A ternary cathode composed of LSM, YSZ and Ce$_{0.9}$Mn$_{0.1}$O$_{2-\delta}$ for the intermediate temperature solid oxide fuel cells

Li Liua,b,c, Zhe Zhaoa,b,c, Xiaomin Zhanga,b,c, Daan Cuia,b, Baofeng Tua,b, Dingrong Oua,b, Mojie Chenga,b,*

a Division of Fuel Cells, Dalian National Laboratory for Clean Energy, Dalian 116023, China
b Laboratory of Fuel Cell, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
c University of Chinese Academy of Sciences, Beijing, 100049, China

Experimental

Single cells fabrication

Anode-supported fuel cells were fabricated by tape casting method1. YSZ (Tosoh-Zirconia; TZ-8Y) and NiO (from J.T.Baker) powders in a 50:50 wt% were mixed thoroughly, and then organic binders and n-butanol solvent were added to form the NiO-YSZ slurry. The slurry was fabricated into anode substrate by tape-casting. A thin layer of YSZ powder was fabricated on one side of the anode substrate by a slurry coating method, then the bilayer was cut into circular disks and sintered at 1300 °C for 3 h in air to obtain a dense YSZ electrolyte. The sintered discs were ~ 21 mm in diameter and ~ 450 μm in thickness. The thickness of the YSZ electrolyte film was ~ 15 μm.

The ternary cathode was composed of LSM, YSZ and Ce-Mn-O. (La$_{0.8}$Sr$_{0.2}$)$_{0.9}$MnO$_{3-\delta}$ (LSM) was synthesized by ammonium citrate method2,3 with La(NO$_3$)$_3$.6H$_2$O (99.95%), Sr(NO$_3$)$_2$ (99.95%) and Mn(NO$_3$)$_2$ solution (49-51%) as raw materials, and calcined at 1100 °C for 2 h to form pure perovskite phase. LSM and YSZ in a 60:40 wt% as cathode were mixed through grinding in a mortar. Then, the powders were deposited on the electrolyte with an active area of 0.5 cm2, sintered at 1100 °C for 2 h and the thickness was ~20 μm. Pure LSM was used as the current collector, deposited on the surface of LSM-YSZ, and calcined at 1200 °C for 2 h. The Ce-Mn-O solution was infiltrated into LSM-YSZ cathode before testing to form the ternary cathode.
The Ce$_{0.9}$Mn$_{0.1}$O$_{2-\delta}$ precursor solution of 2.0 M was composed of appropriate amounts of Ce(NO$_3$)$_3$·6H$_2$O (99.99%), Mn(NO$_3$)$_2$ solution (49-51%) with citric acid (the ratio of citric acid : cations was 0.5). The solution was pipetted into the LSM-YSZ composite cathode at 60 °C. The amount of Ce$_{1-x}$MnxO$_{2-\delta}$ was varied by the volume of solution, and the cells were calcined at 600 °C for 1 h between each impregnation step. The powder composed of LSM and YSZ in a 60:40 wt% was calcined at 1100 °C for 2 h, infiltrated by 10 wt% Ce$_{0.9}$Mn$_{0.1}$O$_{2-\delta}$ precursor solution, and then calcined at 600 °C for 2 h. The Ce$_{0.9}$Mn$_{0.1}$O$_{2-\delta}$ precursor solution was heated and evaporated on a hot plate to remove the water and organic compounds, and then calcined at 600 °C for 2 h in air.

Single cells testing

The single cells were evaluated in an alumina test housing placed inside the furnace. The measurements were undertaken using the two-electrode four-wire measurement from 800 °C to 600 °C in 100 ml min$^{-1}$ humid H$_2$ (3% H$_2$O) and 100 ml min$^{-1}$ O$_2$. Au mesh at the cathode side and Ni mesh at the anode were used as current collectors. The electrochemical impedance spectra was measured under open circuit conditions using a Solartron 1260 frequency response analyzer with Solartron 1287 electrochemical interface. The frequency ranged from 106 Hz to 0.08 Hz with amplitude of 10 mA.

Characterization of materials

The microstructures of the ternary cathodes after the testing were examined by a Quanta 200 FEG (FEI Company) scanning electron microscope equipped with energy dispersive X-ray (EDX) spectroscopy. X-ray powder diffraction (XRD) patterns were collected with a Rigaku D/Max-2500/PC X-ray diffractometer with Cu Kα radiation in the 20 range of 20-80°.
Fig. S1 The XRD patterns of LSM-YSZ powders with and without 10 wt% Ce₉₀Mn₀₁O₂·₅, and Ce₀₉Mn₀₁O₂·₅ powders calcined at 600 °C for 2 h.
Fig. S2 I-V curves and the corresponding power densities of single cells with composite cathodes of (a) LSM-YSZ, (b) LSM-YSZ-5 wt% Ce$_{0.9}$Mn$_{0.1}$O$_{2-\delta}$, (c) LSM-YSZ-10 wt% Ce$_{0.9}$Mn$_{0.1}$O$_{2-\delta}$, (d) LSM-YSZ-20 wt% Ce$_{0.9}$Mn$_{0.1}$O$_{2-\delta}$, (e) LSM-YSZ-30 wt% Ce$_{0.9}$Mn$_{0.1}$O$_{2-\delta}$.*

*These cells with Ni-YSZ as anode and YSZ as electrolyte were fabricated by the same fabrication conditions and tested in humidified H$_2$ (3 vol. % H$_2$O) at 100 ml min$^{-1}$ (at STP) in the anode and O$_2$ at 100 ml min$^{-1}$ (at STP) in the cathode.
Fig. S3 Comparison of impedance spectra for the cells with LSM-YSZ-5, 10, 20, 30 wt\% Ce$_{0.9}$Mn$_{0.1}$O$_{2-\delta}$ ternary cathodes or LSM-YSZ binary cathode measured under open circuit conditions at 800 °C (a); 750 °C (b); 700 °C (c); 650 °C (d); ASRs of the electrodes (sum of anode and cathode contributions) (e); ohmic resistances of the cells with different cathodes (f)*

*The high frequency intercept on real axis represents the overall ohmic resistances R_{ohm} from the electrolyte, the electrodes (including the cathode and anode), the interfaces of electrodes/electrolyte and the connection wires. The distance between the high-frequency and low-frequency intercepts with the real axis represents the electrodes polarization resistances R_p (sum of anode and cathode contributions). The polarization of O$_2$ reduction on the LSM-YSZ cathode is much higher than that of H$_2$
oxidation on Ni-YSZ anode, so the impedance spectra for a single cell mainly reflect the properties of the cathodes.4
Fig. S4 Bode plots of single cells with LSM-YSZ-5, 10, 20, 30 wt% Ce$_{0.9}$Mn$_{0.1}$O$_{2-\delta}$ ternary cathodes or LSM-YSZ binary cathode at 600 °C.
References