A mechanochemically synthesised solid solution enables engineering of the sorption properties of a Werner clathrate

Eustina Batisai, Matteo Lusi, Tia Jacobs and Leonard J. Barbour*

Department of Chemistry and Polymer Science University of Stellenbosch Stellenbosch, 7600 South Africa Fax: (+)27 (0)21 808 3360 E-mail: ljb@sun.ac.za

1 Materials and methods
Thermal analyses were carried out under nitrogen at a heating rate of 10 °C per minute using a TA instruments Q500 TGA. Diffraction patterns were recorded on a PANalytical XPERT-PRO diffractometer system using Bragg-Brentano geometry and an incident beam of Cu Kα radiation (λ = 1.5418 Å).

2 Solution synthesis
The inclusion compounds were prepared by dissolving the host material in methanol, and then layering with the intended guest (o-, m- or p-xylene).

\[\text{[NiCl}_2\text{(4-PhPy)}_4\text{]}\cdot2\text{m-xylene}\]

Fig. S1 Packing diagram of [NiCl₂(4-PhPy)_₄]·2m-xylene as viewed along the c axis. The m-xylene guest molecules occupy the guest-accessible channels. Hydrogen atoms have been omitted for clarity.
[NiCl$_2$(4-PhPy)$_4$]·4o-xylene

Fig. S2 Packing diagram of [NiCl$_2$(4-PhPy)$_4$]·4o-xylene as viewed along the a axis. The o-xylene guest molecules occupy the guest-accessible channels. Hydrogen atoms have been omitted for clarity.

[NiCl$_2$(4-PhPy)$_4$]·4p-xylene

Fig. S3 Packing diagram of [NiCl$_2$(4-PhPy)$_4$]·4p-xylene as viewed along the a axis. The p-xylene guest molecules occupy the guest-accessible channels. Hydrogen atoms have been omitted for clarity.
[NiCl₂(4-PhPy)₄]·4m-xylene

Fig. S4 Packing diagram of [CoCl₂(4-PhPy)₄]·4m-xylene as viewed along the b axis. The m-xylene guest molecules occupy the guest-accessible channels.

[CoCl₂(4-PhPy)₄]·4o-xylene

Fig. S5 Packing diagram of [CoCl₂(4-PhPy)₄]·4o-xylene as viewed along the a axis. The o-xylene guest molecules are situated in the guest-accessible channels.
[CoCl$_2$(4-PhPy)$_4$]\cdot4p-xylene

Fig. S6 Packing diagram of [CoCl$_2$(4-PhPy)$_4$]\cdot4p-xylene as viewed along the a axis. The p-xylene guest molecules occupy the guest-accessible channels.

3 Mechanochemical synthesis

[NiCl$_2$(4-PhPy)$_4$]: A mixture of 4-phenylpyridine (62 mg; 0.4 mmol), nickel (II) chloride hexahydrate (23.71 mg; 0.1 mmol) and a few drops of methanol were ground together using a mortar and pestle. The paste was then allowed to dry in open air.

[CoCl$_2$(4-PhPy)$_4$]: A mixture of 4-phenylpyridine (62 mg; 0.4 mmol), cobalt (II) chloride hexahydrate (23.71 mg; 0.1 mmol) and a few drops of methanol were ground together using a mortar and pestle. The paste was then allowed to dry in open air.

[Ni$_{0.5}$Co$_{0.5}$Cl$_2$(4-PhPy)$_4$]: A mixture of 4-phenylpyridine (62 mg; 0.4 mmol), nickel (II) chloride hexahydrate (11.85 mg; 0.05 mmol), cobalt (II) chloride hexahydrate (11.85 mg; 0.05 mmol) and a few drops of methanol were ground together using a mortar and pestle. The paste was then allowed to dry in open air.
4 Solid-vapour reactions

The solid vapour reactions were carried out using a microbalance, which monitors weight change as a function of time under controlled conditions of temperature and pressure.

\[[\text{NiCl}_2(\text{4-PhPy})_4] \cdot 2m\text{-xylene}\]: 25.350 mg (0.034 mmol) of 1 were weighed on a microbalance under vacuum at 20 °C. 2 ml of \(m\)-xylene was injected into the microbalance and the weight equilibrated for 220 minutes to 32.540 mg, corresponding to 0.107 mmol of \(m\)-xylene sorbed.

\[[\text{NiCl}_2(\text{4-PhPy})_4] \cdot 4o\text{-xylene}\]: 21.540 mg (0.029 mmol) of 1 were weighed on a microbalance under vacuum at 20 °C. 2 ml of \(o\)-xylene was injected into the microbalance and the weight equilibrated for 220 minutes to 31.354 mg, corresponding to 0.116 mmol of \(o\)-xylene sorbed.

\[[\text{NiCl}_2(\text{4-PhPy})_4] \cdot 4p\text{-xylene}\]: 23.834 mg (0.032 mmol) of 1 were weighed on a microbalance under vacuum at a controlled temperature of 20 °C. 2 ml of \(p\)-xylene was injected into the microbalance and the weight equilibrated for 220 minutes to 35.210 mg, corresponding to 0.150 mmol of \(p\)-xylene sorbed.

\[[\text{CoCl}_2(\text{4-PhPy})_4] \cdot 4o\text{-xylene}\]: 11.055 mg (0.0147 mmol) of 2 were weighed on a microbalance under vacuum at 20° C. 2 ml of \(o\)-xylene was injected into the microbalance and the weight equilibrated for 220 minutes to 16.484 mg, corresponding to 0.0511 mmol of \(o\)-xylene sorbed.

\[[\text{CoCl}_2(\text{4-PhPy})_4] \cdot 4m\text{-xylene}\]: 22.876 mg (0.0305 mmol) of 2 were weighed on a microbalance under vacuum at 20 °C. 2 ml of \(m\)-xylene was injected into the microbalance and the weight equilibrated for 220 minutes to 32.540 mg, corresponding to 0.0910 mmol of \(m\)-xylene sorbed.

\[[\text{CoCl}_2(\text{4-PhPy})_4] \cdot 4p\text{-xylene}\]: 23.768 mg (0.032 mmol) of 2 were weighed on a microbalance under vacuum at 20 °C. 2 ml of \(p\)-xylene was injected into the microbalance and the weight equilibrated for 220 minutes to 31.835 mg, corresponding to 0.076 mmol of \(p\)-xylene sorbed.
[Ni_{0.5}Co_{0.5}Cl_{2}(4-PhPy)_{4}]·4o-xylene: 21.609 mg (0.029 mmol) of 3 were weighed on a microbalance under vacuum at 20 °C. 2 ml of o-xylene was injected into the microbalance and the weight equilibrated for 220 minutes to 32.553 mg, corresponding to 0.103 mmol of o-xylene sorbed.

[Ni_{0.5}Co_{0.5}Cl_{2}(4-PhPy)_{4}]·4m-xylene: 24.513 mg (0.033 mmol) of 3 were weighed on a microbalance under vacuum at a controlled temperature of 20 °C. 2 ml of m-xylene was injected into the microbalance and the weight equilibrated for 220 minutes to 35.418 mg, corresponding to 0.103 mmol of m-xylene sorbed.

[Ni_{0.5}Co_{0.5}Cl_{2}(4-PhPy)_{4}]·4p-xylene: 18.407 mg (0.0245 mmol) of 3 were weighed on a microbalance under vacuum at a controlled temperature of 20 °C. 2 ml of p-xylene was injected into the microbalance and the weight equilibrated for 220 minutes to 19.788 mg, corresponding to 0.01 mmol of p-xylene sorbed.
5 Thermogravimetric analysis

Fig. S7 The TGA of compounds 1, 2 and 3.
6 Powder X-Ray diffraction

Fig. S8 PXRD comparison for the α phase of compound 1, the m-xylene clathrate resulting from the solid vapour synthesis and the simulated pattern of the m-xylene clathrate resulting from solution synthesis.
Fig. S9 PXRD comparison for the α phase of compound 1, the o-xylene clathrate resulting from the solid vapour synthesis and the simulated pattern of the o-xylene clathrate resulting from solution synthesis.

Fig. S10 PXRD comparison for the α phase of compound 1, the p-xylene clathrate resulting from the solid vapour synthesis and the simulated pattern of the p-xylene clathrate resulting from solution synthesis.
Fig. S11 Comparison of the PXRD patterns for the α phase for 2, m-xylene clathrate obtained from solid vapour synthesis and the simulated pattern of the m-xylene clathrate obtained from solution synthesis.
Fig. S12 Comparison of the PXRD patterns for the α phase for compound 2, p-xylene clathrate obtained from solid vapour synthesis and the simulated pattern of the p-xylene clathrate obtained from solution synthesis.

Fig. S13 Comparison of the PXRD patterns for the α phase for compound 2, o-xylene clathrate obtained from solid vapour synthesis and the o-xylene clathrate obtained from solution synthesis.
Fig. S14 PXRD analysis for the α phase of compound 3, the *m*-xylene clathrate prepared by solid vapour synthesis and the simulated pattern for *m*-xylene phase for compound 1.

Fig. S15 PXRD analysis for the α phase of compound 3, the *o*-xylene clathrate prepared by solid vapour synthesis and the simulated pattern of *o*-xylene phase for compound 1.
Fig S16. PXRD analysis for the α phase of compound 3, the p-xylene clathrate prepared by solid vapour synthesis and the simulated pattern of p-xylene clathrate of compound 1.

6 Crystallographic data

Single crystal X-ray diffraction data were collected on a Bruker Apex II Duo diffractometer employing Mo-Kα radiation. The temperature was controlled using an Oxford Cryostream cooler. Data reduction and absorption corrections were carried out using the SAINT1 and SADABS2,3 programmes, respectively. The structures were solved by direct methods or a combination of Patterson and partial structure expansion using SHELXS-974. Non-hydrogen atoms were refined anisotropically by means of full-matrix least squares calculations on F^2 using SHELXL-974 within the X-Seed5 graphical user interface. Hydrogen atoms were placed on calculated positions.

In the 1·m-xylene structure one of the m-xylene molecules was refined as disordered over two positions in a ratio of 0.64 to 0.36. The 2·m-xylene structure was a non-merohedral twin which was integrated in two twin domains after identification of the orientation matrices using the program CELL_NOW6. The twin law is a twofold rotation about [0 1 0]. In the 1·o-xylene and 2·o-xylene structures there is disorder of both the ligand and the guest molecules. In 1·o-xylene the phenyl substituent of the ligand could be modelled as disordered over two positions of 60–40% occupancy, while the various positions of the disordered o-xylene could not be resolved. Therefore, the highest populated orientation was refined as a full occupancy
molecule for both the o-xylene molecules in the asymmetric unit. In the 2-o-xylene structure one of the ligand molecules is disordered and was modelled as two components in a 0.55 to 0.45 ratio. In one of the o-xylene molecules, the highest populated orientation was modelled as a full occupancy molecule, while the second o-xylene molecule was modelled as a three part disorder in a 0.33 to 0.34 to 0.32 ratio.

In the 1-MeOH structure the methanol has an occupancy of 88% (as determined from an electron density summation in SQUEEZE), and it is disordered over two positions. However, an attempt to model the methanol as a two part disorder did not yield a satisfactory model, therefore only the highest populated orientation was refined. In the 2-MeOH structure the unresolved electron density in the channels was treated with SQUEEZE which resulted in a \(R1 \) of 0.0478.

1-o-xylene: \(\text{C}_{76}\text{H}_{62}\text{Cl}_2\text{N}_4\text{Ni}, \ M = 1150.83, 0.32 \times 0.26 \times 0.18 \text{ mm}^3 \), monoclinic, space group \(\text{C}2/c \) (No. 15), \(a = 9.6749(5), b = 23.1727(12), c = 28.2174(15) \text{ Å}, \beta = 95.5260(10)^\circ, V = 6296.8(6) \text{ Å}^3, Z = 4, D_c = 1.214 \text{ g/cm}^3, F_{000} = 2392, \text{Bruker Duo CCD Area Detector, MoK}\alpha \text{ radiation,} \lambda = 0.71073 \text{ Å, } T = 100(2)\text{K, } 2\theta_{\text{max}} = 56.7^\circ, 23418 \text{ reflections collected, 7832 unique (} \text{R}_{\text{int}} = 0.0260). \text{Final } \text{GooF} = 1.036, \text{ } R1 = 0.0616, wR2 = 0.1774, \text{ } R \text{ indices based on 6285 reflections with } I >2\text{sigma}(I) \text{ (refinement on } F^2), 428 \text{ parameters, 134 restraints. } \text{Lp and absorption corrections applied, } \mu = 0.439 \text{ mm}^{-1}.\)

1-m-xylene: \(\text{C}_{60}\text{H}_{46}\text{Cl}_2\text{N}_4\text{Ni}, \ M = 952.62, 0.46 \times 0.33 \times 0.12 \text{ mm}^3 \), triclinic, space group \(\text{P}-1 \) (No. 2), \(a = 12.6484(13), b = 12.7069(13), c = 15.9544(17) \text{ Å}, \alpha = 89.157(2), \beta = 77.167(2), \gamma = 88.118(2)^\circ, V = 2498.8(4) \text{ Å}^3, Z = 2, D_c = 1.266 \text{ g/cm}^3, F_{000} = 992, \text{Bruker Duo CCD Area Detector, MoK}\alpha \text{ radiation,} \lambda = 0.71073 \text{ Å, } T = 100(2)\text{K, } 2\theta_{\text{max}} = 61.9^\circ, 37396 \text{ reflections collected, 14495 unique (} \text{R}_{\text{int}} = 0.0378). \text{Final } \text{GooF} = 1.030, \text{ } R1 = 0.0459, wR2 = 0.1135, \text{ } R \text{ indices based on 10915 reflections with } I >2\text{sigma}(I) \text{ (refinement on } F^2), 599 \text{ parameters, 0 restraints. } \text{Lp and absorption corrections applied, } \mu = 0.538 \text{ mm}^{-1}.\)

1-p-xylene: \(\text{C}_{76}\text{H}_{76}\text{Cl}_2\text{N}_4\text{Ni}, \ M = 1175.02, 0.33 \times 0.18 \times 0.12 \text{ mm}^3 \), monoclinic, space group \(\text{C}2/c \) (No. 15), \(a = 9.5570(9), b = 23.8992(2), c = 27.482(3) \text{ Å}, \beta = 97.806(2)^\circ, V = 6218.9(10) \text{ Å}^3, Z = 4, D_c = 1.255 \text{ g/cm}^3, F_{000} = 2488, \text{Bruker Duo CCD Area Detector, MoK}\alpha \text{ radiation,} \lambda = 0.71073 \text{ Å, } T = 100(2)\text{K, } 2\theta_{\text{max}} = 61.2^\circ, 24858 \text{ reflections collected, 8844 unique (} \text{R}_{\text{int}} = 0.0415). \text{Final } \text{GooF} = 1.036, \text{ } R1 = 0.0428, wR2 = 0.0968, \text{ } R \text{ indices based on 6462 reflections with } I >2\text{sigma}(I) \text{ (refinement on } F^2), 383 \text{ parameters, 0 restraints. } \text{Lp and absorption corrections applied, } \mu = 0.445 \text{ mm}^{-1}.\)

2-o-xylene: \(\text{C}_{73,34}\text{H}_{56}\text{Cl}_2\text{CoN}_4, \ M = 1123.43, 0.35 \times 0.22 \times 0.07 \text{ mm}^3 \), monoclinic, space group \(\text{C}2/c \) (No. 15), \(a = 9.7131(18), b = 23.5664(4), c = 28.1675(5) \text{ Å}, \beta = 96.357(3)^\circ, V = 6408(2) \text{ Å}^3, Z = 4, D_c = 1.165 \text{ g/cm}^3, F_{000} = 2340.4, \text{Bruker Duo CCD Area Detector, MoK}\alpha \text{ radiation,} \lambda = 0.71073 \text{ Å, } T = 100(2)\text{K, } 2\theta_{\text{max}} = 56.7^\circ, 23171 \text{ reflections collected, 7934 unique (} \text{R}_{\text{int}} = 0.0803). \text{Final } \text{GooF} = 1.028, \text{ } R1 = 0.0997, wR2 = 0.2618, \text{ } R \text{ indices based on}
4039 reflections with I > 2σ(I) (refinement on F^2), 459 parameters, 17 restraints. Lp and absorption corrections applied, $\mu = 0.395$ mm$^{-1}$.

2-p-xylene: C$_{76}$H$_{56}$Cl$_2$CoN$_4$, $M =$ 1175.24, 0.33 × 0.15 × 0.09 mm3, monoclinic, space group C2/c (No. 15), $a =$ 9.555(4), $b =$ 24.019(9), $c =$ 27.580(10) Å, $\beta =$ 98.020(6)$^\circ$, $V =$ 6268(4) Å3, $Z =$ 4, $D_c =$ 1.245 g/cm3, $F_{000} =$ 2484, Bruker SMART APEX CCD Area Detector, MoKα radiation, $\lambda =$ 0.71073 Å, $T =$ 100(2)K, $2\theta_{\text{max}} =$ 50.0$^\circ$, 16087 reflections collected, 5519 unique ($R_{\text{int}} =$ 0.1056). Final $GooF =$ 0.954, $R1 =$ 0.0598, $wR2 =$ 0.1196, R indices based on 3022 reflections with I > 2σ(I) (refinement on F^2), 384 parameters, 0 restraints. Lp and absorption corrections applied, $\mu =$ 0.406 mm$^{-1}$.

2 m-xylene: C$_{76}$H$_{56}$Cl$_2$CoN$_4$, $M =$ 1175.24, 0.41 × 0.33 × 0.20 mm3, monoclinic, space group C2/c (No. 15), $a =$ 23.480(5), $b =$ 11.315(2), $c =$ 23.479(3) Å, $\beta =$ 91.59$^\circ$, $V =$ 6235.4(19) Å3, $Z =$ 4, $D_c =$ 1.252 g/cm3, $F_{000} =$ 2484, Bruker Duo CCD Area Detector, MoKα radiation, $\lambda =$ 0.71073 Å, $T =$ 173(2)K, $2\theta_{\text{max}} =$ 50.0$^\circ$, 5304 reflections collected, 5304 unique ($R_{\text{int}} =$ 0.0000). Final $GooF =$ 1.101, $R1 =$ 0.0682, $wR2 =$ 0.1891, R indices based on 4687 reflections with I > 2σ(I) (refinement on F^2), 381 parameters, 0 restraints. Lp and absorption corrections applied, $\mu =$ 0.408 mm$^{-1}$.

1-MeOH: C$_{44}$H$_{38}$H$_8$Cl$_2$N$_4$NiO$_8$, $M =$ 775.67, 0.45 × 0.23 × 0.11 mm3, orthorhombic, space group P2$_1$/2$_1$/2$_1$ (No. 19), $a =$ 12.3778(17), $b =$ 16.212(2), $c =$ 19.398(3) Å, $\alpha =$ 98.020(6)$^\circ$, $\beta =$ 91.59$^\circ$, $\gamma =$ 91.59$^\circ$, $V =$ 3892.7(9) Å3, $Z =$ 4, $D_c =$ 1.324 g/cm3, $F_{000} =$ 16160, Bruker APEX CCD Area Detector, MoKα radiation, $\lambda =$ 0.71073 Å, $T =$ 100(2)K, $2\theta_{\text{max}} =$ 109.9$^\circ$, 23493 reflections collected, 9086 unique ($R_{\text{int}} =$ 0.0296). Final $GooF =$ 1.174, $R1 =$ 0.0512, $wR2 =$ 0.1071, R indices based on 8306 reflections with I > 2σ(I) (refinement on F^2), 480 parameters, 0 restraints. Lp and absorption corrections applied, $\mu =$ 0.675 mm$^{-1}$. Absolute structure parameter = 0.052(16) (Flack, H. D. *Acta Cryst.* 1983, A39, 876-881).

2-MeOH: C$_{44}$H$_{36}$Cl$_2$CoN$_4$, $M =$ 750.60, 0.44 × 0.37 × 0.28 mm3, monoclinic, space group C2/c (No. 15), $a =$ 9.273(2), $b =$ 23.801(5), $c =$ 21.313(5) Å, $\alpha =$ 98.130(4)$^\circ$, $\beta =$ 91.59$^\circ$, $\gamma =$ 91.59$^\circ$, $V =$ 4656.8(18) Å3, $Z =$ 4, $D_c =$ 1.071 g/cm3, $F_{000} =$ 1556, Bruker Duo CCD Area Detector, MoKα radiation, $\lambda =$ 0.71073 Å, $T =$ 100(2)K, $2\theta_{\text{max}} =$ 56.9$^\circ$, 16686 reflections collected, 5825 unique ($R_{\text{int}} =$ 0.0422). Final $GooF =$ 1.041, $R1 =$ 0.0477, $wR2 =$ 0.1170, R indices based on 3848 reflections with I > 2σ(I) (refinement on F^2), 235 parameters, 0 restraints. Lp and absorption corrections applied, $\mu =$ 0.513 mm$^{-1}$.

References
