Formal C-H Amination of Cyclopropenes

Chunrui Sun^a, Jingwei Li^a, Daesung Lee^a*, Genping Huang^b and Yuanzhi Xia^b*

^a Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago,

Illinois 60607, United States

^b College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang

Province 325035, P. R. China

dsunglee@uic.edu, xyz@wzu.edu.cn

Supporting Information

Table of Contents					
I.	General information	S-2			
II.	Typical procedure for C-H bond amination of cyclopropenes	S–2			
III.	Procedure for the mechanistic via desilylation	S-10			
IV.	Procedure for the mechanistic study using ¹³ C-labeled cyclopropene	S-11			
V.	Reaction profile of C-H amination with a C3-substituted cyclopropene	S-13			
VI.	¹ H NMR and ¹³ C NMR spectra	S-15			

I. General Information: Reactions were carried out in oven or flame-dried glassware unless otherwise noted. Compounds were purchased from Aldrich or Acros or TCI America unless otherwise noted. Flash chromatography was performed using silica gel 60 Å (32–63 mesh) purchased from Silicycle Inc. Analytical thin layer chromatography (TLC) was performed on 0.25 mm E. Merck precoated silica gel 60 (particle size 0.040–0.063 mm). Yields refer to chromatographically and spectroscopically pure compounds unless otherwise stated. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker DRX-500 spectrometer. Multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), qn (quintet), sext (sextet), m (multiplet), b (broad), and app (apparent). ¹H NMR signals that fall within a ca. 0.3 ppm range are generally reported as a multiplet, with a single chemical shift value corresponding to the center of the peak. Coupling constants, *J*, are reported in Hz (Hertz). Electrospray ionization (ESI) mass spectra were recorded on a Waters Micromass Q-Tof Ultima in the University of Illinois at Urbana-Champaign. Electron impact (EI) mass spectra and Chemical Ionization (CI) mass spectra were obtained using a Micromass 70-VSE in the University of Illinois at Urbana-Champaign.

II. Typical procedure for C-H bond amination of cyclopropenes

To silvlated cyclopropene $1a^1$ (118 mg, 0.5 mmol) in CDCl₃ (1 mL) was added diisopropyl diazocarboxylate (1.1 equiv, 0.55 mmol, 111 mg). The resulting yellow solution was stirred in a 45 °C sand bath for a certain period of time, at which point ¹H NMR indicated the consumption of the starting material. The solution was evaporated or concentrated to afford the crude product, which was purified by column chromatography with a mixture of Hexane : Ethyl Acetate = 8 : 1 to 10 : 1 to give the desired major C–H amination product 2a (colorless oil, 174 mg) and the minor ene reaction product 3a (colorless oil, 29 mg), in 93% overall yield (2a : 3a = 6 : 1).

¹ Li, J.; Sun, C.; Lee, D. J. Am. Chem. Soc. 2010, 132, 6640-6641.

Note on spectroscopic data. Because of the restricted rotation around the carbamate C-N bonds, the hydrazodicarboxylate products **2** and **3** exist as mixtures of rotamers at room temperature. As a result, the NMR spectra are of low quality, especially the ¹³C-NMR, even at a high concentration. In the ¹³C-NMR, only those peaks which are readily evident in the spectrum are listed.

2a: Colorless oil (79% yield, **2a** : **3a** = 6 : 1); ¹H NMR (CDCl₃, 500 MHz) δ 6.16-6.02 (bm, 1H), 5.12-5.08 (m, 1H), 5.04-4.90 (bm, 2H), 3.70-3.50 (bs, 1H), 2.58-2.52 (m, 1H), 2.47-2.38 (m, 1H), 2.08-1.93 (m, 2H), 1.88-1.79 (m, 1H), 1.72-1.66 (s, 3H), 1.65-1.58 (s, 3H), 1.47-1.36

(m, 2H), 1.23-1.10 (bm, 12H), 0.96 (d, J = 6.7 Hz, 1H), 0.93 (d, J = 6.5 Hz, 2H), 0.18 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.72, 136.89, 131.36, 124.51, 112.80, 69.27, 38.49, 38.32, 37.00, 36.71, 34.20, 34.05, 31.44, 31.24, 25.71, 25.58, 25.51, 22.20, 22.04, 19.82, 19.65, 17.65, 1.18. HRMS (EI) calcd for C₂₃H₄₂N₂O₄NaSi [M+Na]⁺ 461.2812, found 461.2814.

3a: Colorless oil (13% yield); ¹H NMR (CDCl₃, 500 MHz) δ 7.77-7.70 **3a**: Colorless oil (13% yield); ¹H NMR (CDCl₃, 500 MHz) δ 7.77-7.70 **b**(bm, 1H), 6.24-6.17 (bm, 1H), 5.11-5.05 (m, 1H), 4.99-4.87 (bm, 2H), 2.04-1.83 (m, 3H), 1.65 (s, 3H), 1.61 (s, *J* = 1.2, 0.4 Hz, 4H), 1.41-1.17 (bm, 14H), 1.16-1.10 (m, 1H), 1.08-1.00 (m, 1H), 0.89 (d, *J* = 6.4 Hz, 2H), 0.77 (d, *J* = 6.3 Hz, 1H), 0.19 (d, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 156.00, 131.12, 131.02, 125.00, 69.29, 45.12, 43.80, 37.11, 31.60, 30.24, 29.85, 25.70, 25.46, 25.42, 22.67, 22.25, 22.17, 22.01, 19.85, 19.69, 17.64, 14.12,-1.09. HRMS (EI) calcd for C₂₃H₄₂N₂O₄Si 438.2954, found 438.2919.

2b: Colorless oil (83% yield, **2b** : **3b** = 12 : 1); ¹H NMR (CDCl₃, 500 MHz) δ 6.19-6.16 (bm, 1H), 5.14-5.08 (m, 2H), 5.01-4.94 (m, 2H), 3.69 (bs, 1H), 2.64-2.53 (m, 2H), 2.32-2.29 (m, 2H), 2.09-2.02 (m, 3H), 2.02-1.97 (m, 1H), 1.70 (bs, 3H), 1.65-1.59 (m, 6H), 1.37-1.19

(bm, 12H), 0.20 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 136.14, 131.62, 131.39, 124.23, 123.24, 113.09, 69.34, 39.62, 38.57, 32.02, 27.30, 27.06, 26.71, 26.53, 25.71, 25.61, 23.36, 22.20, 22.03, 17.68, 16.11, -1.13. HRMS (EI) calcd for C₂₅H₄₄N₂O₄NaSi [M+Na]⁺ 487.2968, found 487.2961.

HN.

2e

3b: Colorless oil (7% yield); ¹H NMR (CDCl₃, 500 MHz) δ 7.79-7.70 (bm, 1H), 6.24-6.17 (bm, 1H), 5.09-5.03 (m, 2H), 4.94-4.87 (bm, 2H), 2.14-2.07 (bm, 1H), 2.08-2.00 (m, 2H), 2.00-1.93 (m, 2H),

1.86-1.70 (bm, 3H), 1.67 (s, 3H), 1.59 (s, 3H), 1.52 (s, 3H), 1.38-1.13 (bm, 12H), 0.20 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.91, 134.88, 131.30, 128.43, 124.39, 124.27, 63.31, 46.27, 39.73, 35.54, 26.74, 25.71, 25.53, 22.25, 22.02, 17.69, 16.02, -1.06. HRMS (EI) calcd for C₂₅H₄₄N₂O₄Si 464.3070, found 464.3078.

2c: Colorless oil (81% yield, **2c** : **3c** = 8 : 1); ¹H NMR (CDCl₃, 500 MHz) δ 6.14-6.11 (bm, 1H), 5.47 (s, 1H), 4.94-4.91 (bm, 2H), 4.68 (s, 2H), 3.66 (bs, 1H), 2.88-2.81 (m, 1H), 2.50-2.48 (m, 2H), 2.18-2.14 (m, 1H), 2.07-2.03 (m, 1H), 1.91-1.79 (m, 2H), 1.70 (s, 3H), 1.67 (s, 3H), 1.34-1.14 (m, 13H), 0.17 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.67, 149.84, 136.21, 135.53, 123.47, 113.28, 108.59, 69.29, 41.55, 41.54, 38.87, 38.54, 38.27, 38.13, 35.08, 31.21, 30.83, 22.23, 22.07, 21.20, 21.13, 20.73, 20.69, -1.19. HRMS (EI) calcd for C₂₅H₄₂N₂O₄Si [M] 462.2914, found 462.2903.

2d: Colorless oil (74% yield, **2d** : **3d** = 6 : 1); ¹H NMR (CDCl₃, 500 MHz) δ **6.15-6.08** (bm, 1H), 4.96-4.88 (bm, 2H), 3.72-3.69 (m, 1H), 3.47 (qd, *J* = 7.0, **3.9** Hz, 1H), 2.94-2.61 (m, 3H), 2.29-2.20 (m, 1H), 2.07-2.01 (m, 1H), 1.95-**1.94** (m, 1H), 1.64 (s, 3H), 1.57 (s, 3H), 1.34-1.09 (m, 15H), 0.66-0.59 (d, *J* =

6.5 Hz, 3H), -0.22 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.75, 137.46, 137.10, 123.13, 113.31, 69.28, 65.85, 45.92, 41.12, 40.96, 39.19, 38.64, 38.32, 32.13, 30.82, 30.57, 26.80, 26.12, 22.23, 22.05, 21.27, 20.48, 19.75, 15.28, -1.03. HRMS (EI) calcd for C₂₇H₄₆N₂O₄NaSi [M+Na]⁺ 513.3149, found 513.3137.

2e: Colorless oil (74% yield, 2e : 3e = 4 : 1); ¹H NMR (CDCl₃, 500 MHz) δ
6.21-6.10 (bm, 1H), 5.19 (s, 1H), 4.92 (bm, 2H), 3.64 (bs, 1H), 2.56 (m,
2H), 2.35-2.28 (m, 1H), 2.28-2.10 (m, 4H), 2.08-2.05 (m, 1H), 2.02-1.96 (m, 1H), 1.34 (bm, 15H), 1.14-1.07 (m, 1H), 0.82-0.76 (s, 3H), -0.16 (s,

9H); ¹³C NMR (CDCl₃, 125 MHz) δ 147.23, 137.79, 116.34, 112.66, 69.25, 45.84, 45.73, 40.84,

38.53, 38.46, 37.96, 34.33, 34.22, 31.61, 31.23, 26.30, 24.87, 24.71, 22.20, 22.03, 21.22, 21.13, 1.15. HRMS (EI) calcd for C₂₅H₄₂N₂O₄NaSi [M+Na]⁺ 485.2812, found 485.2794.

3e: Colorless oil (19% yield); ¹H NMR (CDCl₃, 500 MHz) δ 7.77-7.71 **3e**: Colorless oil (19% yield); ¹H NMR (CDCl₃, 500 MHz) δ 7.77-7.71 **3e**: Colorless oil (19% yield); ¹H NMR (CDCl₃, 500 MHz) δ 7.77-7.71 **4**: (bs, 1H), 6.23-6.20 (bm, 1H), 6.23-6.20 (bm, 1H), 5.14-5.14 (s, 1H), 4.98- **4**: 4.88 (bm, 2H), 2.33-2.29 (m, 1H), 2.24-2.11 (m, 4H), 2.08-2.02 (m, 2H), **1**: 95-1.90 (m, 1H), 1.87-1.79 (m, 1H), 1.66-1.58 (m, 2H), 1.33-1.16 (bm, 12H), 1.11 (q, *J* = 7.7 Hz, 1H), 0.79 (d, *J* = 4.7 Hz, 3H), 0.21 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.79, 148.09, **1**: 28.66, 115.52, 69.31, 45.06, 45.97, 40.89, 37.90, 34.36, 31.65, 31.59, 31.27, 26.35, 22.26, **2**: 1.19, 21.16, -1.06. HRMS (EI) calcd for C₂₅H₄₂N₂O₄NaSi [M+Na]⁺ 485.2812, found 485.2794.

2f: Colorless oil (64% yield, **2f** : **3f** = 3 : 1); ¹H NMR (CDCl₃, 500 MHz) δ 6.32-6.30 (bm, 1H), 5.24 (d, J = 13.2 Hz, 1H), 4.15 (bm, 4H), 3.65 (bs, 1H), **2f** SiMe₃ 2.50 (d, J = 6.8 Hz, 2H), 2.38 (dd, J = 1.7, 0.6 Hz, 1H), 1.85 (d, J = 11.9 Hz, 2H), 1.71 (ddt, J = 16.1, 10.4, 5.3 Hz, 2H), 1.61 (s, 3H), 1.54-1.48 (m, 1H), 1.26-1.09 (bm, 7H), 0.19 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 156.06, 136.55, 134.83, 125.19, 113.33, 61.67, 38.55, 34.06, 33.50, 30.07, 29.01, 28.68, 23.84, 21.69, 21.52, 14.67, 14.54, -1.24. HRMS (EI) calcd for C₂₀H₃₄N₂O₄NaSi [M+Na]⁺ 417.2186, found 417.2181.

2g: Colorless oil (60% yield, **2g** : **3g** = 2.5 : 1); ¹H NMR (CDCl₃, 500 MHz) δ 6.17-6.12 (bm, 1H), 5.19-5.16 (m, 1H), 5.01-4.90 (bm, 2H), 3.67-3.65 (bm, 1H), 2.64-2.52 (m, 2H), 2.37-2.30 (m, 2H), 2.10-1.99 (m, 4H), 1.57-1.48 (m, 2H), 1.48-1.40 (m, 2H), 1.26 (bs, 18H), 1.26-1.19 (m, 8H), 0.25 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.74, 138.59, 137.81, 123.89, 113.10, 69.31, 38.61, 31.76, 28.78, 27.35, 25.75, 25.05, 24.82, 24.29, 24.21, 24.05, 23.96, 23.43, 23.02, 22.32, 22.22, 22.05, -1.11. HRMS (EI) calcd for C₂₉H₅₂N₂O₄NaSi [M+Na]⁺ 543.3594, found 543.3597.

3g: Colorless oil (24% yield); ¹H NMR (CDCl₃, 500 MHz) δ 7.80-7.70 (bs, 1H), 6.26-5.98 (bm, 1H), 5.12 (t, J = 6.2 Hz, 1H), 4.99-4.86 (bm, 2H), 2.13-2.03 (m, 1H), 2.05-1.94 (m, 5H), 1.87-1.66 (m, 3H), 1.54-1.46 (m,

2H), 1.45-1.36 (m, 2H), 1.36-1.09 (m, 25H), 0.22 (s, 9H); 13 C NMR (CDCl₃, 125 MHz) δ 155.98, 137.52, 127.74, 124.86, 69.30, 46.26, 35.80, 31.81, 28.58, 25.56, 24.97,24.73, 24.37, 24.24, 24.06, 23.52, 23.20, 22.33, 22.26, 22.03, -1.06. HRMS (EI) calcd for C₂₉H₅₂N₂O₄NaSi [M+Na]⁺ 543.3594, found 543.3597.

2h: Colorless oil (61% yield, **2h** : **3h** = 2.3 : 1); ¹H NMR (CDCl₃, 500 MHz) δ 6.18-6.10 (bm, 1H), 5.40-5.33 (m, 2H), 4.94-4.92 (bm, 2H), 3.67 (bs, J = 0.3 Hz, 1H), 2.61-2.56 (m, 2H), 2.32 (q, J = 6.9 Hz, 2H), 2.01 (q, J = 6.9 Hz, 2H), 1.35-1.22 (bm, 18H), 0.87 (t, J = 6.8 Hz, 3H), 0.18 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.71, 137.58, 131.03, 128.28, 113.27, 69.29, 38.58, 31.51, 29.31, 27.28, 27.00, 25.03, 22.57, 22.20, 22.05, 22.03, 14.06, -1.13. HRMS (EI) calcd for C₂₃H₄₂N₂O₄NaSi [M+Na]⁺ 461.2812, found 461.2819.

2i: Colorless oil (84% yield, **2i** : **3i** = 7 : 1); ¹H NMR (CDCl₃, 500 MHz) δ 6.15-6.11 (m, 1H), 4.96-4.90 (m, 2H), 3.63-3.60 (m, 1H), 2.80 (dt, *J* = 12.6, 6.2 Hz, 1H), 2.61-2.56 (m, 1H), 2.08-2.05 (m, 1H), 1.88-1.80 (m, 6H), 1.80-1.68 (m, 5H), 1.67-1.62 (m, 1H), 1.51 (t, *J* = 13.9 Hz, 2H), 1.36-1.16 (bm,

12H), -0.21 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.69, 136.93, 112.50, 69.27, 42.42, 39.09, 39.04, 38.34, 38.19, 32.14, 31.65, 31.38, 30.17, 28.09, 28.00, 22.22, 22.05, -1.17. HRMS (EI) calcd for C₂₅H₄₂N₂O₄NaSi [M+Na]⁺ 485.2812, found 485.2805.

 $\begin{array}{c} \begin{array}{c} & \text{3i: Colorless oil (12\% yield); }^{1}\text{H NMR (CDCl_{3}, 500 MHz) } \delta \ 7.73\text{-}7.65 (bm, \\ & \text{M}, \\ & \text{CO}_{2}^{\text{/pr}} \\ & \text{3i} \end{array} \end{array} \\ \begin{array}{c} \text{3i: Colorless oil (12\% yield); }^{1}\text{H NMR (CDCl_{3}, 500 MHz) } \delta \ 7.73\text{-}7.65 (bm, \\ & \text{1H}), \ 6.23\text{-}6.15 (bm, 1H), \ 4.98\text{-}4.87 (bm, 2H), \ 2.35\text{-}2.26 (bm, 1H), \ 1.91\text{-}1.59 \\ & \text{(m, 11H), 1.53\text{-}1.38 (m, 5H), 1.37\text{-}1.11 (m, 12H), \ 0.22 (s, 9H); }^{13}\text{C NMR} \\ (\text{CDCl}_{3}, \ 125 \text{ MHz}) \ \delta \ 155.86, \ 127.68, \ 69.30, \ 45.66, \ 41.45, \ 39.34, \ 39.22, \ 38.45, \ 32.25, \ 31.94, \\ 31.76, \ 31.58, \ 28.18, \ 22.26, \ 22.04, \ -1.04. \ \text{HRMS (EI) calcd for } C_{25}H_{42}N_2O_4Si \ 462.2914, \ found \\ 462.2919. \end{array}$

2j: Colorless oil (57% yield, **2j** : **3j** = 2.5 : 1); ¹H NMR (CDCl₃, 500 MHz) δ 7.29-7.26 (m, 2H), 7.19 (m, 3H), 6.14-6.11 (bm, 1H), 5.01-4.93 (bm, 2H), 3.70 (bm, 1H), 2.96-2.83 (m, 4H), 1.37-1.17 (m, 12H), 0.13 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.71, 141.14, 137.08, 128.38, 128.25, 126.07, 113.72, 69.33, 38.54, 33.26, 28.30, 22.24, 22.06, -1.23. HRMS (EI) calcd for C₂₂H₃₄N₂O₄NaSi [M+Na]⁺ 441.2186, found 441.2177.

 $\begin{array}{ccc} & \text{3j: Colorless oil (38\% yield); }^{1}\text{H NMR (CDCl}_{3}, 500 \text{ MHz}) \ \delta \ 7.78\text{-}7.64 \ (bs, 1\text{H}), \\ & \text{3j} & \text{7.29-7.20 (m, 2\text{H}), 7.21\text{-}7.15 (m, 3\text{H}), 6.26\text{-}6.13 \ (bm, 1\text{H}), 5.02\text{-}4.87 \ (bm, 2\text{H}), \\ & 2.50\text{-}2.36 \ (m, 3\text{H}), 2.07\text{-}1.98 \ (m, 1\text{H}), 1.41\text{-}1.11 \ (bm, 12\text{H}), 0.24 \ (s, 9\text{H}); \\ & \text{1^3C} \\ & \text{NMR (CDCl}_{3}, 125 \ \text{MHz}) \ \delta \ 156\text{-}20, 142\text{-}20, 128\text{-}41, 128\text{-}22, 125\text{-}61, 69\text{-}37, 46\text{-}12, 37\text{-}84, 33\text{-}22, \\ & 22.04, -1.06. \ \text{HRMS (EI) calcd for } C_{22}\text{H}_{34}\text{N}_{2}\text{O}_{4}\text{NaSi [M+Na]}^{+} 441\text{-}2186, \text{found } 441\text{-}2191. \\ \end{array}$

2k: Colorless oil (71% yield, **2k** : **3k** = 3 : 1); ¹H NMR (CDCl₃, 500 MHz) δ 7.31 (m, 4H), 7.26-7.24 (m, 1H), 6.26-6.16 (bm, 1H), 4.93-4.91 (bm, **2h**), 4.55 (d, *J* = 11.5 Hz, 1H), 4.42 (dd, *J* = 11.6, 6.7 Hz, 1H), 3.65-3.49 (bm, 2H), 2.74-2.55 (m, 2H), 1.89-1.73 (m, 2H), 1.22 (bm, 15H), -0.17 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.77, 138.86, 128.33, 128.26, 127.64, 127.46, 112.73, 74.14, 73.96, 70.48, 70.39, 69.26, 38.55, 38.47, 34.33, 34.19, 29.71, 23.00, 22.21, 22.05, 19.57, 19.43, -1.09. HRMS (EI) calcd for C₂₅H₄₀N₂O₅NaSi [M+Na]⁺ 499.2604, found 499.2599.

7

21: Colorless oil (60% yield, **21** : **31** = 2 : 1); ¹H NMR (CDCl₃, 500 MHz) δ 7.40-7.35 (m, 2H), 7.34-7.28 (m, 2H), 7.27-7.20 (m, 1H), 6.52-6.46 (m, 1H), 6.20-6.13 (bm, 1H), 6.12-6.05 (m, 1H), 5.02-4.87 (m, 2H), 4.00-3.93 (m, 1H), 3.70-3.59 (bs, 1H), 3.58-3.50 (m, 1H), 3.40-3.33 (m, 1H), 2.74-2.64 (m, 1H), 2.65-2.53 (m, 1H), 1.94-1.84 (m, 2H), 1.34-1.30 (m, 3H), 1.30-1.18 (bm, 12H), 0.14 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.74, 136.67, 131.97, 130.94, 128.58, 127.64, 126.44, 113.00, 77.25, 76.68, 69.30, 67.56, 38.51, 29.72, 27.68, 27.65, 23.65, 22.20, 22.04, 21.67, -1.13. HRMS (EI) calcd for C₂₇H₄₂N₂O₄NaSi [M+Na]⁺ 525.2761, found 525.2752.

3l: Colorless oil (30% yield); ¹H NMR (CDCl₃, 500 MHz) δ 7.78-7.69 (bm, 1H), 7.39-7.36 (m, 2H), 7.30 (t, *J* = 7.3 Hz, 2H), 7.24-7.17 (m, 1H), 6.50-6.44 (m, 1H), 6.28-6.24 (bm, 1H), 6.11-6.03 (m, 1H), 4.97-

4.84 (bm, 2H), 3.97-3.91 (m, 1H), 3.47-3.37 (m, 1H), 3.33-3.26 (m, 1H), 2.16-2.09 (m, 1H), 1.80-1.68 (m, 1H), 1.41-1.09 (m, 23H), 0.23 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 156.96, 136.77, 132.19, 130.73, 128.55, 128.24, 127.55, 126.44, 76.45, 69.31, 68.36, 32.55, 27.49, 22.23, 22.01, 21.68, -1.10. HRMS (EI) calcd for C₂₇H₄₂N₂O₄NaSi [M+Na]⁺ 525.2761, found 525.2768.

 $\begin{array}{c} \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\$

43.39, 40.92, 38.75, 38.01, 31.56, 31.30, 29.72, 26.20, 22.19, 22.03, 21.09, -1.25, -1.86. HRMS (EI) calcd for C₂₅H₄₂N₂O₅NaSi [M+Na]⁺ 501.2761, found 501.2764.

3m: Colorless oil (45% yield); ¹H NMR (CDCl₃, 500 MHz) δ 7.77-7.64 **3m**: Colorless oil (45% yield); ¹H NMR (CDCl₃, 500 MHz) δ 7.77-7.64 (bm, 1H), 6.52-6.46 (bm, 1H), 5.41 (s, 1H), 4.99-4.84 (bm, 2H), 3.76 (s, 2H), 3.65-3.49 (bm, 1H), 2.38-2.34 (m, 1H), 2.30-2.18 (m, 2H), 2.08 (s, 2H), 1.35 (s, *J* = 4.5, 2.0 Hz, 3H), 1.22 (bm, 12H), 1.14-1.09 (m, 2H), 0.81 (s, 3H), -0.21 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 156.01, 145.55, 126.56, 126.52, 119.44, 119.33, 73.60, 69.17, 43.31, 37.99, 31.52, 31.22, 26.21, 22.03, 21.09, -1.31. HRMS (EI) calcd for C₂₅H₄₂N₂O₅NaSi [M+Na]⁺ 501.2761, found 501.2752.

2n: Colorless oil (46% yield, **2n** : **3n** = 1 : 1); ¹H NMR (CDCl₃, 500 MHz) δ 7.39-7.38 (m, 4H), 7.29 (m, 1H), 6.24-6.12 (bm, 1H), 5.05-4.83 (bm, 2H), **a** 4.72-4.53 (m, 3H), 3.85-3.76 (bs, 1H), 1.39-1.13 (bm, 12H), 0.22 (s, 8H), 0.01 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 137.95, 128.40, 127.86, 127.70, 127.64, 72.51, 69.44, 66.00, 38.71, 22.04, -1.25. HRMS (EI) calcd for C₂₂H₃₄N₂O₅NaSi [M+Na]⁺ 457.2135, found 457.2135.

 $\begin{array}{rl} & \begin{array}{c} & & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ &$

20: Colorless oil (66% yield, **20** : **30** = 1 : 3); ¹H NMR (CDCl₃, 500 MHz) δ 7.29-7.24 (m, 2H), 7.19-7.15 (m, 3H), 6.18-6.14 (bm, 1H), 5.01-4.88 (b, Ph **20** SiMe₃ 2H), 4.66-4.45 (m, 2H), 3.81-3.79 (bm, 1H), 3.58-3.52 (m, 1H), 2.76-2.63 (m, 2H), 1.92-1.85 (m, 1H), 1.78-1.71 (m, 1H), 1.36-1.13 (m, 15H), 0.19 (s, 8H), 0.02 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 155.70, 142.30, 128.37, 125.75, 115.07, 74.83, 69.39, 64.28, 38.80, 38.43, 38.35, 31.71, 31.66, 29.72, 22.21, 22.04, 21.75, 19.47, 19.32, -1.19, -1.85. HRMS (EI) calcd for C₂₅H₄₀N₂O₅Si 476.2707, found 476.2704. **30**: Colorless oil (22% yield); ¹H NMR (CDCl₃, 500 MHz) δ 7.78-7.68 **30**: Colorless oil (22% yield); ¹H NMR (CDCl₃, 500 MHz) δ 7.78-7.68 **30**: Colorless oil (22% yield); ¹H NMR (CDCl₃, 500 MHz) δ 7.78-7.68 **30**: Colorless oil (22% yield); ¹H NMR (CDCl₃, 500 MHz) δ 7.78-7.68 **30**: Colorless oil (22% yield); ¹H NMR (CDCl₃, 125 MHz), 6.47-6.43 (bm, **30**: 1H), 5.01-4.87 (bm, 2H), 3.60-3.32 (m, 1H), 2.70-2.63 (bm, 1H), 2.63- **31**: 2.56 (m, 1H), 1.85-1.73 (m, 1H), 1.73-1.61 (m, 1H), 1.36-1.14 (m, 13H), 1.14-1.10 (m, 3H), 0.88 (t, *J* = 6.9 Hz, 1H), -0.21 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 156.06, 142.41, 128.38, 128.34, **31**: 126.41, 125.71, 74.39, 69.20, 38.55, 31.87, 22.21, 22.19, 19.54, -1.25. HRMS (EI) calcd for C₂₅H₄₀N₂O₅NaSi [M+Na]⁺ 499.2604, found 499.2605.

III. Procedure for the mechanistic study via desilylation.

To cyclopropene **1j** (216 mg, 1 mmol) in CDCl₃ (2 mL) was added diisopropyl azocarboxylate (1.1 equiv, 1.1 mmol, 222 mg). The resulting yellow solution was stirred at rt for 3.5 h, at which point ¹H NMR indicated the complete consumption of the starting material. CDCl₃ was removed and the residue was taken up in 2 mL of THF and tetrabutylammonium fluoride (TBAF) (1 M in THF, 1.1 equiv, 1.1 mL) was added. The reaction was stirred at rt for 30 min, the crude NMR showed two major compounds **I-2j** and **5j**. THF was removed and the residue was taken up in CDCl₃ and heated at 45 °C until the crude NMR showed the full consumption of **I-2j**(ca. 20 h). The reaction was concentrated and purified by column chromatography (Hexane : Ethyl Acetate = 8 : 1) to give **2j** (201 mg, 48%) and **5j** (117 mg, 31%). Compound **2j** (201 mg, 0.48 mmol) was dissolved in THF (1 mL) and TBAF (1 M, 0.5 mL) was added and the reaction was kept at rt for 30 min followed by the removal of the solvent, and purified by column chromatography Hexane : Ethyl Acetate = 8 : 1 to afford compound **4j** (157 mg, 95%).

4j: Colorless oil (45% yield in 2 steps); ¹H NMR (CDCl₃, 500 MHz) δ 7.26 (quintet, J = 6.7 Hz, 2H), 7.23-7.15 (m, 3H), 6.69 (s, 1H), 6.29-6.11 (bm, 1H), 5.00-4.88 (bm, 2H), 3.76-3.71 (bm, 1H), 2.98-2.88 (m, 2H), 2.88-2.76 (m, 2H), 1.36-1.16 (bm, 12H); ¹³C NMR (CDCl₃, 125 MHz) δ 156.07, 141.04, 128.35,

128.21, 126.14, 124.86, 103.63, 69.44, 36.67, 32.98, 26.87, 22.20, 22.00. HRMS (EI) calcd for $C_{19}H_{26}N_2O_4Na \left[M+Na\right]^+$ 369.1790, found 369.1780.

^{Ph} ^{Ph} ^{Ph} ^{Ph} ^{Sj:} Colorless oil (31 % yield); ¹H NMR (CDCl₃, 500 MHz) δ 7.37-7.28 (bm, ^{Ph} ^{Sj} ^{Ph} ^{Sj}

IV. Procedure for the mechanistic study using ¹³C-labeled cyclopropene .

To cyclopropene **1p** (162 mg, 0.5 mmol) in CDCl₃ (1 mL) was added diisopropyl azocarboxylate (1.1 equiv, 0.55 mmol, 111 mg) and the reaction was stirred at rt until the crude NMR showed full consumption of **1p**, at which point ¹H NMR indicated the ratio of **2p-I** to **3p** was 2.7 to 1. Then the reaction was heated at 45 °C for 40 hs. The crude NMR showed full conversion of **2p-I**. Solvent was removed and the residue was purified by column chromatography with Hexane : Ethyl Acetate = 10 : 1 to give **2p** (176 mg) and **3p** (65 mg), in 92% overall yield.

 $\begin{array}{l} \begin{array}{l} \sum_{\substack{\text{P} \\ \text{P} \\$

NMR (CDCl₃, 125 MHz) δ 138.75, 138.00, 137.07, 69.26, 38.57, 38.45, 31.94, 29.67, 29.62, 29.43, 29.37, 29.34, 27.21, 22.70, 22.20, 22.05, 14.12, -1.13. HRMS (EI) calcd for C₂₈¹³CH₅₆N₂O₄NaSi [M+Na]⁺ 548.3941, found 548.3930.

^{HN, CO₂/Pr} **3p**: Colorless oil (24% yield); ¹H NMR (CDCl₃, 500 MHz) δ 7.82-7.70 (bm, 1H),
 ^{C15H31} **5** ^N CO₂/Pr 6.26-5.97 (bm, 1H), 4.99-4.86 (bm, 2H), 2.09-1.99 (m, 1H), 1.82-1.69 (m, 1H),
 ¹41-1.09 (m, 36H), 1.07-0.92 (m, 2H), 0.92-0.84 (m, 3H), 0.18-0.17 (m, 9H);
 ¹³C NMR (CDCl₃, 125 MHz) δ 69.29, 46.40, 42.80, 31.94, 29.38, 27.11, 22.71, 22.45, 22.03,
 ^{14.14}, -1.07. HRMS (EI) calcd for C₂₈¹³CH₅₆N₂O₄NaSi [M+Na]⁺ 548.3941, found 548.3945.

 $\begin{array}{l} \begin{array}{l} {}^{\text{CO}_2/\text{Pr}}_{\text{HN}_{N_n}} & \mathbf{2p}^{\circ}: \text{Colorless oil (66\% yield, } \mathbf{2p}^{\circ}: \mathbf{3p}^{\circ} = 2.5:1); \ ^1\text{H NMR (CDCl}_3, \ 500 \ \text{MHz}) \, \delta \\ \hline & 6.15-6.10 \ (\text{bm}, \ 1\text{H}), \ 5.00-4.89 \ (\text{bm}, \ 2\text{H}), \ 3.67-3.62 \ (\text{bm}, \ 1\text{H}), \ 2.60-2.46 \ (\text{m}, \ 2\text{H}), \\ \hline & 1.60-1.54 \ (\text{m}, \ 3\text{H}), \ 1.43-1.10 \ (\text{m}, \ 37\text{H}), \ 0.91-0.83 \ (\text{m}, \ 3\text{H}), \ 0.18 \ (\text{s}, \ 9\text{H}); \ ^{13}\text{C} \\ \hline & \text{NMR (CDCl}_3, \ 125 \ \text{MHz}) \, \delta \ 112.48, \ 69.27, \ 38.52, \ 31.94, \ 29.68, \ 29.62, \ 29.43, \ 29.37, \ 27.21, \ 26.74, \\ \hline & 22.71, \ 22.21, \ 22.04, \ 14.13, \ -1.12. \ \text{HRMS (EI) calcd for } C_{29}\text{H}_{56}\text{N}_2\text{O}_4\text{Si} \ 524.4009, \ found \\ \hline & 524.4008. \end{array}$

 $\begin{array}{c} & \underset{C_{15}H_{31}}{\overset{\mathsf{CO}_2\mathsf{Pr}}{\longrightarrow}} \quad \mathbf{3p': Colorless \ oil (26\% \ yield); \ ^1H \ NMR \ (CDCl_3, \ 500 \ MHz) \ \delta \ 7.81-7.72 \ (bm, \ 1H), \\ & \underset{\mathbf{3p'}}{\overset{\mathsf{CO}_2\mathsf{Pr}}{\longrightarrow}} \quad 6.24-5.96 \ (bm, \ 1H), \ 5.00-4.88 \ (bm, \ 2H), \ 2.09-2.00 \ (m, \ 1H), \ 1.80-1.68 \ (m, \ 1H), \\ & \underset{\mathbf{3p'}}{\overset{\mathsf{N}}{\longrightarrow}} \quad 1.36-1.14 \ (m, \ 36H), \ 1.04-0.93 \ (m, \ 2H), \ 0.91-0.84 \ (m, \ 3H), \ 0.21 \ (s, \ 9H); \ ^{13}C \ NMR \ (CDCl_3, \ 125 \ MHz) \ \delta \ 69.26, \ 46.38, \ 31.93, \ 29.69, \ 29.64, \ 29.43, \ 29.36, \ 27.08, \ 22.69, \ 22.19, \ 22.01, \\ 14.11, \ -1.09. \ HRMS \ (EI) \ calcd \ for \ C_{29}H_{56}N_2O_4Si \ 524.4009, \ found \ 524.4018. \end{array}$

V. Reaction profile of C–H amination with a C3-substituted cyclopropene.

To cyclopropene **6a** (158 mg, 0.5 mmol) in CDCl₃ (1 mL) was added diisopropyl azocarboxylate (1.1 equiv, 0.55 mmol, 111 mg) and the reaction was stirred at rt and the reaction was monitored by NMR spectroscopy for 20 h, at which point ¹H NMR indicated the ratio of **7a** to **8a** was 1.7 to 1. Solvent was removed and the residue was purified by column chromatography with Hexane : Ethyl Acetate = 10 : 1 to give a inseparable mixture of **7a** and **8a**.

^{Ph} **6c**-*d*: purification by column chromatography on silica gel using Hexanes; Colorless oil; ¹H NMR (CDCl₃, 500 MHz) δ 7.31-7.27 (m, 2H), 7.22-7.19 (m, 3H), 2.91 (q, *J* = 7.8 Hz, 2H), 2.82-2.79 (m, 2H), 0.93 (s, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 147.58, 128.41, 128.36, 126.00, 119.67, 98.70, 33.32, 28.63, 5.26. HRMS (EI) calcd for C₁₁H₁₁D 145.1002, found 145.1004. ^{BnO} Co₂/Pr ^{And CO₂/Pr ^{An}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>

7c-d: Colorless oil (95%); ¹H NMR (CDCl₃, 500 MHz) δ 7.30-7.23 (m, 2H), 7.24-7.14 (m, 2H), 6.68 (s, 0.65H), 5.00-4.90 (bm, 2H), 2.96-2.89 (m, 2H), 2.87-2.78 (m, 2H), 1.38-1.19 (bm, 12H); ¹³C NMR (CDCl₃, 125 MHz) δ

141.08, 128.41, 128.37, 126.16, 103.49, 69.50, 33.00, 26.86, 22.20, 22.00. HRMS (EI) calcd for $C_{19}H_{25}N_2O_4DSi$ 347.1996, found 347.1950.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

9

8

ppm 10

5

4

3

ź

1

Ó

| 7

6

Electronic Supplementary Mate	erial (ESI) for Chen	nical Communicatio	ons								I
This journal is © The Royal So	ciety of Chemistry	2012 490	334	06	326						
CO ₂ [/] Pr			9.4	5.1	3.9						
HN_N_CO	9 ₂ ⁱ Pr	- 15		-12							
2f	SiMe ₃										
alan dipina di kata manakati ni kata kana di kata na mata mana din kana mata tang kata kata kata kata kata kat	dependentigen benahrt og attere bilderer og døret	and and and an an a state of the second state of the	a chatalana Manadatala	Beildi bolankaistan.	a falati walaka waka waka waka waka waka waka wa	an middentherards second colliges	and man to make and	, which is not provide the set of the second states and set of the second states and second states a	Manual Surface and Surface and	want he and send market	ha alada a andalaha ang kana ang kanang k
hipering want in a second and hipering between a second with the second	lar ya dina perinta antal mana ini kapana ka endara anta ini ana perter	ennennetennetenperioren (* 1869), senten freisensten (* 1869) Annen en	diana data da da managana	undali, databatikatika	nder hannarden	and an	ann Naltan Pàsann Ind N	here and place of a failed and a second s	anna danah kambi. Afti	an Manadalah di Sanadara da I	alla la factoria de la construcción
	190	160	140	1 20		100	00	60	40	20	
μμπ 200	100	100	140	120		100	00	60	40	20	U

Ó

Electronic Supplem	entary Material (E e Royal Society of	SI) for Chemical	Communications	; 	+						I
HN HN 3h	CO ₂ /Pr CO ₂ /Pr Me ₃	Chonistry 2012	-	129.976	129.392						
n ann a than an than an than a than	la ta sua si pina bangan ta sua si kan si kata sua si pina pina pina pina pina pina pina pin	nt and to start to start to be lines Afferen geheren toget per per	glaslas said filosif pinasal saint sheeta Tarifaril saint sheetaal tariha barihad	altaphonum tropostatal Netral pataneo tropopitaneo		nadara finana la ina tanàn ina tanàn Ina aona dia mandritra dia dia dia dia dia dia dia dia dia di	de se alterne liter de la complete Alterne literne de la complete	anada manda na ka ka ka ang ka	har on the state of the state o	la se des des a se se de se de se a se navea des des a compositives de se des	nina milla seliopeti ultantificata popponi vina pop
ppm 220	200	180	160	140	120	100	80	60	40	20	0

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012 CO₂ⁱPr I HN_NCO2ⁱPr Ph′ `SiMe₃ 2j ppm 9 8 7 6 5 3 2 Ó 4 1

Electronic Supplementary This journal is © The Roya	Material (ESI) for Ch I Society of Chemist	nemical Communication trv 2012	ns							
	D ₂ ⁱ Pr N CO ₂ ⁱ Pr SiMe ₃ 2m	.,, 2012								
unakekeedhin, he, andi hindi keedhidha 19 - Japan jaran jaraan jaraan jaraan j	lahomahadhadhanahomhahan Tapogahahadhadhan	n for a construction of the state	low weeks to be by the second s second second s	nda a sherd da sata a da shi shi Man ya sherd da shi shi shi	U na	internal Datas a table and datas International and and and and an		ennellen verschen sone of sone of so	ha ba daga ya ka	elentina el provello de la constancia a presenta el provello de la constancia a presenta el provello de la constancia de la constancia de la constancia
ppm 220 2	200 180	0 160	140	120	100	80	60	40	20	0

ppm (f1)