Supporting information for

Preparation and study of an f,f,f’,f’’ covalently linked tetranuclear hetero-trimetallic complex – a Europium, Terbium, Dysprosium triad

Thomas Just Sørensen, Manuel Tropiano, Octavia A. Blackburn, James A. Tilney, Alan M. Kenwright and Stephen Faulkner

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

Table of contents

Table of contents... 1
Experimental procedures... 2
NMR ... 3
Luminescence ... 7
Titration with iso-phthalate ... 11
References... 13
Experimental procedures

1. Dy₂TbEu. The complex 2. Dy₂·6NaO₃SCF₃ (0.020 g, 9.2 μmol) was added to a solution containing 3. Tb·3NaO₃SCF₃ (0.013 g, 11 μmol), benzyl isocyanide (0.0013 g, 11 μmol), 4. Eu·3NaO₃SCF₃ (0.013 g, 11 μmol) and Na₂SO₄ (0.132 g, 0.9 mmol) in ethanol (5 cm³). The reaction mixture was stirred at room temperature for 6 days. The solids were removed by filtration and the filtrate evaporated. The crude product was washed with diethyl ether (5 x 20 cm³), redissolved in methanol and precipitated by addition of diethyl ether to give an off-white solid. The product was purified by dialysis using a 1000 Da membrane. The water was changed every 12 hours for 4 days. After removal of the solvent the product was obtained as an off-white powder. 1H NMR δ 256.4, 240.4, 202.9, 187.8, 110.9, 102.9, 71.3, 57.1, 49.8, 48.4, 29.5, 29.0, 28.2, 27.2, 26.9, 26.4, 18.5, 12.6, 11.0, 10.2, 9.15, 8.67, 8.52, 7.44, 7.17, 0.84, 0.42, 0.32, 0.24, 0.13, -0.32, -3.75, -3.90, -4.72, -5.93, -6.15, -6.87, -7.17, -7.52, -8.25, -8.46, -8.71, -9.02, -9.55, -9.85, -10.9, -12.3, -12.9, -14.3, -14.9, -15.3, -16.0, -17.7, -18.3, -18.9, -67.4, -77.3, -78.5, -80.2, -101.1, -110.2, -114.5, -122.7, -365.4, -376.7, -379.6, -393.5. No dysprosium peaks observed at this pD.

nano-ESI-FTMS MS. Calculated for C₈₂H₁₁₆N₂₂O₂₇EuTbDy₂+2H₂O+2CH₃OH+NH₄ = 2595.65, found: m/z = 2595.34. Calculated for C₈₂H₁₁₆N₂₂O₂₇EuTbDy₂+3H₂O+CH₃OH-C₇H₁₀+H⁺ = 2473.56, found: m/z = 2473.89.

2. Dy₂. Prepared as reported in ref 1. 1H NMR (500 MHz, D₂O) δ 373.94, 354.78, 285.33, 271.54, 172.69, 127.81, 116.60, 88.24, -84.88, -157.32, -161.65, -177.39, -204.33, -216.18, -278.84, -346.91. MALDI-TOF MS Calculated for C₃₆H₅₃Dy₂N₉O₁₂+Na⁺ = 1151.23, found: m/z = 1151.41. Calculated for C₃₆H₅₃Dy₂N₉O₁₂K⁺ = 1167.20, found: m/z = 1166.42

3. Tb. Compound H₃.3 (0.15 g, 0.33 mmol) and terbium(III) trifluoromethanesulfonate (0.21 g, 0.35 mmol) were dissolved in methanol (4 cm³) and stirred at 50°C for 2 d. The solvent was evaporated and the solid redissolved in water (10 cm³). The pH of the solution was adjusted to 12 using NaOHaq and the precipitate was removed by centrifugation. The supernatant was purified by dialysis and evaporated to yield a pale yellow solid. 1H NMR δ (minor isomer) 260.3, 243.0, 205.4, 190.4, 112.4, 104.3, (84.0), 72.4, 58.3, 50.8, 49.6, 18.9, 7.6, 7.4, (-59.8), (-63.2), -68.5, -78.1, -79.5, -81.4, (-96.6), (-100.2), -102.5, -111.7, -115.9, -124.2, (-196.5), (-212.7), -371.1, -382.6, -395.4, -399.3. ESI-QP MS Calculated for C₁₈H₂₈N₅O₉Tb+H⁺ = 618.13, found: m/z = 618.9.

4. Eu. EuDO3A propargyl (106 mg, 0.19 mmol) and 2-azidopropanal (83 mg, 0.84 mmol) are dissolved in methanol. CuSO₄ 5H₂O (4.8 mg, 0.02 mmol) and sodium ascorbate (8mg, 0.04 mmol) are then added and the reaction mixture is stirred for 16 hours at RT under a nitrogen atmosphere. After removal of solvent under vacuum the so formed sticky solid is redissolved in 10 mL of water and extracted with DCM (3x10mL) and the organic phase is then discarded. Removal of water yielded a pale yellow solid that is dialysed against water using a 500MW membrane for 2 days. Removal of residual solvent yielded a white off solid (115 mg, 91% yield). 1H NMR δ (minor isomer) (30.0), (29.8), 29.4, (28.5), 27.1, 26.8, 26.3, (12.5), (10.8), (10.2), (9.63), 8.50, 6.99, 6.26, 3.68, 3.34, (-1.54), (-2.74), (-3.27), -4.81, (-6.42), -6.95, -7.22, -7.56, (-8.03), -8.56, -8.78, -9.08, -9.83, (-10.9), -12.3, -13.0, -14.4, -14.9, -16.1, (-16.7), (-17.2), -18.4, -18.9. HR-ESI-TOF MS Calculated for C₁₈H₂₀EuN₃O₇+CH₃OH+Na⁺ = 688.1575, found: m/z = 688.1573.
NMR

Figure S1. Paramagnetic 1H NMR spectra of 1.Dy$_2$TbEu and 2.Dy$_2$ in D$_2$O.
Figure S2. Influence of pH on the paramagnetic 1H NMR spectra of 1.Dy$_2$TbEu, 2.Dy$_2$ and 3.Tb in D$_2$O.
Figure S3. Paramagnetic 1H NMR spectra of 1.Dy$_2$TbEu and 3.Tb in D$_2$O.
Figure S4. Paramagnetic 1H NMR spectra of 1.Dy$_2$TbEu and 4.Tb in D$_2$O. Not the evident differences in the peaks around 30 and -20 ppm.
Luminescence

Figure S5. Absorption, emission and excitation spectra of 1.Dy₂TbEu DMSO. The excitation spectrum changes with emission wavelength.

Figure S6. Luminescence lifetimes of 1.Dy₂TbEu in DMSO, H₂O and D₂O. The lifetimes observed are highly dependent on excitation and emission wavelength.
Figure S7. Absorption, emission and excitation spectra of 2.Dy₂ DMSO.

Figure S8. Luminescence lifetimes of 2.Dy₂ in DMSO. The initial slope in the curves are due to scattered light, only the tail was used to determine the lifetime.
Figure S9. Absorption, emission and excitation spectra of 3.Tb in D2O and DMSO.

Figure S10. Luminescence lifetimes of 3.Tb DMSO, H2O and D2O exciting at 260 nm and monitoring in each of the Tb bands.
Figure S11. Absorption, emission and excitation spectra of 10.Eu D2O and DMSO.

Figure S12. Luminescence lifetimes of 4.Eu DMSO, H2O and D2O exciting at 260 nm and 300 nm and monitoring in each of the Eu bands
Titration with iso-phthalate

Figure S13. left: Titration of 2.Dy₂ (\([2.\text{Dy}_2] = 2.13 \times 10^{-05}\)) in methanol with iso-phthalate. right: fit of the observed data using Dynafit.

Figure S14. left: Titration of 1.Dy₂TbEu with isophthalate. right: Stern-Volmer plot of the titration data.
Dynafit script:

[task]
task = fit

data = equilibria

[mechanism]
Dy + ISO ⇌ complex1 : K1 assoc
complex1 + ISO ⇌ complex2 : K2 assoc

[constants]
K1 = 10e5 ?
K2 = 1000 ?

[concentrations]
Dy = 2.13E-05

[responses]
Dy = 2.6000 , complex1 = 2.0000 , complex2 = 1000 ?

[equilibria]
variable ISO

file C:\Users\TJS\Documents\Kemi\Oxford\Dy\f1.txt | response Dy = 6e5 ? , complex1 = 9e6 ? , complex2 = 1000 ?
file C:\Users\TJS\Documents\Kemi\Oxford\Dy\f2.txt | response Dy = 1.35e4 ? , complex1 = 4.1e6 ? , complex2 = 1000 ?
file C:\Users\TJS\Documents\Kemi\Oxford\Dy\f3.txt | response Dy = 2.2e4 ? , complex1 = 4.1e7 ? , complex2 = 1000 ?

[output]
directory C:\Users\TJS\Documents\Kemi\Oxford\Dy\result

[end]
References

