Gold(I) and Platinum(II) switch: A post-Ugi intramolecular hydroarylation to pyrrolopyridinones and pyrroloazepinones

Sachin G. Modha, a,b Amit Kumar, a,c Dipak D. Vachhani, a Sunil K. Sharma, c Virinder S. Parmar, c and Erik V. Van der Eycken a

a Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium.
b Present address: “Mani Bhuvan”, Nr. Lohana Mahajan Vadi, Chhaya-360 578, Porbandar, Gujarat, India.
c Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi- 110 007, India.

Corresponding author: erik.vandereycken@chem.kuleuven.be

Table of Contents

This page ...1

General experimental procedures..2

General procedure of Ugi reaction..3-5

Optimization of the intramolecular hydroarylation..6

General procedure and data for Au(PPh3)OTf catalyzed cyclization..7-11

General procedure and data for PtCl2 catalyzed cyclization..12-15

Copies of 1H, 13C and NOESY NMR spectra..16-33
General Experimental Methods

NMR spectra were recorded on a 400 MHz & 300 MHz instrument using CDCl\textsubscript{3} and DMSO-d\textsubscript{6} as solvent, stated accordingly. The 1H and 13C chemical shifts are reported in parts per million relative to tetramethylsilane as an internal standard. For the Mass spectrometry, ion source temperature was 150-250 °C, as required. High-resolution EI-mass spectra were performed with a resolution of 10,000. For chromatography, analytical TLC plates and 70-230 mesh silica gel were used. All the solvents and chemicals were purchased and used as available. All the reactions at rt and heating were carried out in a screw capped vial under air.

Table 1. Starting materials

<table>
<thead>
<tr>
<th>Aldehyde</th>
<th>Amine</th>
<th>2-alkynoic acid</th>
<th>Isonitrile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General procedure for synthesis of Ugi products 5a-i

To a solution of 2-formylpyrrole 1a-e (1.83 mmol, 1 equiv) in methanol (3 mL) were added successively Na$_2$SO$_4$ (0.3 g), amine 2a-c (1.2 equiv), alkynoic acid 3a-c (1.2 equiv) and isonitrile 4a-b (1.2 equiv) in a screw capped vial equipped with a magnetic stir bar. The reaction mixture was stirred at 50 °C under air for 24-48 h in an oil bath. After completion of the reaction, the mixture was diluted with EtOAc (100 mL) and was extracted with water (50 mL). Organic layer was washed with brine (50 mL), dried over magnesium sulfate and evaporated under reduced pressure to obtain residue which was subjected to silica gel column chromatography (80% EtOAc in Heptane) to afford the desired product 5a-i as solid.

Ugi products appear as mixture of two rotamers, so 1H and 13C NMR spectra are not very characteristic. Only representative data for one compound are given.

White solid, Yield 83% (mixture of rotamers ~ 1:3). Melting point: 192-194 °C.

1H NMR (300 MHz, CDCl$_3$) δ 6.85 (d, $J=8.49$Hz, 0.55H), 6.78 (d, $J=8.67$Hz, 1.51H), 6.66 (m, 2H), 6.51 (m, 0.26H), 6.31 (m, 1.49H), 6.22 (bs, 0.24H), 6.12 (t, 0.25H), 6.02 (t, 0.74H), 5.95 (s, 0.75H), 5.88 (s, 0.26H), 5.53 (bs, 0.78H), 4.47 (d, $J=15.84$Hz, 0.75H), 4.47 (d, $J=15.84$Hz, 0.76H), 4.37(d, $J=7.53$Hz, 0.44H), 3.75 (s, 3H), 3.15 (s, 0.75H), 3.01 (s, 2.27H), 2.01 (m, 3H), 1.33 (s, 6.69H), 1.27 (s, 2.40H).

13C NMR (75 MHz, CDCl$_3$) δ 167.5, 167.3, 158.7, 158.4, 156.0, 155.6, 130.8, 130.1, 129.8, 129.1, 125.0, 123.7, 123.4, 113.4, 113.2, 111.5, 111.3, 107.5, 91.2, 90.4, 74.2, 73.3, 60.2, 55.2, 53.8, 51.7, 51.6, 49.8, 45.6, 33.3, 33.1, 28.5, 28.4, 4.1(2).

HRMS calculated for C$_{23}$H$_{29}$N$_3$O$_3$ 395.2209, found 395.2207.
<table>
<thead>
<tr>
<th>Structure</th>
<th>Data</th>
</tr>
</thead>
</table>
| ![Structure](image) | \(N-(2-(\text{cyclohexylamino})\text{-}1-(1\text{-methyl}-1H\text{-}pyrrol-2-yl}\text{-}2\text{-oxoethyl})\text{-}N\text{-}(4\text{-methoxybenzyl})\text{but-2-ynamide} (5b) \)
White solid, Yield 72%, Melting point: 164-166 °C.
HRMS calculated for C\(_{25}\)H\(_{31}\)N\(_3\)O\(_3\) 421.2365 found 421.2354 |
| ![Structure](image) | \(N\text{-butyl}\text{-}N\text{-}(2-(\text{cyclohexylamino})\text{-}1-(1\text{-methyl}-1H\text{-}pyrrol-2-yl}\text{-}2\text{-oxoethyl})\text{but-2-ynamide} (5c) \)
White solid, Yield 87%, Melting point: 118-120 °C.
HRMS calculated for C\(_{21}\)H\(_{31}\)N\(_3\)O\(_2\) 357.2416 found 357.2418 |
| ![Structure](image) | \(N\text{-}(2-(\text{tert-butylamino})\text{-}1-(1\text{-methyl}-1H\text{-}pyrrol-2-yl}\text{-}2\text{-oxoethyl})\text{-}N\text{-}(4\text{-methoxybenzyl})\text{pent-2-ynamide} (5d) \)
White solid, Yield 69%, Melting point: 152-154 °C.
HRMS calculated for C\(_{24}\)H\(_{31}\)N\(_3\)O\(_3\) 409.2365 found 409.2350 |
| ![Structure](image) | \(N\text{-}(2-(\text{tert-butylamino})\text{-}1-(1\text{-methyl}-1H\text{-}pyrrol-2-yl}\text{-}2\text{-oxoethyl})\text{-}N\text{-}(4\text{-methoxybenzyl})\text{-}3\text{-}(4\text{-methoxyphenyl})\text{propiolamide} (5e) \)
White solid, Yield 84%, Melting point: 161-163 °C.
HRMS calculated for C\(_{29}\)H\(_{33}\)N\(_3\)O\(_4\) 487.2471 found 487.2474 |
| ![Structure](image) | \(N\text{-}(2-(\text{tert-butylamino})\text{-}2\text{-oxo-1-(1\text{-}p\text{-}tolyl})\text{-}1H\text{-}pyrrol-2-yl)\text{ethyl})\text{-}N\text{-}(4\text{-methoxybenzyl})\text{but-2-ynamide} (5f) \)
Yellow solid, Yield 69%, Melting point: 125-127 °C.
HRMS calculated for C\(_{29}\)H\(_{33}\)N\(_3\)O\(_3\) 471.2522 found 471.2520 |
<table>
<thead>
<tr>
<th>Chemical Structure</th>
<th>Reaction Equation</th>
<th>Physical Properties</th>
<th>Analytical Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N-(1-(1-benzyl-1H-pyrrol-2-yl)-2-(tert-buty lamino)-2-oxoethyl)-N-cyclohexylbut-2-ynamide (5g)</td>
<td>Offwhite solid, Yield 53%, Melting point: 165-167 °C.</td>
<td>HRMS calculated for $C_{27}H_{35}N_{3}O_{2}$ 433.2729 found 433.2730</td>
</tr>
<tr>
<td></td>
<td>N-(2-(tert-buty lamino)-1-(4-methyl-4H-thieno[3,2-b]pyrrol-5-yl)-2-oxoethyl)-N-(4-methoxybenzyl)but-2-ynamide (5h)</td>
<td>Offwhite solid, Yield 93%, Melting point: 179-181 °C.</td>
<td>HRMS calculated for $C_{25}H_{29}N_{3}O_{3}S$ 451.1930 found 451.1934</td>
</tr>
<tr>
<td></td>
<td>N-butyl-N-(2-(tert-buty lamino)-2-oxo-1-(1-tosyl-1H-pyrrol-2-yl)ethyl)but-2-ynamide (5i)</td>
<td>Offwhite solid, Yield 93%, Melting point: 144-146 °C.</td>
<td>HRMS calculated for $C_{29}H_{33}N_{3}O_{5}S$ 471.2192 found 371.1401 (M-C${5}$H${10}$NO)</td>
</tr>
</tbody>
</table>
Table I Optimization of the intramolecular hydroarylationa

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst (mol %)</th>
<th>Solvent</th>
<th>Time (h)</th>
<th>Temp °C</th>
<th>Conversion (% (6a/7a)b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AuCl (5)</td>
<td>CDCl$_3$</td>
<td>24</td>
<td>50 °C</td>
<td>25 (0/25)</td>
</tr>
<tr>
<td>2</td>
<td>AuCl$_3$ (5)</td>
<td>CDCl$_3$</td>
<td>24</td>
<td>50 °C</td>
<td>35 (0/35)</td>
</tr>
<tr>
<td>3</td>
<td>Au(PPh$_3$)Cl (5)</td>
<td>CDCl$_3$</td>
<td>24</td>
<td>50 °C</td>
<td>0 (0/0)</td>
</tr>
<tr>
<td>4</td>
<td>Au(PPh$_3$)OTf (5)</td>
<td>CDCl$_3$</td>
<td>24</td>
<td>rt</td>
<td>47 (47/0)</td>
</tr>
<tr>
<td>5</td>
<td>Au(PPh$_3$)OTf (5)</td>
<td>CDCl$_3$</td>
<td>3</td>
<td>50 °C</td>
<td>100 (93/0)c</td>
</tr>
<tr>
<td>6</td>
<td>Au(PPh$_3$)SbF$_6$ (5)</td>
<td>CDCl$_3$</td>
<td>24</td>
<td>rt</td>
<td>30 (30/0)</td>
</tr>
<tr>
<td>7</td>
<td>AgOTf (5)</td>
<td>CDCl$_3$</td>
<td>24</td>
<td>rt</td>
<td>0 (0/0)</td>
</tr>
<tr>
<td>8</td>
<td>AgOTf (5)</td>
<td>CDCl$_3$</td>
<td>24</td>
<td>50 °C</td>
<td>50 (0/50)</td>
</tr>
<tr>
<td>9</td>
<td>PtCl$_2$ (5)</td>
<td>CDCl$_3$</td>
<td>24</td>
<td>rt</td>
<td>0 (0/0)</td>
</tr>
<tr>
<td>10</td>
<td>PtCl$_2$ (5)</td>
<td>CDCl$_3$</td>
<td>14</td>
<td>50 °C</td>
<td>100 (10/82)c</td>
</tr>
<tr>
<td>11</td>
<td>PtCl$_2$ (5)</td>
<td>CDCl$_3$</td>
<td>24</td>
<td>35 °C</td>
<td>10 (0/10)</td>
</tr>
<tr>
<td>12</td>
<td>PtCl$_2$ (5)</td>
<td>CDCl$_3$</td>
<td>6</td>
<td>80 °C</td>
<td>100 (25/75)</td>
</tr>
<tr>
<td>13</td>
<td>PtCl$_2$ (5)</td>
<td>CDCl$_3$</td>
<td>4</td>
<td>120 °C</td>
<td>100 (35/75)</td>
</tr>
<tr>
<td>14</td>
<td>H$_2$PtCl$_6$·6H$_2$O (5)</td>
<td>CDCl$_3$</td>
<td>24</td>
<td>rt</td>
<td>0 (0/0)</td>
</tr>
<tr>
<td>15</td>
<td>H$_2$PtCl$_6$·6H$_2$O (5)</td>
<td>CDCl$_3$</td>
<td>24</td>
<td>50 °C</td>
<td>traces (0/traces)</td>
</tr>
<tr>
<td>16</td>
<td>Au(PPh$_3$)OTf (5)</td>
<td>ACN-d$_3$</td>
<td>24</td>
<td>50 °C</td>
<td>100 (60/0)d</td>
</tr>
<tr>
<td>17</td>
<td>Au(PPh$_3$)OTf (5)</td>
<td>THF-d$_8$</td>
<td>24</td>
<td>50 °C</td>
<td>100 (45/0)d</td>
</tr>
<tr>
<td>18</td>
<td>Au(PPh$_3$)OTf (5)</td>
<td>Toluene-d$_8$</td>
<td>24</td>
<td>50 °C</td>
<td>47 (47/0)</td>
</tr>
<tr>
<td>19</td>
<td>PtCl$_2$ (5)</td>
<td>ACN-d$_3$</td>
<td>24</td>
<td>50 °C</td>
<td>0 (0/0)</td>
</tr>
<tr>
<td>20</td>
<td>PtCl$_2$ (5)</td>
<td>THF-d$_8$</td>
<td>24</td>
<td>50 °C</td>
<td>5 (0/5)</td>
</tr>
<tr>
<td>21</td>
<td>PtCl$_2$ (5)</td>
<td>Toluene-d$_8$</td>
<td>24</td>
<td>50 °C</td>
<td>15 (0/15)</td>
</tr>
<tr>
<td>22</td>
<td>Au(PPh$_3$)OTf (2)</td>
<td>CDCl$_3$</td>
<td>24</td>
<td>50 °C</td>
<td>40 (40/0)</td>
</tr>
<tr>
<td>23</td>
<td>PtCl$_2$ (2)</td>
<td>CDCl$_3$</td>
<td>48</td>
<td>50 °C</td>
<td>50 (10/40)</td>
</tr>
</tbody>
</table>

a All reactions were run on a 0.1 mmol scale of 5a in a screw capped vial under air. All the reactions in heating were also carried out in screw capped vial under air in an oil bath. b Conversion and ratio based on 1H NMR analysis; c Isolated yields; d Unidentified byproducts formed. PMB = p-methoxybenzyl
General procedure for Au(PPh₃)OTf catalyzed cyclization.

To a screw capped vial equipped with a magnetic stir bar was added Au(PPh₃)Cl (5 mol%) and AgOTf (5 mol%) along with chloroform (2 mL). Ugi product 5a-i (0.2 mmol) was added and reaction mixture was stirred at 50 °C under air in an oil bath until completion. After completion, reaction mixture was partitioned between EtOAc (100 mL) and water (50 mL). Organic layer was washed with brine (50 mL), dried over magnesium sulfate and evaporated under reduced pressure. The residue obtained was purified by silica gel column chromatography (10% diethyl ether in dichloromethane) to afford compound 6a-i.

\[(E)-N-(\text{tert}-\text{butyl})-4-\text{ethyldiene}-6-(4-\text{methoxybenzyl})-1-\text{methyl}-5-\text{oxo}-4,5,6,7-\text{tetrahydro}-1H-\text{pyrrolo[2,3-c]pyridine}-7-\text{carboxamide (6a)}\]

Geometry of exo-cyclic double bond was confirmed by NOESY NMR experiment.

Offwhite solid, Yield 93%, Melting point: 160-162 °C.

\[^{1}H\text{ NMR (300 MHz, CDCl}_3\) \delta 7.28 (d, \textit{J} = 8.76Hz, 2H), 6.94 (q, 1H), 6.83 (d, \textit{J} = 8.64Hz, 2H), 6.62 (d, \textit{J} = 2.82Hz, 1H), 6.37 (d, \textit{J} = 3.03Hz, 1H), 5.54 (d, \textit{J} = 14.52Hz, 1H), 5.33 (bs, 1H), 4.84 (s, 1H), 3.90 (d, \textit{J} = 14.67Hz, 1H), 3.77 (s, 3H), 3.57 (s, 3H), 2.10 (d, \textit{J} = 7.53, 3H), 1.21 (s, 9H).\]

\[^{13}C\text{ NMR (75 MHz, CDCl}_3\) \delta 167.9, 164.8, 159.2, 130.1, 129.3, 128.4, 124.5, 123.9, 121.8, 116.0, 114.0, 105.3, 61.3, 55.2, 51.6, 48.7, 34.2, 28.4, 14.8.\]

HRMS calculated for C₂₃H₂₉N₃O₃ 395.2209, found 395.2211.
(E)-N-cyclohexyl-4-ethylidene-6-(4-methoxybenzyl)-1-methyl-5-oxo-4,5,6,7-tetrahydro-1H-pyrrolo[2,3-c]pyridine-7-carboxamide (6b)

White solid, Yield 90%, Melting point: 215-217 °C.

1H NMR (300 MHz, CDCl$_3$) δ 7.25 (d, J = 8.49Hz, 2H), 6.93 (q, 1H), 6.83 (d, J = 8.49Hz, 2H), 6.61 (d, J = 2.64Hz, 1H), 6.36 (d, J = 2.82Hz, 1H), 5.56 (d, J = 14.70Hz, 1H), 5.48 (d, J = 7.92Hz, 1H), 4.94 (s, 1H), 3.86 (d, J =14.67Hz, 1H), 3.77 (s, 3H), 3.60 (s, 3H), 2.09 (d, J = 7.35, 3H), 2.10-2.07 (m, 1H), 1.60-1.54 (m, 4H), 1.34-1.25 (m, 2H), 1.13-0.95 (m, 3H).

13C NMR (75 MHz, CDCl$_3$) δ 167.8, 165.1, 159.2, 129.9, 129.3, 128.3, 124.6, 124.0, 121.7, 116.1, 114.0, 105.3, 60.2, 55.2, 48.9, 48.5, 34.4, 32.6, 32.4, 25.3, 24.5(2), 14.8.

HRMS calculated for C$_{25}$H$_{31}$N$_3$O$_3$ 421.2365, found 421.2360.

(E)-6-butyl-N-cyclohexyl-4-ethylidene-1-methyl-5-oxo-4,5,6,7-tetrahydro-1H-pyrrolo[2,3-c]pyridine-7-carboxamide (6c)

White solid, Yield 77%, Melting point: 219-221 °C.

1H NMR (300 MHz, CDCl$_3$) δ 6.86 (q, 1H), 6.65 (d, J = 2.82Hz, 1H), 6.36 (d, J = 3.00Hz, 1H), 5.48 (d, J = 7.92Hz, 1H), 5.04 (s, 1H), 4.15-4.05 (m, 1H), 3.73 (s, 3H), 3.65-3.59 (m, 1H), 2.93-2.84 (m, 1H), 2.06 (d, J = 7.56, 3H), 1.85-1.82 (m, 1H), 1.66-1.55 (m, 7H), 1.37-1.25 (m, 4H), 1.13-0.99 (m, 2H), 0.92 (t, 3H).

13C NMR (75 MHz, CDCl$_3$) δ 168.2, 164.9, 128.7, 124.6, 124.1, 121.7, 116.2, 105.3, 61.5, 48.5, 47.3, 34.5, 32.6, 32.4, 29.3, 25.3, 24.5, 24.4, 20.2, 14.8, 13.8.

HRMS calculated for C$_{21}$H$_{31}$N$_2$O$_2$ 357.2416, found 357.2395.
(E)-N-(tert-butyl)-6-(4-methoxybenzyl)-1-methyl-5-oxo-4-propylidene-4,5,6,7-tetrahydro-1H-pyrrolo[2,3-c]pyridine-7-carboxamide (6d)

White solid, Yield 93%, Melting point: 154-156 °C.

1H NMR (300 MHz, CDCl$_3$) δ 7.28 (d, J = 8.64 Hz, 2H), 6.84-6.79 (m, 3H), 6.61 (d, J = 2.82 Hz, 1H), 6.32 (d, J = 2.82 Hz, 1H), 5.53 (d, J = 14.52 Hz, 1H), 5.33 (bs, 1H), 4.83 (s, 1H), 3.92 (d, J = 14.49 Hz, 1H), 3.77 (s, 3H), 3.57 (s, 3H), 2.56-2.50 (m, 2H), 1.21-1.15 (m, 12H).

13C NMR (75 MHz, CDCl$_3$) δ 167.9, 164.9, 159.2, 136.7, 130.1, 128.4, 124.6, 122.4, 121.9, 115.9, 114.0, 105.3, 61.2, 55.2, 51.6, 48.7, 34.2, 28.4, 22.3, 13.6.

HRMS calculated for C$_{24}$H$_{31}$N$_3$O$_3$ 409.2365, found 409.2365.

(6e)

White solid, Yield 87%, Melting point: 68-70 °C.

1H NMR (300 MHz, CDCl$_3$) δ 7.44 (d, J = 8.64 Hz, 2H), 7.15 (d, J = 8.64 Hz, 2H), 6.89 (d, J = 8.86 Hz, 2H), 6.83 (d, J = 8.49 Hz, 2H), 6.48 (d, J = 2.82 Hz, 1H), 6.20 (s, 1H), 5.93 (d, J = 2.82 Hz, 1H), 5.54 (bs, 1H), 5.38 (d, J = 14.67 Hz, 1H), 4.85 (s, 1H), 4.42 (d, J = 14.07 Hz, 1H), 3.84 (s, 3H), 3.79 (s, 3H), 3.07 (s, 3H), 1.09 (s, 9H).

13C NMR (75 MHz, CDCl$_3$) δ 167.8, 167.3, 160.2, 159.3, 143.5, 132.6, 129.9, 129.8, 129.2(2), 122.9, 120.2, 118.2, 114.2, 113.6, 108.4, 55.6, 55.3(2),52.0, 51.7, 33.1, 28.2.

HRMS calculated for C$_{29}$H$_{33}$N$_3$O$_4$ 487.2471, found 487.2488.
(E)-N-(tert-butyl)-4-ethylidene-6-(4-methoxybenzyl)-5-oxo-1-(p-tolyl)-4,5,6,7-tetrahydro-1H-pyrrolo[2,3-c]pyridine-7-carboxamide (6f)

Brown solid, Yield 35%, Melting point: 113-115 °C.

1H NMR (300 MHz, CDCl$_3$) \(\delta\) 7.26-7.18 (m, 4H), 7.07-6.96 (m, 3H), 6.86-6.81 (m, 3H), 6.56 (d, \(J= 2.82\text{Hz}\), 1H), 5.56 (d, \(J= 14.88\text{Hz}\), 1H), 4.80 (s, 1H), 4.75 (bs, 1H), 3.88 (d, \(J= 14.67\text{Hz}\), 1H), 3.80 (s, 3H), 2.37 (s, 3H), 2.14 (d, \(J= 7.53\text{Hz}\), 1H), 1.06 (s, 9H).

13C NMR (75 MHz, CDCl$_3$) \(\delta\) 166.5, 165.1, 159.0, 138.1, 136.1, 130.2, 130.1, 129.8, 128.9, 125.0, 124.4, 124.3, 122.0, 118.3, 113.9, 106.8, 59.5, 55.3, 51.3, 48.4, 28.2, 21.0, 14.9.

HRMS calculated for C$_{29}$H$_{33}$N$_3$O$_3$ 471.2522, found 471.2549.

(E)-1-benzyl-N-(tert-butyl)-6-cyclohexyl-4-ethylidene-5-oxo-4,5,6,7-tetrahydro-1H-pyrrolo[2,3-c]pyridine-7-carboxamide (6g)

White solid, Yield 95%, Melting point: 147-149 °C.

1H NMR (300 MHz, CDCl$_3$) \(\delta\) 7.34-7.27 (m, 3H), 7.08 (d, \(J= 6.78\text{Hz}\), 2H), 6.83-6.73 (m, 2H), 6.35 (d, \(J= 2.82\text{Hz}\), 1H), 5.61 (d, \(J= 15.81\text{Hz}\), 1H), 5.54 (bs, 1H), 5.12 (d, \(J= 15.99\text{Hz}\), 1H), 4.71 (s, 1H), 4.44 (m, 1H), 2.07 (d, \(J= 7.53\text{Hz}\), 1H), 1.76-1.70 (m, 2H), 1.61-1.52 (m, 2H), 1.31-1.25 (m, 4H), 1.19 (s, 9H), 0.96-0.77 (m, 2H).

13C NMR (75 MHz, CDCl$_3$) \(\delta\) 169.7, 165.7, 137.5, 128.8, 128.7, 127.6, 126.9, 126.0, 124.1, 123.8, 116.4, 105.4, 57.1, 55.1, 51.6, 51.2, 29.8, 29.4, 28.4, 25.8, 25.5, 25.1, 14.7.

HRMS calculated for C$_{27}$H$_{35}$N$_3$O$_2$ 433.2729, found 433.2725.
(E)-N-(tert-butyl)-8-ethylidene-6-(4-methoxybenzyl)-4-methyl-7-oxo-5,6,7,8-tetrahydro-4H-thieno[2',3':4,5]pyrrolo[2,3-c]pyridine-5-carboxamide (6h)

Yellow solid, Yield 86%, Melting point: 204-206 °C.

1H NMR (300 MHz, CDCl$_3$) δ 7.26 (d, J= 8.46Hz, 2H), 7.12 (d, J= 5.28Hz, 1H), 6.94-6.87 (m, 2H), 6.83 (d, J= 8.67Hz, 2H), 5.49-5.44 (m, 2H), 4.89 (s, 1H), 4.01 (d, J=14.70Hz, 1H), 3.77 (s, 3H), 3.72 (s, 3H), 2.31 (d, J= 7.53, 3H), 1.20 (s, 9H).

13C NMR (75 MHz, CDCl$_3$) δ 167.5, 165.2, 159.3, 142.4, 129.9, 129.6, 128.1, 127.6, 124.4, 124.2, 118.9, 114.1, 110.1, 108.8, 60.7, 55.2, 51.7, 49.1, 32.6, 28.4, 15.6.

HRMS calculated for C$_{25}$H$_{29}$N$_3$O$_3$S 451.1930, found 451.1943.

(E)-N-(tert-butyl)-6-butyl-4-ethylidene-5-oxo-1-tosyl-4,5,6,7-tetrahydro-1H-pyrrolo[2,3-c]pyridine-7-carboxamide (6i)

White solid, Yield 72%, Melting point: 114-116 °C.

1H NMR (300 MHz, CDCl$_3$) δ 7.62 (d, J= 8.28Hz, 2H), 7.27 (d, J= 8.13Hz, 2H), 6.78 (d, J= 4.32Hz, 1H), 6.53 (q, 1H), 5.23 (d, J= 4.35Hz, 1H), 4.76 (bs, 1H), 4.52 (s, 1H), 3.90-3.80 (m, 1H), 3.59-3.50 (m, 1H), 2.43 (s, 3H), 1.77-1.67 (m, 2H), 1.48-1.32 (m, 11H), 1.01-0.95 (m, 6H).

13C NMR (75 MHz, CDCl$_3$) δ 169.2, 165.3, 144.2, 137.3, 136.5, 133.4, 131.6, 129.5, 127.3, 106.3, 72.4, 66.7, 66.1, 55.3, 41.6, 28.5, 27.8, 21.6, 20.1, 13.8, 13.5.

HRMS calculated for C$_{29}$H$_{33}$N$_3$O$_5$S 471.2192, found 471.2150.
General procedure for PtCl₂ catalyzed cyclization.

To a screw capped vial equipped with a magnetic stir bar was added PtCl₂ (5 mol%) along with chloroform (2 mL). Ugi product 5a-i (0.2 mmol) was added and reaction mixture was stirred at 50 °C under air in an oil bath until completion. After completion, reaction mixture was partitioned between EtOAc (100 mL) and water (50 mL). Organic layer was washed with brine (50 mL), dried over magnesium sulfate and evaporated under reduced pressure. The residue obtained was purified by silica gel column chromatography (20% diethyl ether in dichloromethane) to afford compound 7a-d, f-h.

\[
N-(\text{tert-butyl})-7-(4\text{-methoxybenzyl})-1,4\text{-dimethyl}-6\text{-oxo}-1,6,7,8\text{-tetrahydropyrrolo[2,3-c}azepine-8\text{-carboxamide (7a)}
\]

White solid, Yield 82%, Melting point: 110-112 °C.

\[
^1H \text{ NMR (400 MHz, CDCl}_3) \delta 7.16 (d, J= 8.56Hz, 2H), 6.82 (d, J= 8.32Hz, 2H), 6.49(d, J= 2.76Hz, 1H), 6.17 (d, J= 2.76Hz, 1H), 5.94 (s, 1H), 5.35 (bs, 1H), 5.20 (d, J= 14.36Hz, 1H), 4.76 (s, 1H), 4.46 (d, J=14.60Hz, 1H), 3.78 (s, 3H), 3.11 (s, 3H), 2.13 (s, 3H), 1.15 (s, 9H).
\]

\[
^13C \text{ NMR (75 MHz, CDCl}_3) \delta 167.4, 167.2, 159.3, 141.3, 129.9, 129.3, 128.0, 123.0, 121.3, 118.8, 114.2, 105.9, 55.7, 55.3, 52.0, 51.6, 33.2, 28.3, 22.8.
\]

HRMS calculated for C₂₃H₂₉N₃O₃ 395.2209, found 395.2211.

\[
N\text{-cyclohexyl}-7-(4\text{-methoxybenzyl})-1,4\text{-dimethyl}-6\text{-oxo}-1,6,7,8\text{-tetrahydropyrrolo[2,3-c}azepine-8\text{-carboxamide (7b)}
\]

White solid, Yield 60%, Melting point: 153-155 °C.
1H NMR (300 MHz, CDCl$_3$) δ 7.15 (d, J = 8.64 Hz, 2H), 6.82 (d, J = 8.67 Hz, 2H), 6.49 (d, J = 2.82 Hz, 1H), 6.17 (d, J = 2.82 Hz, 1H), 5.94 (s, 1H), 5.40 (d, J = 8.28 Hz, 1H), 5.25 (d, J = 14.49 Hz, 1H), 4.82 (s, 1H), 4.43 (d, J = 14.49 Hz, 1H), 3.78 (s, 3H), 3.67-3.57 (m, 1H), 3.10 (s, 3H), 2.12 (d, J = 0.75 Hz, 3H), 1.70-1.55 (m, 4H), 1.29-1.20 (m, 2H), 0.98-0.86 (m, 4H).

13C NMR (75 MHz, CDCl$_3$) δ 167.5, 167.0, 159.3, 141.4, 129.9, 127.7, 123.0, 121.5, 118.7, 114.3, 105.9, 55.3, 55.1, 51.9, 48.5, 33.2, 32.8, 32.5, 25.3, 24.5(2), 22.9.

HRMS calculated for C$_{25}$H$_{31}$N$_3$O$_3$ 421.2365, found 421.2362.

![Structure](image1)

7-butyl-N-cyclohexyl-1,4-dimethyl-6-oxo-1,6,7,8-tetrahydropyrrolo[2,3-c]azepine-8-carboxamide (7c)

White solid, Yield 75%, Melting point: 122-124 °C.

1H NMR (300 MHz, CDCl$_3$) δ 6.62 (d, J = 2.82 Hz, 1H), 6.19 (d, J = 2.85 Hz, 1H), 5.86 (s, 1H), 5.68 (d, J = 8.07 Hz, 1H), 4.88 (s, 1H), 3.89-3.79 (m, 1H), 3.72 (m, 4H), 3.48-3.39 (m, 1H), 2.10 (d, J = 0.96 Hz, 3H), 1.79-1.71 (m, 2H), 1.59-1.54 (m, 5H), 1.33-1.25 (m, 4H), 1.11-1.02 (m, 3H), 0.90 (t, 3H).

13C NMR (75 MHz, CDCl$_3$) δ 167.2, 167.0, 141.1, 127.8, 123.3, 121.5, 118.8, 106.1, 57.5, 50.3, 48.7, 34.0, 32.8, 32.6, 31.0, 25.3, 24.6, 24.5, 22.9, 20.0, 13.9.

HRMS calculated for C$_{21}$H$_{31}$N$_3$O$_2$ 357.2416, found 357.2405.

![Structure](image2)

N-(tert-butyl)-4-ethyl-7-(4-methoxybenzyl)-1-methyl-6-oxo-1,6,7,8-tetrahydropyrrolo[2,3-c]azepine-8-carboxamide (7d)

White solid, Yield 83%, Melting point: 126-128 °C.
1H NMR (300 MHz, CDCl₃) δ 7.16 (d, J = 8.67Hz, 2H), 6.83 (d, J = 8.67Hz, 2H), 6.49(d, J = 2.82Hz, 1H), 6.16 (d, J = 2.82Hz, 1H), 5.94 (s, 1H), 5.39 (bs, 1H), 5.16 (d, J = 14.67Hz, 1H), 4.77 (s, 1H), 4.50 (d, J = 14.49Hz, 1H), 3.79 (s, 3H), 3.13 (s, 3H), 2.53-2.41 (m, 2H), 1.15-1.10 (m, 12H).

13C NMR (75 MHz, CDCl₃) δ 167.7, 167.2, 159.3, 147.0, 129.9, 129.3, 128.4, 123.0, 120.5, 117.1, 114.3, 105.5, 55.8, 55.3, 52.0, 51.6, 33.2, 29.5, 28.3, 13.2.

HRMS calculated for C₂₄H₃₁N₃O₃ 409.2365, found 409.2338.

N-(tert-butyl)-7-(4-methoxybenzyl)-4-methyl-6-oxo-1-(p-tolyl)-1,6,7,8-tetrahydropyrrolo[2,3-c]azepine-8-carboxamide (7f)

Sticky solid, Yield 63%.

1H NMR (300 MHz, CDCl₃) δ 7.16 (d, J = 7.92Hz, 2H), 6.97-6.90 (m, 4H), 6.73-6.69 (m, 3H), 6.33 (d, J = 2.82Hz, 1H), 5.99 (s, 1H), 5.31 (bs, 1H), 4.73 (s, 1H), 4.67 (d, J = 14.49Hz, 1H), 4.53 (d, J = 14.31Hz, 1H), 3.78 (s, 3H), 2.42 (s, 3H), 2.19 (s, 3H), 1.13 (s, 9H).

13C NMR (75 MHz, CDCl₃) δ 167.6, 167.1, 159.2, 141.2, 138.0, 135.4, 129.9(2), 129.1, 128.4, 125.7, 123.1, 121.8, 119.4, 114.1, 106.9, 56.2, 55.2, 51.9, 51.6, 28.3, 22.9, 21.1.

HRMS calculated for C₂₉H₃₃N₃O₃ 471.2522, found 471.2492.

1-benzyl-N-(tert-butyl)-7-cyclohexyl-4-methyl-6-oxo-1,6,7,8-tetrahydropyrrolo[2,3-c]azepine-8-carboxamide (7g)

Green solid, Yield 50%, Melting point: 157-159 °C.
1H NMR (300 MHz, CDCl$_3$) δ 7.36-7.31 (m, 3H), 7.22-7.19 (m, 2H), 6.75 (d, J= 2.64Hz, 1H), 6.26 (d, J= 2.61Hz, 1H), 5.89 (s, 1H), 5.32-5.26 (m, 2H), 5.14 (d, J= 15.99Hz, 1H), 4.84 (s, 1H), 4.50-4.42 (m, 1H), 2.10 (s, 3H), 1.95-1.92 (m, 1H), 1.81-1.78 (m, 1H), 1.67-1.49 (m, 2H), 1.40-1.25 (m, 4H), 1.10 (s, 9H), 0.97-0.72 (m, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 167.4, 167.1, 139.8, 136.8, 129.2, 128.6, 128.3, 126.9, 123.3, 122.5, 119.9, 106.4, 54.5, 52.2, 51.4, 51.2, 32.0, 31.0, 28.2, 25.8, 25.6, 25.4, 22.7.

HRMS calculated for C$_{27}$H$_{35}$N$_3$O$_2$ 433.2729, found 433.2711.

Green solid, Yield 79%, Melting point: 210-212 °C.

1H NMR (300 MHz, CDCl$_3$) δ 7.20 (d, J= 8.67Hz, 2H), 7.13 (d, J= 5.25Hz, 1H), 6.88-6.82 (m, 3H), 6.00 (s, 1H), 5.46 (bs, 1H), 5.15 (d, J= 14.49Hz, 1H), 4.87 (s, 1H), 4.54 (d, J=14.49Hz, 1H), 3.79 (s, 3H), 3.28 (s, 3H), 2.30 (d, J= 0.93Hz, 3H), 1.16 (s, 9H).

13C NMR (75 MHz, CDCl$_3$) δ 167.1, 166.7, 159.5, 140.8, 140.3, 132.9, 130.1, 129.0, 124.2, 120.5, 118.7, 114.4(2), 110.2, 56.2, 55.4, 52.0, 51.9, 31.5, 28.4, 23.4.

HRMS calculated for C$_{25}$H$_{29}$N$_3$O$_3$S 451.1930, found 451.1929.
1H and 13C NMR spectra of compound 5a (300 MHz, CDCl$_3$)
1H and 13C NMR spectra of compound 6a (300 MHz, CDCl$_3$)
NOESY NMR spectra of compound 6a (400 MHz, CDCl₃).
1H and 13C NMR spectra of compound 6b (300 MHz, CDCl$_3$)
1H and 13C NMR spectra of compound 6c (300 MHz, CDCl$_3$)
1H and 13C NMR spectra of compound 6d (300 MHz, CDCl$_3$)
1H and 13C NMR spectra of compound 6e (300 MHz, CDCl$_3$)
1H and 13C NMR spectra of compound 6f (300 MHz, CDCl$_3$)
1H and 13C NMR spectra of compound 6g (300 MHz, CDCl$_3$)
1H and 13C NMR spectra of compound 6h (300 MHz, CDCl$_3$)
1H and 13C NMR spectra of compound 6i (300 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$) and 13C NMR (75 MHz, CDCl$_3$) spectra of compound 7a

1H and 13C NMR spectra of compound 7b (300 MHz, CDCl$_3$)

![NMR spectra](image)
^{1}H and ^{13}C NMR spectra of compound 7c (300 MHz, CDCl$_3$)

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2012
1H and 13C NMR spectra of compound 7d (300 MHz, CDCl$_3$)
1H and 13C NMR spectra of compound 7f (300 MHz, CDCl$_3$)
1H and 13C NMR spectra of compound 7g (300 MHz, CDCl$_3$)
1H and 13C NMR spectra of compound 7h (300 MHz, CDCl$_3$)