Electronic Supplementary Information

Carbon heterogeneous surface modification on mesoporous TiO$_2$-supported catalyst and its enhanced hydrodesulfurization performance

Licheng Li, Yudan Zhu, Xiaohua Lu,* Meijie Wei, Wei Zhuang, Zhuhong Yang, Xin Feng

(State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing, 210009, P.R. China)

Tel: +86-25-83588063; E-mail: xhlu@njut.edu.cn
Materials

Ammonium heptamolybdate ((NH₄)₆Mo₇O₂₄•4H₂O, Sinopharm Chemical Reagent Co., Ltd), nickel nitrate (Ni(NO₃)₂•6H₂O, Sinopharm Chemical Reagent Co., Ltd), dichloromethane (CH₂Cl₂, Shanghai Linfeng Chemical Reagent Co., Ltd), phenyl-phosphonic acid (C₆H₇O₂P, Aldrich), acetone (C₃H₆O, Suzhou Henghuixiang Chemical), hydrochloric acid (HCl, Wuhan Gehua Co., Ltd), decalin (C₁₀H₁₈, Sinopharm Chemical Reagent Co., Ltd), carbon bisulfide (CS₂, Sinopharm Chemical Reagent Co., Ltd), dibenzothiophene (C₁₀H₈S, Acros Organics). All chemicals were used as received.

Mesoporous TiO₂ was prepared from potassium titanate (K₂Ti₂O₅) according to our previous work. In short, K₂Ti₂O₅ was ion exchanged with HCl aqueous solution (0.1 M) to be hydrated titanate (H₂Ti₂O₅). Then, the calcinations of H₂Ti₂O₅ were performed in a muffle oven at 550 °C to obtain mesoporous TiO₂. The structural data of mesoporous TiO₂ were showed in Table 1.

Preparations

1. Supports

The surface modified TiO₂ support was prepared in two main steps. In the first step, 1.131 g of phenyl-phosphonic acid (PPA) was dissolved in 60 mL of CH₂Cl₂, and 3 g of TiO₂ was added in this solution under vigorous stirring at room temperature. After stirring for 24 h, the precipitation was filtered and washed with 500 mL of water/acetone (50/50 by volume) solution, and then dried in oven (100 °C, 12 h). The as-synthesized sample was denoted as PPA/TiO₂. In the second step, the PPA/TiO₂ was thermally treated at 500 °C for 8 h under N₂ atmosphere. The obtained powder was denoted as C/TiO₂.
2. Catalysts

The obtained supports were used to prepare MoNi catalysts with 6 wt% MoO$_3$ and 1.56 wt% NiO by typical incipient wetness impregnation using an aqueous solution of (NH$_4$)$_6$Mo$_7$O$_{24}$•4H$_2$O and Ni(NO$_3$)$_2$•6H$_2$O. The impregnated power were dried (100 °C, 12 h), and calcined (500 °C, 2 h) under N$_2$ atmosphere to obtain the MoNi catalysts. The unmodified catalyst was denoted as MoNi/TiO$_2$, and MoNi/C/TiO$_2$ represented the catalyst with surface modification.

3. Preparation of control samples

In comparison with MoNi/TiO$_2$ and MoNi/C/TiO$_2$, we also prepared three control samples. Corresponding preparations of these samples were described as follows:

1) **MoNi/P/TiO$_2$**: the corresponding support of catalyst, P/TiO$_2$, was obtained by thermal treatment of PPA/TiO$_2$ in flowing air at 500 °C for 4 h to remove the carbon species of modifier. Other preparation steps of MoNi/P/TiO$_2$ catalyst were the same as those of MoNi/C/TiO$_2$.

2) **MoNi(C(hi))/TiO$_2$**: the degree of surface modification of MoNi/C(hi)/TiO$_2$ catalyst was higher than that of MoNi/C/TiO$_2$ catalyst. PPA solution was mixed with TiO$_2$ in a high-pressure vessel of 100 mL for solvothermal treatment at 150 °C for 24 h. FT-IR results (not shown) of this PPA/TiO$_2$ sample didn’t show the bands corresponding to adsorbed water in the profile. It indicated that most of TiO$_2$ surface were occupied by PPA molecules. Calcinations process was also carried out under N$_2$ atmosphere at 500 °C for 8 h. Other not-mentioned preparation procedures of MoNi/C(hi)/TiO$_2$ catalyst were in accordance with that of MoNi/C/TiO$_2$.

3) **MoNi(hi)/TiO$_2$**: Except for MoO$_3$ and NiO content, the preparation procedure of MoNi(hi)/TiO$_2$ catalyst was identical to that of unmodified catalyst MoNi/TiO$_2$. The load of
MoO$_3$ and NiO of this catalyst was 11 wt% and 2.86 wt%, respectively, which was close to that of industrial catalysts.2 There were no characteristic peaks ascribed to MoO$_3$ and NiO observed in XRD pattern (not shown), suggesting both MoO$_3$ and NiO were also dispersed well in MoNi(hi)/TiO$_2$ catalyst.

To figure out the difference of catalysts, some characteristics of catalysts were summarized in following Table S1.
<table>
<thead>
<tr>
<th>Samples</th>
<th>Modification situation</th>
<th>Content of MoO$_3$, NiO</th>
<th>Modification speciesa</th>
<th>others</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoNi/C/TiO$_2$</td>
<td>Modified</td>
<td>6 wt%, 1.56 wt%</td>
<td>C, P</td>
<td>/</td>
</tr>
<tr>
<td>MoNi/TiO$_2$</td>
<td>unmodified</td>
<td>6 wt%, 1.56 wt%</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>MoNi/P/TiO$_2$</td>
<td>Modified</td>
<td>6 wt%, 1.56 wt%</td>
<td>P</td>
<td>/</td>
</tr>
<tr>
<td>MoNi(hi)/TiO$_2$</td>
<td>unmodified</td>
<td>11 wt%, 2.86 wt%</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>MoNi/C(hi)/TiO$_2$</td>
<td>Modified</td>
<td>6 wt%, 1.56 wt%</td>
<td>C, P</td>
<td>Higher degree of modification</td>
</tr>
</tbody>
</table>

a: C represents the modification species containing carbon elements, and P suggests the phosphorous modification species.

Characterizations

Thermo-gravimetric (TG) analysis was performed on a Model SDT 2960 (TA, America) instrument. The measure was conducted with the temperature of 35–950°C at a rate of 10 °C/min under air atmosphere.

Raman Spectra were obtained using a Horiba HR 800 spectrometer, equipped with a CCD camera detector. As a source of excitation the 514 nm line of a Spectra Physics 2018 Argon/Krypton Ion Laser system were focused through an Olympus BX41 microscope equipped with a 50 magnification objective. The laser power never exceeded 5 mW for each sample.

X-ray Photoelectron Spectroscopy (XPS) analysis was performed in an ESCALAB 250 spectrometer (ThermoFisher Scientific, USA) equipped with Al Kα radiation operated at 300 W. The shift of binding energy was corrected using the C 1s level at 284.9 eV as an internal standard.

The content of phosphorus in terms of the corresponding oxides in the samples was determined on an ADVANT’XP X-ray fluorescence (XRF) analyzer (ARL Co., Switzerland).
Nitrogen adsorption/desorption at -196 °C were performed by using the TriStarII 3020M system (Micromeritics, USA). Surface area was calculated by BET method \((S_{\text{BET}})\), pore volume \((V_p)\) was determined by nitrogen adsorption at a relative pressure of 0.99. Pore size distribution was found from adsorption isotherms by Barrett-Joyner-Halenda (BJH) method.

X-ray diffraction (XRD) patterns of the samples were collected on a D8 diffractometer (Bruker, Switzerland) equipped with a Cu Kα radiation \((\lambda = 1.5406 \ \text{Å})\). The diffractograms were recorded for 2θ values between 5° and 60° at a rate of 0.2 s step⁻¹. Phase identification was carried out by comparison with the JCPDS database.

H₂S-temperature-programmed desorption (H₂S-TPD) tests were carried out on a BELCAT-A apparatus (Ankersmid, Netherlands). As-made (dried) samples were put in a quartz reactor. First, each sample, about 0.333 g of material with 20~40 mesh, was pretreated from room temperature to 300 °C at a rate of 10 °C min⁻¹ and then cooled down to room temperature in a pure He flow. Then, H₂S was adsorbed at 35 °C for 2 h using a mixture gas of 5 vol% H₂S/He, and subsequently the sample was purged by a flowing pure He stream to remove excessive and weakly adsorbed H₂S. Finally, the sample was heated to 600 °C at a rate of 10 °C min⁻¹ in a pure He flow and desorption pattern was recorded.

Temperature-programmed reduction (TPR) experiments were conducted by using the TP-5000 equipment (Tianjin Xianquan Co., Ltd., China). The test temperature was increased up to 600 °C at a rate of 10 °C/min, and the gas mixture of 10 vol. % H₂/Ar was introduced at 20 mL/min into the quartz reactor and was also used as a reference gas.

The morphology of the active phases on sulfided catalysts was characterized by high-resolution transmission electron microscopy (HRTEM) conducted on a JEM-2010 UHR.
(JEOL Co., Japan) at 200 kV. The catalysts to be measured were ultrasonically dispersed in ethanol and testing samples were prepared by dropping the dispersed suspensions on carbon-coated copper grids.

Catalyst evaluation

HDS performance of catalysts was evaluated in a continuous flow, fixed bed Micro-reactor. The catalyst was placed in the middle of the reactor while the rest empty volume was filled with quartz sand. Before the reaction, the catalyst was submitted to in situ sulphidation, using a solution of 3 vol% CS$_2$/decalin. After 10 h of sulphidation, the pump system was changed to inject a decalin solution of 1 wt% Dibenzothiophene (DBT) into the reactor. Reaction temperature, pressure, feed WHSV and H$_2$/feed ratio were 300 °C, 2 MPa, 6 h$^{-1}$ and 600 Nm3 m$^{-3}$, respectively. During each run, products were sampled periodically every hour and identified by a gas chromatography equipped with a flame ionization detector and a 30 m OV-101 capillary column.
As shown in Fig. S1, there are many overlapped peaks observed in the DTG curve, which are assigned to the mass changes of various species. The process of mass change of C/TiO$_2$ contains evaporation of physical-absorbed H$_2$O, desorption of hydroxyl groups, oxidation of phosphorus species, oxidation of carbon species, volatilization of phosphorus oxide, and so on. These processes may occur simultaneously at one certain temperature range. Thus, it is difficult to confirm the accurate mass loss of carbon species. Generally, the oxidation of carbon species occurs at 400–600 °C.3 As shown in the TG curve of Fig S1, the mass loss at 400–600 °C is less than 1 wt%. Thus, we can qualitatively confirm the content of carbon species of C/TiO$_2$ is less than 1 wt%.

Fig. S1 TG and DTG curves of C/TiO$_2$
Table S2 The P$_2$O$_5$ content characterized by XRF

<table>
<thead>
<tr>
<th>Sample</th>
<th>Content of P$_2$O$_5$ (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPA/TiO$_2$</td>
<td>1.10</td>
</tr>
<tr>
<td>C/TiO$_2$</td>
<td>1.09</td>
</tr>
</tbody>
</table>

According to the XRF results, we can estimate the extent of surface modification over C/TiO$_2$. Table S2 shows that the P$_2$O$_5$ content of C/TiO$_2$ is 1.09%, which is similar to that of PPA/TiO$_2$. This indicates the phosphorus element can’t be lost by way of evaporation during the thermal process. Therefore, we could indirectly know how many surface area of C/TiO$_2$ are modified according to the content of phosphorus element. Occupied area of a PPA molecule has been assumed to 0.24 nm2 as reported in the literature.4 As following formula, we can calculate that 29% of TiO$_2$ surface are occupied by the modified species:

$$\text{Degree of modification} = \frac{N_p \times N_A \times S_{PPA}}{S_{C/TiO_2}} \times 100\%$$

$$= \frac{(m \times w_{P_2O_5} + M_{P_2O_5} \times 2) \times N_A \times S_{PPA}}{S_{C/TiO_2} \times m} \times 100\%$$

(Three new parameters m, $w_{P_2O_5}$ and $M_{P_2O_5}$ in the formula represent the mass of C/TiO$_2$, the weight percent of P$_2$O$_5$ and the molar mass of P$_2$O$_5$.)
Fig. S2 Pore size distribution of C/TiO$_2$ (a) and TiO$_2$ (b)
Fig. S3 XRD patterns of C/TiO$_2$ (a), TiO$_2$ (b), MoNi/C/TiO$_2$ (c) and MoNi/TiO$_2$ (d)
Fig. S4 HDS performance over various catalysts

(a) MoNi/C/TiO₂, (b) MoNi(hi)/TiO₂, (c) MoNi/C(hi)/TiO₂, (d) MoNi/P/TiO₂
Fig. S5 HRTEM images of sulfide catalyst

(a) Modified catalyst MoNi/C/TiO$_2$; (b) Unmodified catalyst MoNi/TiO$_2$
There is one obvious reduction peak at around 400 °C observed in the pattern of MoNi/C/TiO₂ and MoNi/TiO₂, respectively, which is assigned to the reduction of Mo⁶⁺ to Mo⁴⁺. The temperature of reduction peak of MoNi/C/TiO₂ is similar to that of MoNi/TiO₂, which indicates that both of them have a similar interaction between active species and support.
182 References

189

190