Supporting Information

Vibrational spectroscopic observation of ice dewetting on MgO(001)

Esther Carrasco, Andreas Aumer, Janaina F. Gomes, Yuichi Fujimori and Martin Sterrer
Department of Chemical Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
E-mail: sterrer@fhi-berlin.mpg.de

Experimental details

The experiments were performed in two separate UHV set-ups, one for IRAS, and one for SFG. Both setups consist of a UHV preparation/analysis section equipped with tools for single crystal cleaning, metal evaporation, sample characterization [i.e., Low Energy Electron Diffraction (LEED), and X-ray Photoelectron Spectroscopy (XPS)], and spectroscopy cells equipped with CaF$_2$ windows for SFG and IRAS experiments. The Ag(001) single crystal used as a substrate for MgO film growth was cleaned by repeated sputter(Ar$^+$)/anneal(700 K) cycles until a sharp LEED pattern was obtained. 20 ML thick MgO(001) films were deposited on Ag(001) by evaporating Mg in 1x10$^{-6}$ mbar oxygen while maintaining a constant sample temperature of 570 K.1 The resultant films are well ordered with sharp (1×1) LEED spots. The MgO(001)/Ag(001) sample was flashed to 700 K prior to each adsorption experiment to desorb impurities accumulated from the chamber background, and the doses were performed at a sample temperature of 90 K (achieved by N$_2$ cooling of the sample manipulator). The SFG experiments were conducted with triple distilled H$_2$O while D$_2$O (Aldrich) was used for the IRAS work. In both cases, the water was further purified by several freeze-pump-thaw cycles prior to each experiment.

SFG vibrational spectroscopy was performed using a Nd:YAG laser (1064 nm, 30 mJ/pulse, 25 ps, 50 Hz, EKSPLA PL501) with part of the output converted to 532 nm and 355 nm in a harmonic generator. The 1064 nm and 355 nm beams were mixed in an optical parametric generator/difference frequency generator (EKSPLA PG401) to produce tunable infrared pulses in the range of 2.5–6 μm, with pulse energies of 60-200 μJ and a bandwidth of about 5 cm$^{-1}$. The 532 nm light, used as the VIS beam for SFG, had an energy of 200 μJ/pulse. To collect SFG spectra, the p-polarized IR and VIS pulses were overlapped on the sample surface, and the resulting sum frequency beam was detected with a photomultiplier tube after passing through a monochromator. To correct for frequency-dependent fluctuations in the intensity of the IR beam, we have normalized all SFG intensities using that of the incident IR pulses. The detected SF intensity is

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013
proportional to the intensity of the incident IR and VIS fields and the second-order nonlinear susceptibility, $\chi^{(2)}$, which contains contributions from a non-resonant substrate term, $\chi_{NR}^{(2)}$, and a resonant vibrational term, $\chi_{R}^{(2)}$.\(^2\) The Ag(001) substrate used in the present study generates a noticeable non-resonant signal, which, because of the phase difference between $\chi_{NR}^{(2)}$ and $\chi_{R}^{(2)}$, affects the line shape of the SFG spectrum.

The normalized SFG spectra were fitted with the standard Lorentzian model:

$$I_{SFG} = |A_{NR}e^{i\varphi} + \sum_{n} \frac{A_{n}}{\omega - \omega_{n} - i\Gamma_{n}}|^2$$

where A_{NR} is the amplitude of the non-resonant background and φ is the phase, and A_{n}, ω_{n} and Γ_{n} represent the amplitude, resonance frequency and line width of the n-th resonant vibrational mode.

IRAS spectra were acquired using a Bruker IFS 66v FTIR spectrometer with an external MCT detector. Typically, 200 scans were accumulated for one spectrum and the resolution was set to 4 cm\(^{-1}\). The background spectrum was obtained from the surface of a freshly prepared, clean MgO(001)/Ag(001) sample.

References: