), 18.80 (CH\(_2\)), 18.84 (CH\(_2\)), 32.74-32.78 (m, CH\(_2\)), 32.88-32.94 (m, CH\(_2\)), 33.00-33.05 (m, CH\(_2\)), 54.84 (C\(_{sp3}\) fullerene cage-H), 57.71 (d, C\(_{sp3}\) fullerene cage-P, \(^1\)J\(_{p,p}=142.7\) Hz), 58.48 (d, C\(_{sp3}\) fullerene cage-P, \(^1\)J\(_{p,p}=146.2\) Hz), 59.88 (d, C\(_{sp3}\) fullerene cage-P, \(^1\)J\(_{p,p}=146.5\) Hz), 68.03-68.07 (m, OCH\(_2\)), 68.20-68.37 (m, OCH\(_2\)), 68.43-68.49 (m, OCH\(_2\)), 138.84, 143.23, 143.25, 143.42, 143.96, 144.01, 144.45, 144.50, 144.59, 144.60, 144.88, 145.56, 145.65, 146.78, 146.98, 147.08, 148.16, 148.23, 148.35, 148.41, 148.46, 148.74, 148.76, 148.89, 149.15, 149.41, 150.60.

FTIR (KBr pellet, \(\nu\), cm\(^{-1}\)): 490 (M), 507 (M), 510 (M), 540 (M), 558 (M), 571 (M), 606 (M), 636 (M), 664 (VW)), 700 (W), 724 (W), 780 (W), 832 (W), 998 (VS), 1026 (VS), 1063 (S), 1119 (M), 1149 (M), 1233 (S), 1380 (W), 1461 (M), 2295 (W), 2348 (W), 2388 (W), 2871 (S), 2931 (S), 2959 (S).

ESI MS: \(m/z=1687 ([M-H])\). m.p.=127-129 °C.

\(^1\)H NMR (500 MHz, CDCl\(_3\), \(\delta\), ppm, J/Hz): 3.75-3.93 (m, 20H), 4.46-4.67 (m, 20H), 5.70-5.77 (m, 1H).

\(^{31}\)P\{\(^1\)H\} NMR (202 MHz, CDCl\(_3\), \(\delta\), ppm, J/Hz): 16.00 (d, 2P, \(^5\)J\(_{p,p}=26.0\) Hz), 16.55 (dd, 2P, \(^5\)J\(_{p,p}=26.0, \(^5\)J\(_{p,p}=4.9\) Hz), 21.04 (t, 1P, \(^5\)J\(_{p,p}=4.9\)).

\(^{13}\)C\{\(^1\)H\} NMR (126 MHz, CDCl\(_3\), \(\delta\), ppm, J/Hz): 23.82-23.89 (m, CH\(_3\)), 24.06-24.11 (m, CH\(_3\)), 24.22-24.56 (m, CH\(_3\)), 56.37 (C\(_{sp3}\) fullerene cage-H), 59.00 (d, C\(_{sp3}\) fullerene cage-P, \(^1\)J\(_{p,p}=152.6\) Hz), 60.87 (d, C\(_{sp3}\) fullerene cage-P, \(^1\)J\(_{p,p}=148.0\) Hz), 73.52-73.68 (m, C\(_H\)), 73.77-73.83 (m, C\(_H\)), 74.00-74.06.

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2012

This journal is © The Royal Society of Chemistry 2012
(m, CH), 74.14-74.20 (m, CH), 134.13, 134.71, 134.76, 136.27, 136.30, 137.05, 139.39, 140.98, 141.08, 141.57, 141.59, 141.83, 142.00, 142.74, 142.90, 143.86, 143.95, 144.33, 144.46, 144.70, 144.76, 144.86, 144.99, 145.17, 145.24, 145.31, 145.42, 145.64, 145.68, 145.71, 145.78, 145.99, 146.00, 146.02, 146.40, 146.61, 146.70, 146.76, 146.86, 147.08, 147.14, 147.31, 147.66, 147.73, 147.96, 148.22, 148.38, 149.13, 149.44, 149.47, 149.72, 150.16, 150.73, 154.49, 156.12.

FTIR (KBr pellet, v, cm⁻¹): 1010 (VS), 2924 (S), 2852 (M), 2956 (M), 566 (M), 1102 (M), 528 (M), 638 (M), 1458 (M), 1238 (M), 1176 (W), 1142 (W), 1380 (W), 468 (W), 2364 (W), 888 (W), 628 (W), 2350 (W), 764 (VW), 788 (VW).

ESI MS: m/z=1215 ([M-H]⁻). m.p.>250 °C (with decomposition)

3c.

1H NMR (600 MHz, CDCl₃, δ, ppm): 0.98-1.02 (m, 12H), 1.48-1.58 (m, 8H), 1.84-1.94 (m, 8H).

31P NMR (162 MHz, CDCl₃, δ, ppm): 14.40 (s, 2P).

13C NMR (150 MHz, CDCl₃, δ, ppm): 13.75 (C₃H₃), 13.78 (C₄H₃), 18.82 (C₅H₂), 18.85 (C₆H₂), 32.87-32.96 (m, C₇H₂), 61.94 (C₈p₃ fullerene cage-P), 62.02 (C₉p₃ fullerene cage-P), 62.99 (C₁₀p₃ fullerene cage-P), 63.07 (C₈p₃ fullerene cage-P), 68.45-68.55 (m, OCH₂), 137.51, 139.17, 139.56, 141.26, 142.00, 142.23, 142.50, 142.94, 143.11, 143.18, 143.29, 143.42, 143.46, 144.31, 144.46, 144.47, 144.57, 144.82, 144.84, 145.13, 145.48, 145.69, 145.74, 147.01, 147.31, 147.65, 147.70, 148.82, 149.75, 155.47.

FTIR (KBr pellet, v, cm⁻¹): 1024 (VS), 1060 (S), 2926 (S), 2956 (M), 528 (M), 638 (M), 1458 (M), 1238 (M), 1176 (W), 1142 (W), 1380 (W), 468 (W), 2364 (W), 888 (W), 628 (W), 2350 (W), 764 (VW), 788 (VW).

ESI MS: m/z=1132 ([M+CN]⁻). m.p.>250 °C (with decomposition)

4.

31P NMR (162 MHz, CDCl₃, δ, ppm): 14.40 (s, 2P).

13C NMR (150 MHz, CDCl₃, δ, ppm): 13.75 (C₃H₃), 13.78 (C₄H₃), 18.82 (C₅H₂), 18.85 (C₆H₂), 32.87-32.96 (m, C₇H₂), 61.94 (C₈p₃ fullerene cage-P), 62.02 (C₉p₃ fullerene cage-P), 62.99 (C₁₀p₃ fullerene cage-P), 63.07 (C₈p₃ fullerene cage-P), 68.45-68.55 (m, OCH₂), 137.51, 139.17, 139.56, 141.26, 142.00, 142.23, 142.50, 142.94, 143.11, 143.18, 143.29, 143.42, 143.46, 144.31, 144.46, 144.47, 144.57, 144.82, 144.84, 145.13, 145.48, 145.69, 145.74, 147.01, 147.31, 147.65, 147.70, 148.82, 149.75, 155.47.

FTIR (KBr pellet, v, cm⁻¹): 1024 (VS), 1060 (S), 2926 (S), 2956 (M), 528 (M), 638 (M), 1458 (M), 1238 (M), 1176 (W), 1142 (W), 1380 (W), 468 (W), 2364 (W), 888 (W), 628 (W), 2350 (W), 764 (VW), 788 (VW).

ESI MS: m/z=1125 ([M-H]⁻). m.p.>250 °C (with decomposition)

Electronic Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2012
X-ray crystallography for \(1a \cdot 0.19\text{H}_2\text{O}\)

Data collection for single crystal of \(1a \cdot 0.19\text{H}_2\text{O}\) (\(0.06 \times 0.02 \times 0.01 \text{mm}^3\)) was carried out with a MAR225 CCD detector at 100 K using synchrotron radiation at the BESSY storage ring, BL 14.2 (\(\lambda = 0.83774 \ \text{Å}\), PSF of the Free University of Berlin, Germany). The structure was solved using direct methods (SHELXS97) and refined against \(|F|^2\) with SHELXL97. Absorption correction was not applied. There are two crystallographically independent molecules of \(1a\) and a water molecule with the partial occupancy of 0.382. Each \(1a\) molecule show a disorder of phosphonate groups with the second components (10 – 13%) oriented in opposite directions respective to the phosphonate groups of the main components. Due to low abundances of the second components, only P and some O atoms were located and refined with isotropic thermal parameters. All other non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed into geometrically calculated positions and refined in the riding mode. Crystal data for \(1a \cdot 0.19\text{H}_2\text{O}\): \(M = 1410.48\), monoclinic, \(P2_1/n\), \(a = 20.628(1)\), \(b = 16.0821(7)\), \(c = 35.467(1)\) Å, \(\beta = 93.954(3)°\), \(V = 11740.6(8) \ \text{Å}^3\), \(Z = 8\), \(D_{\text{calc}} = 1.596 \ \text{g cm}^{-3}\). LS refinement with 30243 reflections and 1915 parameters yielded a conventional \(R_1 = 0.088\) for 24124 reflections with \(I > 2\sigma (I)\) and \(wR_2 = 0.223\) for all reflections. For more details see CCDC – (the number should be inserted!).
Fig. S1. ESI MS spectrum of compound 1a

Fig. S2. 1H NMR spectrum of compound 1a
Fig. S3. $^1H\{^{31}P\}$ NMR spectrum of compound 1a

Fig. S4. ^{31}P NMR spectrum of compound 1a
Fig. S5 $^{31}\text{P}\{1\text{H}\}$ NMR spectrum of compound 1a

Fig. S6. High-field part of the ^{13}C NMR spectrum of compound 1a
Fig. S7. Low-field part of the 13C NMR spectrum of compound 1a

Fig. S8. H-H COSY NMR spectrum of compound 1a
Fig. S9. H-P HMBC NMR spectrum of compound 1a

Fig. S10. H-C HSQC NMR spectrum of compound 1a
Fig. S11. ESI mass spectrum of compound 1b

Fig. S12. 1H NMR spectrum of compound 1b
Fig. S13 31P{1H} NMR spectrum of compound 1b

Fig. S14. High-field part of the 13C NMR spectrum of compound 1b
Fig. S15. Low-field part of the 13C NMR spectrum of compound 1b

Fig. S16. H-P HMBC NMR spectrum of compound 1b
Fig. S17. H-C HSQC NMR spectrum of compound 1b

Fig. S18. H-C HMBC NMR spectrum of compound 1b
Fig. S19. ESI mass spectrum of compound 1c

Fig. S20. 1H NMR spectrum of compound 1c
Fig. S21. $^1H\{^{31}P\}$ NMR spectrum of compound 1c

Fig. S22 ^{31}P NMR spectrum of compound 1c
Fig. S23 31P{1H} NMR spectrum of compound 1c

Fig. S24. High-field part of the 13C NMR spectrum of compound 1c
Fig. S25. A part of the high-field part of the 13C NMR spectrum of compound 1c

Fig. S26. Low-field part of the 13C NMR spectrum of compound 1c
Fig. S27. H-H COSY NMR spectrum of compound 1c

Fig. S28. H-P HMBC NMR spectrum of compound 1c
Fig. S29. 31P-31P COSY NMR spectrum of compound 1c

Fig. S30. ESI mass spectrum of compound 1d
Fig. S31. 1H NMR spectrum of compound 1d

Fig. S32. 1H$^{^31}$P NMR spectrum of compound 1d
Fig. S33 31P NMR spectrum of compound 1d

Fig. S34 31P{1H} NMR spectrum of compound 1d
Fig. S35. High-field part of the 13C NMR spectrum of compound 1d

Fig. S36. Low-field part of the 13C NMR spectrum of compound 1d
Fig. S37. H-H COSY NMR spectrum of compound 1d

Fig. S38. H-P HMBC NMR spectrum of compound 1d
Fig. S39. H-C HSQC NMR spectrum of compound 1d

Fig. S40. ESI MS spectrum of compound 2b
Fig. S41. 1H NMR spectrum of compound 2b

Fig. S42. 1H{31P} NMR spectrum of compound 2b
Fig. S43 31P NMR spectrum of compound 2b

Fig. S44 31P{1H} NMR spectrum of compound 2b
Fig. S45. High-field part of the 13C NMR spectrum of compound 2b

Fig. S46. Low-field part of the 13C NMR spectrum of compound 2b
Fig. S47. H-H COSY NMR spectrum of compound 2b

Fig. S48. H-H NOESY NMR spectrum of compound 2b
Fig. S49. H-P HMBC NMR spectrum of compound 2b

Fig. S50. H-C HSQC NMR spectrum of compound 2b
Fig. S51. H-C HMBC NMR spectrum of compound 2b

Fig. S52. ESI MS spectrum of compound 3c (m/z=1132 corresponds to the [M+CN]+ anion)
Fig. S53. 1H NMR spectrum of compound 3c

Fig. S54 31P NMR spectrum of compound 3c
Fig. S55. High-field part of the 13C NMR spectrum of compound 3c

Fig. S56. Low-field part of the 13C NMR spectrum of compound 3c
Fig. S57. H-H COSY NMR spectrum of compound 3c

Fig. S58. H-C HSQC NMR spectrum of compound 3c
Fig. S59. ESI mass spectrum of compound 4

Fig. S60. 1H31P NMR spectrum of compound 4
Fig. S61. 31P NMR spectrum of compound 4

Fig. S62. Low field part of the 13C NMR spectrum of compound 4
Fig. S63. High field part of the 13C NMR spectrum of compound 4

Fig. S64. Optical absorption spectra of compounds 1a-d and 4
Fig. S65. Optical absorption spectra of compounds 2b and 3c

Fig. S66. Cole-cole diagram of impedance for compound 4 measured under different relative humidity values. Inset shows impedance locus for compound 4 under RH=15 %. (The frequencies are shown on the graph; the pellet area was 0.196 cm², the pellet thickness was 0.06 cm)
Fig. S67. Temperature dependences of the specific conductivity of compound 4 under different relative humidity values

Fig. S68. TG/DSC decomposition curves for compound 4 along with the mass spectrometric profiles confirming liberation of water at 120-220 °C.
(Heating rate 10 °C /min, argon atmosphere.)