Preparation and Helical Folding of Long-Chain Aromatic Polyamides

Jinxin Cao, a,b Mark Kline, c Zhongzhu Chen, a,b Bao Luan, a,b Menglan Lv, a,b Wenrui Zhang, a,b Chunxia Lian, a Qiwei Wang, a Qingfei Huang, a,b Xiaoxi Wei, c Jingen Deng, a Jin Zhu * a and Bing Gong *cd

a Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
b Graduate University of Chinese Academy of Sciences, Beijing 100049, China
c Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
d College of Chemistry, Beijing Normal University, Beijing 100875, China

Supporting Information

Contents

I. Synthetic Procedures and Analytical Data-- 2
II. GPC Data of 3a, 3b and 3c-- 4
III. 1D 1H and 13C NMR Spectra of New Compounds--------------------------------- 7
IV. Concentration-Dependent 1H NMR Spectra of 3a, 3b, 3c and 4----------------- 9
V. UV Spectra of 3a, 3b, 3c and 4--- 11
VI. Additional CD spectra-- 14
I. Synthetic Procedures and Analytical Data

Chemicals were purchased from commercial sources and used as received. Unless otherwise specified, all solvents were removed with a rotary evaporator. Silica gel for analytical thin layer chromatography (TLC) and column chromatography (200–300 mesh) were purchased from Qingdao Haiyang Chemical Co., Ltd & Spegial Silica Gel Factory. The 1H NMR spectra were recorded at 300 MHz and 13C NMR spectra were measured at 75 MHz on a Bruker-300 spectrometer at ambient temperature using CDCl$_3$ or DMSO-d_6 as solvent (Cambridge Isotope Laboratories, Inc.). Chemical shifts are reported in parts per million downfield from TMS (tetramethylsilane). Coupling constant in 1H NMR are expressed in Hertz. Electrospray ionization high resolution mass spectra (ESI-HRMS) were recorded on a Bruke P-SIMS-Gly FT-ICR mass spectrometer. Circular Dichroism (CD) were recorded on a JASCO J-815 spectrometer. Gel Permeation Chromatography were recorded on a SHMADZU SPD-20A.

I-1. Preparation of polyamide 3

![Diagram of the reaction](image)

Diamine 6 (415 mg, 2 mmol), prepared from the reaction of 3, 5-dinitrobenzoyl chloride and isobutylamine followed by hydrogenation, was dissolved in 16 mL of N, N-dimethylacetamide (DMA) that treated by drying over CaH$_2$ and then being distilled, in a round-bottomed flask. After adding Et$_3$N (1.08 mL, 6 mmol), the solution was purged with N$_2$ a few times and then stirred in an ice-bath for 10 min, to which a solution of diacid chloride 7 (982 mg, 2 mmol), prepared based on known procedures,1 in 16 mL of DMA was added rapidly. The reaction mixture was purged a few more times with nitrogen, and was then let to warm to room temperature and stirred for an additional 8 hrs. After removing solvent, the remaining residue was dissolved/suspended into CH$_2$Cl$_2$, washed with brine for three times, and dried over Na$_2$SO$_4$. Removing solvent led to 3 (1.12 g) as a light yellow powder. Using gel permeation chromatography (GPC), the weight-average molecular weights (M_w) of 3 was determined 14,746, with a molecular-weight dispersity of 6.80.
Oligoamides 4 and 5 were synthesized in good yields based on known synthetic procedures.\(^1\)

Compound 4. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 9.96 (2 H, s), 8.78 (2 H, s), 8.49 (1 H, s), 7.88 (2 H, s), 6.63 (1 H, t, \(J = 6.0\) Hz), 6.52 (2 H, s), 4.21 ~ 4.10 (8 H, m), 4.02 ~ 3.89 (4 H, m), 3.85(6H, s), 3.64 ~ 3.50 (8 H, m), 3.28-3.24 (2 H, m), 1.94-1.89 (1H, m), 1.71- 1.57 (4H, m), 1.47~1.42 (10 H, m), 1.38~1.24(10 H, m), 0.97(6H, d, \(J=6.6\)), 0.88(12H, d, \(J=6.6\)), 0.72 (12 H, d, \(J = 6.6\) Hz). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 166.7, 165.1, 162.8, 162.4, 160.7, 139.4, 137.1, 135.8, 114.8, 114.3, 114.2, 113.7, 97.6, 73.6, 73.1, 72.7, 68.1, 67.5, 51.6, 47.4, 38.9, 38.6, 29.6, 28.6, 25.0, 22.6, 22.4, 20.2, 17.3, 16.9. HRMS (ESI) calcd for C\(_{61}\)H\(_{93}\)N\(_3\)Na\(_2\)O\(_{15}\). ([M+2Na]\(^{+}\)) 1153.6402, found 1153.6426.

Compound 5. \(^1\)H NMR (400 MHz, DMSO-d\(_6\)) \(\delta\) 10.19 (s, 2H), 10.15 (s, 2H), 10.11 (s, 2H), 8.45 (s, 2H), 8.40 (s, 1H), 8.36 (br, 3H), 8.21 (s, 2H), 7.83 (s, 2H), 7.73 (s, 2H), 7.71 (s, 2H), 6.97 (s, 2H), 4.36-4.30 (m, 8H), 3.97 (br, 4H), 3.53-3.50 (m, 4H), 3.48-3.45 (m, 4H), 3.06 (t, \(J = 16\) Hz, 6H), 1.87-1.83 (m, 3H), 1.52-1.47 (m, 4H), 1.30-1.21 (m, 20H), 0.92-0.89 (m, 18H), 0.70-0.67 (m, 24H); \(^{13}\)C NMR (75 MHz, DMSO-d\(_6\)) \(\delta\) 168.4, 166.5, 166.3, 162.6, 160.0, 139.5, 138.8, 138.7, 136.4, 136.4, 134.2, 115.8, 115.7, 114.0, 113.6, 113.2, 98.8, 72.6, 66.5, 46.7, 38.3, 28.1, 24.4, 23.9, 22.3, 22.3, 20.2, 16.8; MS (MALDI-TOF) \(m/z\), Calcd for C\(_{85}\)H\(_{123}\)N\(_9\)O\(_{17}\) 1541.90 (M\(^+\)), Found 1564.9 (M+Na\(^+\)).
II. GPC Data of 3a, 3b and 3c

GPC measurements. GPC measurements on the three fractions of 3 were performed with a GMH_{HR}-N column, with a flow rate of 0.35 ml/min, and using THF as the eluting solvent at room temperature. The injection volume was 10 µL and UV detection at 254 nm was applied. Molecular weights and molecular-weight dispersity were calculated based on 12 polystyrene standards (M_w = 500 to 1.11×10⁶, Table S1).

Table S1. The molecular weights of the 12 polystyrene standards (polydispersity <1.1)

<table>
<thead>
<tr>
<th>entry</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>M<sub>w</sub></td>
<td>5.89×10<sup>2</sup></td>
<td>1.01×10<sup>3</sup></td>
<td>2.5×10<sup>3</sup></td>
<td>4.92×10<sup>3</sup></td>
<td>9.49×10<sup>3</sup></td>
<td>1.71×10<sup>4</sup></td>
<td>3.72×10<sup>4</sup></td>
<td>9.89×10<sup>4</sup></td>
<td>1.89×10<sup>5</sup></td>
<td>3.97×10<sup>5</sup></td>
<td>7.07×10<sup>5</sup></td>
<td>1.11×10<sup>6</sup></td>
</tr>
</tbody>
</table>

GPC traces and results of 3a
GPC traces and results of 3b

![Graph showing GPC traces and results]

<table>
<thead>
<tr>
<th>Chromatogram Det.A Ch1</th>
<th>GPC Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Mn</td>
</tr>
<tr>
<td>cjs-o-o-5-190k.Icd</td>
<td>18597</td>
</tr>
<tr>
<td>Average</td>
<td>18597</td>
</tr>
<tr>
<td>%RSD</td>
<td>0.000</td>
</tr>
<tr>
<td>Maximum</td>
<td>18597</td>
</tr>
<tr>
<td>Minimum</td>
<td>18597</td>
</tr>
<tr>
<td>SD</td>
<td>0</td>
</tr>
</tbody>
</table>
GPC traces and results of 3c

![GPC Graph]

GPC Summary

<table>
<thead>
<tr>
<th>Title</th>
<th>M_n</th>
<th>M_w</th>
<th>M_z</th>
<th>M_{z1}</th>
<th>M_u</th>
<th>M_n/M_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>cis=aa-5-16ok.kd</td>
<td>10198</td>
<td>10486</td>
<td>10777</td>
<td>11076</td>
<td>0</td>
<td>1.02826</td>
</tr>
<tr>
<td>Average</td>
<td>10198</td>
<td>10486</td>
<td>10777</td>
<td>11076</td>
<td>0</td>
<td>1.02826</td>
</tr>
<tr>
<td>%RSD</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Maximum</td>
<td>10198</td>
<td>10486</td>
<td>10777</td>
<td>11076</td>
<td>0</td>
<td>1.02826</td>
</tr>
<tr>
<td>Minimum</td>
<td>10198</td>
<td>10486</td>
<td>10777</td>
<td>11076</td>
<td>0</td>
<td>1.02826</td>
</tr>
<tr>
<td>SD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00000</td>
</tr>
</tbody>
</table>
III. 1D 1H and 13C NMR Spectra

1H NMR spectrum of 4

13C NMR spectrum of 4
1H NMR spectrum of 5

13C NMR spectrum of 5
V. Concentration-Dependent ^1H NMR Spectra of 3a, 3b, 3c and 4

![Chemical structure](image)

Concentration-Dependent ^1H NMR Spectra of 3a

3a: $n=56$
3b: $n=30$
3c: $n=16$
Concentration-Dependent 1H NMR Spectra of 3b

Concentration-Dependent 1H NMR Spectra of 3c
Concentration-Dependent 1H NMR Spectra of 4

VI. UV Data of 3a, 3b, 3c and 4

UV Spectra of 3a (in CHCl₃)
UV Spectra of 3b (in CHCl₃)

UV Spectra of 3c (in CHCl₃)
UV Spectra of 4 (in CHCl₃)
VII. Additional CD Spectra

The CD Spectra of 4 (in CHCl₃)
The CD spectra of 5 (10 µM in CHCl₃) at -10 °C and 60 °C
Temperature-dependent CD Spectra of 3a (70 μM, CHCl₃)
The CD Spectrum of 3a in THF (20 µM, room temperature)