Highly selective fluorescent probe for fast detection of hydrogen sulfide in aqueous solution and living cell

Zheng Xu,‡ Lin Xu,‡ Ji Zhou, Yufang Xu, Weiping Zhu and Xuhong Qian*

Shanghai Key Laboratory of Chemical Biology,

State Key Laboratory of Bioreactor Engineering , School of Pharmacy,

East China University of Science and Technology, Shanghai, 200237, China. Fax: +86 21 6425 2603; Tel: +86 21 6425 3589; E-mail: xhqian@ecust.edu.cn

Contents:

- 1. General Experimental Section
- 2. Synthesis and Characterization of Compounds
- 3. Effect of pH Values
- 4. Reaction of **E1** with H_2S
- 5. Effect of CTAB to the fluorescent intensity of E1
- 6 Selectivity of E1
- 7. Fluorescence spectral changes of E1 with H₂S in EtOH/Tris-HCl buffer
- 8. Fluorescent Microscopy Imaging for E1 in Hela Cells
- 9. ¹H NMR, ¹³C NMR and ESI of E1 and 3
- 10. Reference

1. General Experimental

Materials and methods: All chemical regents and solvents were purchased from J&K Corporation and used without further purification. Thin-layer chromatography (TCL) was performed on silica gel plates. Column chromatography was performed using silica gel (Hailang, Qingdao) 200-300 mesh. 10 mM NaHS stock solution in Tris-HCl buffer (20 mM pH 7.4). Ultrapure water was used throughout.

Instruments: Fluorescence spectra were determined using a Varian Cary Eclipse fluorescence spectrometer. Absorption spectra were determined by a Varian Cary 100 UV-vis spectrophotometer. All pH measurements were made with a Sartorius basic pH-Meter PB-20. ¹H NMR and ¹³C NMR spectra were recorded employing a Bruker AV-400 spectrometer with chemical shifts expressed in parts per million (in deuteriochloroform, Me₄Si as internal standard). Electrospay ionization (ESI) mass spectrometry was performed in a HP 1100 LC-MS spectrometer.

2. Synthesis and Characterization of Compounds

Scheme S1. Synthetic route of probe E1.

Synthesis of 2-(pyridin-2-yldisulfanyl)benzoic acid (PBA)

PBA was prepared according to the literature procedure.¹ To a solution of 1,2-di(pyridin-2-yl)disulfane **1** (1.016 g, 4.61 mmol) in chloroform (30 ml) was added 2-mercaptobenzoic acid **2** (178 mg, 1.15 mmol), the mixture was stirred for 1 hours at room temperature. Then, the solvent was removed under reduced pressure to produce a yellow solid (~320mg). The product was subjected to column chromatography for purification. PBA was obtained as a yellow solid. ¹H NMR (DMSO, 400 MHz) δ 8.45-8.44 (m, 1H), 8.00 (dd, 1H, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz), 7.73 (m, 1H), 7.67 (d, 1H, J = 8.0 Hz), 7.42 (d, 1H, J = 8.0 Hz), 7.39-7.35 (m, 1H), 7.24-7.20 (m, 2H);

Synthesis of E1¹

To a mixture of compounds HMBT (98 mg, 0.38 mmol), PBA (100 mg, 0.38 mmol), EDC (73mg, 0.38 mmol) and DMAP (5mg, 0.038 mmol) was added CH_2Cl_2 (25 mL) at room temperature. The mixture was stirred for 5 hours. Then solvent was evaporated under reduced pressure and resulted residue was subjected to column

chromatography for purification. **E1** was obtained as a white solid (105 mg, 54.97% yield). ¹H NMR (CDCl₃, 400 MHz) δ 8.55 (d, 1H, *J* = 7.6 Hz), 8.48 (d, 1H, *J* = 3.6 Hz), 8.03 (t, 2H, *J* = 8.4 Hz), 7.97 (d, 1H, *J* = 8.0 Hz), 7.85 (d, 1H, *J* = 7.6 Hz), 7.64-7.35 (m, 8H), 7.18 (d, 1H, *J* = 8.0 Hz), 7.09 (t, 1H, J = 5.6 Hz), 3.93 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 163.9, 162.2, 159.3, 152.9, 152.1, 149.5, 141.8, 138.0, 137.4, 135.5, 133.8, 132.7, 127.6, 127.0, 126.5, 126.3, 126.2, 126.0, 125.3, 123.4, 121.5, 121.4, 120.9, 119.6, 114.2, 56.5; HRMS (ES+) calcd for C₂₆H₁₈N₂O₃S₃ [M+H]⁺ 503.0558, found 503.0565.

3. Effect of pH Values

Fluorescence pH titrations were performed in buffer solution at a probe concentration of 10 μ m in 20 mM Tris-HCl with 40% CH₃OH. As is shown in Fig. S1, **E1** is stable during pH range from 2 to 12.

Fig. S1 Fluorescence response of **E1** (10 μ m) to various pH in 20 mM Tris-HCl with 40% CH₃OH. pH 2~12. Red line: 472 nm; Black line: 347 nm.

4. Reaction of E1 with H₂S

Scheme S2. Reaction of E1 with H₂S

Solution of **E1** (48mg, 0.09 mmol) in DMF (10 mL) was added NaHS (8.9 mg, 0.09 mmol) in Tris-HCl buffer (5 mL, 20 mM, pH = 7.4). The mixture was stirred for 1 hours at room temperature. The color of solution turned to light yellow. Then solvent was evaporated under reduced pressure and resulted residue was subjected to column chromatography for purification. Compound **3** was obtained as a white solid (13 mg, 86% yield). The formation of **3** was confirmed by ¹H NMR, ¹³C NMR and HRMS (EI+).

5. Effect of CTAB to the fluorescent intensity of E1

Test were performed in buffer solution at a probe concentration of 10 μ m in 20 mM Tris-HCl. CTAB concentration is 1 mM. As is shown in Fig. S2, CTAB has minimal impact on probe **E1**.

Fig. S2 Fluorescence response of **E1** (10 μ m) with and without 1mM CTAB in 20 mM Tris-HCl. pH = 7.4. Red line: E1 + CTAB; Black line: E1. Slite: 10, 5.

6. Selectivity of E1

Test were performed in buffer solution at a probe concentration of 10 μ m in 20 mM Tris-HCl. CTAB concentration is 1 mM. As is shown in Fig. S3, probe **E1** has a good selectivity.

Fig. S3 Fluorescent intensity change after addition of NaHS and other anions. **E1** (10 μ M) + amino acid (100 μ M) in 20 mM Tris-HCl buffer with 1 mM CTAB (pH 7.4). (λ ex = 295 nm). Slite: 10, 5.

7. Fluorescence spectral changes of E1 with H₂S in EtOH/Tris-HCl buffer

Test were performed in EtOH/Tris-HCl buffer (20 mM, pH 7.4, 2:8 v/v) at a probe concentration of 10 μ m. As is shown in Fig. S4, probe **E1** produced 1.3-fold turn-on response in this buffer solution.

Fig. S4 Time-dependent fluorescence spectral changes of **E1** with H_2S (**E1** 10 μ M, NaHS 50 μ M) in EtOH/Tris-HCl buffer (20 mM, pH 7.4, 2:8 v/v). Time points represent 0, 1, 5, 10, 20, 30, 40, 50, 60, 70, 80 and 90 min. Insert: Reaction time profile of E1 and H_2S . Slite 10, 10.

8. Fluorescent Microscopy Imaging for E1 in Hela Cells

Hela cells were obtained from American Type Culture collection and grown in Dulbecco's modification of Eagle's medium Dulbecco (DMEM/high: with 4500 mg/L Glucose, 4.0 mM L-Glutamine, and 110 mg/L Sodium Pyruvate), supplemented with 10% foetal bovine serum (FBS). Cells were incubated in a 5% CO₂ humidified incubator at 37 $^{\circ}$ C and typically passaged with sub-cultivation ratio of 1:4 for two days.

Hela cells were seeded in 12-well culture plate for one night. Stocks solution of **E1** (1 mM) was prepared in DMSO at the same day of experiment, which was diluted into the cell culture media at 100 μ M. The Hela cells were preloaded with the 100 μ M **E1** for 30 min in 5% CO₂ incubator at 37 °C, and washed with phosphate buffer (pH = 7.4) one time. Then cells were treated without 100 μ M NaSH, with 100 μ M NaSH and 100 μ M NaSH (1 mM CTAB) as indicated. Afterwards the Hela cells were also incubated in 5% CO₂ at 37 °C for 30 min, then rinsed with phosphate buffer (pH = 7.4) three times. Fluorescence imaging was performed with Nikon Ti-s with Xenon lamp and camera. Exposure time is 300 ms for green emission.

9. ¹H NMR, ¹³C NMR and ESI of E1 and 3

Fig. S5 ¹H NMR of PBA

Fig. S6¹H NMR of E1

503.0565

503.0558

0.7

1.4

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2012

Element prediction: Off Number of isotope peaks used for i-FIT = 2 Monoisotopic Mass. Even Electron Ions 763 formula(e) evaluated with 120 results within limits (up to 1 closest results for each mass) Elements Used: C: 0-30 H: 0-25 N: 0-5 O: 0-10 S: 0-5 YYS ECUST institute of Fine Chem 13-Dec-2011 16:07:55 1: TOF MS ES+ ZWP-XZ-238-50 11 (0.422) Cm (8:12) 7.58e+003 503.0565 100-% 504.0607 505.0577 480.3309 506.0569 512.5071 487.3617 0-480.0 512.5 m/z 487.5 507.5 482.5 485.0 490.0 492.5 495.0 497.5 500.0 502.5 505.0 510.0 Minimum: -1.5 100.0 Maximum: 50.0 50.0 PPM DBE i-FIT i-FIT (Norm) Formula Mass Calc. Mass mDa

8.3

0.0

C26 H19 N2 O3 S3

18.5

Fig. S9 ¹H NMR and ¹³C NMR of 3

10. Reference

1. Liu, C.; Pan, J.; Li, S.; Zhao, Y.; Wu, L. Y.; Berkman, C. E.; Whorton, A. R.; Xian, M., Capture and Visualization of Hydrogen Sulfide by a Fluorescent Probe. *Angewandte Chemie International Edition* **2011**, *50* (44), 10327-10329.