Supporting information for

Crystal structure of a luminescent thiolated Ag nanocluster with an

octahedral Ag₆⁴⁺ core

Huayan Yang,¹ Jing Lei,¹ Binghui Wu,¹ Yu Wang,¹ Meng Zhou,² Andong Xia,² Lansun Zheng,¹ and Nanfeng Zheng¹.*

¹ State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

Email: nfzheng@xmu.edu.cn

² The State Key Laboratory of Molecular Reaction Dynamics, and Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China

Experimental Details

Reagents: Silver tetrafluoroborate (AgBF₄, A.R.), 3,4-difluoro-benzenethiol ($C_6H_4F_2S$, AR) were purchased from Alfa Aesar Chemical Reagent Co. Ltd. (Tianjin, China), Sodium borohydride (NaBH₄, A.R.), triphenylphosphine (PPh₃, A.R.), dichloromethane (CH₂Cl₂, A.R.), triethylamine ($(C_2H_5)_3N$, A.R.), and methanol (CH₃OH, A.R.) were purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). The water used in all experiments was ultrapure. All reagents were used as received without further purification.

Synthesis of $Ag_{14}(SC_6H_3F_2)_{12}(PPh_3)_8$ clusters: For a typical synthesis of XMC-1, AgBF₄ was dissolved in the mixture solution of dichloromethane and methanol. The solution was cooled to 0°C in an ice bath, triphenylphosphine and 3,4-difluoro-benzenethiol were then added. After 20 minutes, triethylamine and NaBH₄ aqueous solution was added quickly to above mixture under vigorous stirring. The reaction was aging for 12 hours at 0 °C. The aqueous phase was then removed. The mixture in organic phase was then washed several times with water. Yellow block crystals were crystallized from CH₂Cl₂/hexane at 4 °C after 10 days in a yield of ~35%.

Single Crystal Analysis of $Ag_{14}(SC_6H_3F_2)_{12}(PPh_3)_8(CH_2Cl_2)_6(H_2O)_3$: The diffraction data of Ag6@Ag8(SC_6H_3F_2)_{12}(PPh_3)_8(CH_2Cl_2)_6(H_2O)_3 (XMC-1) were collected on a Rigaku RAXIS-RAPID (Mo Ka). Absorption corrections were applied by using the program ABSCOR (Higashi, 1995). The structure was solved by direct methods and refined by the least-squares method using the program SHELXS. Several F atoms at the 3-position of benzene rings of the ligand of 3,4-difluoro-benzenethiol were found to be disordered and modeled over both in 3- and 5- positions of benzene ring. All non-hydrogen atoms in the cluster were anisotropically refined to obtain the final R factor.

Measurements of Optical Properties:

Pure crystals of XMC-1 were dissolved in dichloromethane (CH_2Cl_2) for spectra measurements. UV/Vis absorption spectrum was recorded on a Varian Carry 5000 spectrophotometer. Fluorescence spectra were measured on a Hitachi F-7000 spectrometer.

Fluorescence lifetime measurements:

Fluorescence lifetimes were measured by a standard time-correlated single-photon counting (TCSPC) from Ortac at room temperature. The excitation source was a Titanium sapphire laser (Coherent Mira 900) with 150 fs pulse duration operated at 76MHz. The fundamental beam was sent through a pulse picker (coherent 9200) and a second harmonic generation (SHG) crystal to obtain the 365nm laser pulse at 4.7MHz for excitations of XMC-1. Fluorescence was detected by using a monochromator (EI-121, Edinburgh Instruments) and fast photomultiplier tube (XP2020). The instrument response function (IRF) measured by scattering the excitation light from a dilute suspension of colloidal silica was about 220 ps to provide ~50 ps time resolution with deconvolution. All the temporal evolution profiles are fitted by the convolution by FluoFit software based on the Levenberg-Marquardt and Simplex algorithms (Version 3.3, PicoQuant, Germany).

Figure S1 The structure of $Ag_{14}(SC_6H_3F_2)_{12}(PPh_3)_8$. Some 3-F atoms were disordered over both in 3- and 5- position of benzene ring (CH₂Cl₂ missing),Color legend: green, Ag; yellow, S; pink, P; gray, C; blue, F.

Figure S2. Local coordination structures of (a) the Ag atom at the octahedral Ag6 core, (b) the thiolate ligand, and (c) Ag atom in the third shell of the XMC-1 cluster. Color legend: green, Ag; yellow, S; pink, P; gray, C; blue, F.

Figure S3. ³¹P NMR spectrum of XMC-1 in CD₂Cl₂.

Figure S4. ESI-mass spectrum of XMC-1.

Figure S5. Emission spectrum with excitation at 420 nm

Figure S6. The emission decay curves for the emissions at 420 nm and 536 nm. Both curves follow single exponential decay.

Figure S7. Temperature-dependent magnetic susceptibility of XMC-1 in an applied field of 2000e