Supplementary Information for

Direct access to pyrazolo(benzo)thienoquinolines. Highly effective palladium catalysts in an intramolecular C-H heteroarylation of arenes

Fátima Churruca, Susana Hernandez, María Pereda, Raul SanMartin^{*} and Esther Domínguez^{*}

Kimika Organikoa II Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea, 644 P.K. 48080 Bilbao, Spain

raul.sanmartin@ehu.es

Table of contents

General	S2
Experimental procedures	S2
Table S1. Selected assays for the direct arylation of benzothienylphenylpyrazole 2a	S7
General procedures for the synthesis of pyrazolo(benzo)thienoquinolines 1	S7
Modified procedure for the catalyst recycling	S10
TEM images	S11
Kinetic curve	S12
Synthesis of thiophenes 5	S12
¹ H and ¹³ C spectra of compounds	S13

General

All reactions were run under an atmosphere of argon unless otherwise indicated. Room temperature refers to 22°C, ambient pressure to 1013 hPa. All chemicals were purchased and used as received except when indicated. Chromatographic purification was performed as flash chromatography on silica gel 35-70, 60 Å, using a forced flow of eluent (method of Still). Drying of organic extracts during work-up of reactions was performed over anhydrous Na₂SO₄. Concentration under reduced pressure was performed by rotary evaporation at 40°C at the appropriate pressure. Yields refer to chromatographically purified and spectroscopically pure compounds. Chemical shifts δ are reported in ppm with the solvent resonance as the internal standard (d₁-chloroform: 7.260 (¹H-NMR), 77.16 (¹³C-NMR). Coupling constants *J* are given in Hertz (Hz). Multiplicities are classified by the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet and combinations thereof, or m = multiplet or br = broad signal. Melting points were determined in a capillary tube and are uncorrected. TLC was carried out on SiO₂, and the spots were located with UV light.

Experimental procedures

Synthesis of enaminones

General procedure. *N*,*N*-Dimethylformamide dimethyl acetal (DMFDMA, 12.24 mmol) was dropwised added to a solution of ketone (7.79 mmol) in dry toluene (13 mL) under argon. The reaction crude was heated to 110°C until TLC showed the completion of the reaction (23h). After cooling, the solvent was evaporated under reduced pressure and the so-obtained residue was purified by silica gel column chromatography (EtOAc in hexane).

(*E*)-1-(3-Bromobenzo[*b*]thiophen-2-yl)-3-(*N*,*N*-dimethylamino)-2-propen-1-one. 92%, orange foam: mp 137-139°C (diethyl ether); IR (film) v_{max} 1625 (C=O) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 2.97 (3H, bs, NCH₃), 3.17 (3H, bs, NCH₃), 6.11 (1H, d, *J* 12.3, =CH-CO), 7.40-7.48 (2H, m, H_{arom}), 7.76-7.94 (3H, m, =CH-N, H_{arom}); ¹³C-NMR (62.8 MHz, CDCl₃) δ

37.3, 45.0 (NCH₃), 94.5 (=*C*H-CO), 106.8 (C-3), 122.3, 124.4, 125.0, 126.6 (C_{arom}-H), 138.1, 139.1, 141.3 (*C*_{arom}-C, C_{arom}-S), 154.4 (=CH-N), 180.5 (C=O); HRMS (*m/z*): [M]⁺ calcd for C₁₃H₁₂BrNOS: 308.9823, found: 308.9818.

(E)-1-(3-Bromothiophen-2-yl)-3-(*N*,*N*-dimethylamino)-2-propen-1-one. 93%, yellowish solid: mp 56-58°C (pentane); IR (film) v_{max} 1631 (C=O) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 2.88 (3H, bs, NCH₃), 3.10 (3H, bs, NCH₃), 5.95 (1H, d, *J* 12.3, =CH-CO), 6.97 (1H, d, *J* 5.1, H_{arom}), 7.31 (1H, d, *J* 5.1, H_{arom}), 7.76 (1H, d, *J* 12,3, =CH-N); ¹³C-NMR (62.8 MHz, CDCl₃) δ 37.3, 45.0 (NCH₃), 94.5 (=*C*H-CO), 106.8 (C-3), 122.3, 124.4, 125.0, 126.6 (C_{arom}-H), 138.1, 139.1, 141.3 (*C*_{arom}-C, C_{arom}-S), 154.4 (=CH-N), 180.5 (C=O); HRMS (*m*/*z*): [M]⁺ calcd for C₉H₁₀BrNOS: 258.9666, found: 258.9677.

Synthesis of pyrazoles 2

General procedure. Arylhydrazine hydrochloride (6.5 mmol) was added to a solution of enaminoketone (5.9 mmol) and Na₂CO₃ (4.0 mmol) in MeOH (40 mL) and H₂O (8 mL) under stirring at room temperature. The resulting mixture was acidified with glacial acetic acid to pH 5-6 and heated to 135°C for 2 hours. After cooling, the suspension was diluted with EtOAc (30 mL), the organic layer was washed with H₂O (3 x 10 mL) and the solvent was evaporated under reduced pressure. The so-obtained residue was purified by silica gel column chromatography (hexane in CH₂Cl₂).

5-(3-Bromobenzo[*b*]thiophen-2-yl)-1-phenylpyrazole (2a). 95%, reddish solid: mp 57-58°C (pentane); IR (film) v_{max} 1609 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 6.78 (1H, d, J 2.0, H-4), 7.28-7.50 (7H, m, H_{arom}), 7.72-7.81 (2H, m, H_{arom}), 7.84 (1H, d, J 1.6, H-3); ¹³C-NMR (62.8 MHz, CDCl₃) δ 109.9 (C-3''), 111.1 (C-4), 122.3, 123.8, 124.5, 125.4, 126.1 (C_{arom}-H), 127.1 (C_{arom}-C, C_{arom}-S), 127.7, 129.0 (C_{arom}-H), 134.0, 137.8, 138.7, 139.7

(C_{arom} -C, C_{arom} -S, C_{arom} -N), 140.3 (C-3); HRMS (m/z): [M]⁺ calcd for $C_{17}H_{11}BrN_2S$: 353.9826, found: 353.9821.

5-(3-Bromothiophen-2-vl)-1-phenylpyrazole (2b). 86%, orange solid: mp 68-70°C (hexane);

 $\begin{array}{c} 4^{"} & 3^{"} & Br \\ 5^{"} & 5^{"} & 2^{"} & 5 & 4 \\ & 5^{"} & 5^{"} & & 3 \\ 5^{'} & & & 2^{"} \\ 4^{'} & & & 2^{'} \\ 3^{'} & & & 2^{'} \end{array}$

IR (film) v_{max} 1625 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 6.66 (1H, d, J 2.0, H-4), 6.99 (1H, d, J 5.1, H-4", H-5"), 7.32-7.34 (6H, m, H_{arom}), 7.76 (1H, d, J 1.6, H-3); ¹³C-NMR (62.8 MHz, CDCl₃) δ 110.4 (C-4), 112.3 (C-3"), 124.4, 127.4, 127.7, 128.7, 130.5 (C_{arom}-H), 133.5, 139.5 (C_{arom}-N, C-2"), 139.9 (C-3); HRMS (m/z): [M]⁺ calcd for C₁₃H₉BrN₂S: 303.9670,

found: 303.9677.

5-(3-Bromobenzo[*b*]**thiophen-2-yl)-1-(2-ethylphenyl)pyrazole (2c).** 88%, reddish solid: mp 58-60°C (pentane); IR (film) v_{max} 1615 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 1.10 (3H, t, *J* 7.5, CH₂CH₃), 2.44 (2H, q, *J* 7.5, CH₂CH₃), 6.99 (1H, d, *J* 2.0, H-4), 7.18-7.46 (6H, m, H_{arom}), 7.61-7.65 (1H, m, H_{arom}), 7.81-7.83 (1H, m, H_{arom}), 7.84 (1H, d, *J* 2.0, H-3); ¹³C-NMR (62.8 MHz, CDCl₃) δ 14.1 (CH₂CH₃), 23.9 (CH₂CH₃), 108.9 (C-3^{''}), 109.4 (C-4), 122.0, 123.8, 125.2, 125.9, 126.2 (C_{arom}-H), 126.6 (C_{arom}-C, C_{arom}-S), 128.4, 129.1, 129.6 (C_{arom}-H), 135.8, 137.6, 137.9, 138.4 (C_{arom}-C, C_{arom}-S, C_{arom}-N), 139.7 (C-3), 141.9 (C_{arom}-S, C_{arom}-N); HRMS (*m/z*): [M]⁺ calcd for C₁₉H₁₅BrN₂S: 382.0139, found: 382.0132.

5-(3-Bromothiophen-2-yl)-1-(2-ethylphenyl)pyrazole (2d). 90%, brown solid: mp 74-76°C (hexane); IR (film) v_{max} 1625 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 1.06 (3H, t, *J* 7.5, CH₂CH₃), 2.37 (2H, q, *J* 7.5, CH₂CH₃), 6.87 (1H, d, *J* 1.6, H-4), 6.94 (1H, d, *J* 5.5, H-4'', H-5''), 7.15 (1H, d, *J* 5.5, H-4'', H-5''), 7.21-7.40 (4H, m, H_{arom}), 7.77 (1H, d, *J* 2.0, H-3); ¹³C-NMR (62.8 MHz, CDCl₃) δ 14.0 (CH₂CH₃), 23.7 (CH₂CH₃), 108.3 (C-4), 111.3 (C-3''), 126.1 (C_{arom}-H), 126.3 (C-2', C-2''), 127.1, 128.4, 129.0, 129.5, 130.4 (C_{arom}-H), 135.5, 137.8 (C-2', C-2'', C_{arom}-N), 139.5 (C-3), 141.9 (C_{arom}-N); HRMS (*m/z*): [M]⁺ calcd for C₁₅H₁₃BrN₂S: 331.9983, found: 331.9988.

5-(3-Bromobenzo[*b*]**thiophen-2-yl)-1-(4-methylphenyl)pyrazole (2e).** 87%, brownish solid: mp 88-89°C (pentane); IR (film) ν_{max} 1610 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ2.33 (3H, s, CH₃), 6.77 (1H, d, *J* 2.0, H-4), 7.12 (2H, d, *J* 8.3, H-2', H-3'), 7.28 (2H, d, *J* 8.3, H-2', H-3'), 7.38-7.50 (2H, m, H_{arom}), 7.74 (1H, dd, *J* 6.7, *J* 1.2, H-4'', H-7''), 7.81 (1H, d, *J* 1.6, H-3), 7.80-7.84 (1H, m, H_{arom}); ¹³C-NMR (62.8 MHz, CDCl₃) δ 20.9 (CH₃), 109.7 (C-3''), 110.7 (C-4), 122.1, 123.6, 124.3, 125.2, 125.9 (C_{arom} -H), 127.1 (C_{arom} -C, C_{arom} -S), 129.4 (C_{arom} -H), 133.7 (C_{arom} -C, C_{arom} -S), 137.1, 137.5, 137.6, 138.6 (C_{arom} -C, C_{arom} -S, C_{arom} -N), 139.9 (C-3); HRMS (m/z): [M]⁺ calcd for C₁₈H₁₃BrN₂S: 367.9983, found: 367.9984.

5-(3-Bromobenzo[*b*]**thiophen-2-yl)-1-(4-methoxyphenyl)pyrazole (2f).** 82%, brownish solid: mp 104-105°C (pentane); IR (film) v_{max} 1609 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 3.77 (3H, s, OCH₃), 6.77 (1H, d, *J* 2.0, H-4), 6.80-6.86 (2H, m, H_{arom}), 7.27-7.33 (2H, m, H_{arom}), 7.37-7.49 (2H, m, H_{arom}), 7.72-7.74 (1H, m, H_{arom}), 7.79 (1H, d, *J* 2.0, H-3), 7.78-7.83 (1H, m, H_{arom}); ¹³C-NMR (62.8 MHz, CDCl₃) δ 55.3 (OCH₃), 109.7 (C-3''), 110.5 (C-4), 114.0, 122.2, 123.8, 125.3, 126.0, 126.1 (C_{arom}-H), 127.1 (C_{arom}-C, C_{arom}-S), 132.8, 134.0, 137.7, 138.7 (C_{arom}-C, C_{arom}-S, C_{arom}-N), 139.9 (C-3), 158.8 (C-4'); HRMS (*m/z*): [M]⁺ calcd for C₁₇H₁₆BrN₂OS: 383.9932, found: 383.9943.

5-(3-Bromobenzo[*b*]thiophen-2-yl)-1-(4-trifluoromethylphenyl)pyrazole (2g). 87%, orange solid: mp 113-114°C (pentane); IR (film) v_{max} 1607 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 6.76 (1H, d, *J* 1.6, H-4), 7.42-7.60 (6H, m, H_{arom}), 7.77-7.84 (2H, m, H-3, H_{arom}), 7.85 (1H, d, *J* 1.6, H-3); ¹³C-NMR (62.8 MHz, CDCl₃) δ 110.4 (C-3''), 112.0 (C-4), 122.4 (C_{arom}-H), 123.7 (q, *J* 272.9, CF₃), 124.0, 125.6 (C_{arom}-H), 126.2 (q, *J* 3.6, C-3'), 126.4 (C_{arom}-H), 129.3 (q, *J* 32.3, C-4'), 134.1, 137.7, 138.7 (C_{arom}-C, C_{arom}-S, C_{arom}-N), 141.1 (C-3), 142.2 (C_{arom}-S, C_{arom}-N); HRMS (*m*/*z*): [M]⁺ calcd for C₁₈H₁₀F₃BrN₂S: 421.9700, found: 421.9695.

5-(3-Bromobenzo[*b*]**thiophen-2-yl)-1-(4-***tert***-buthylphenyl)piyrazole** (**2h**). 87%, brown solid: mp 125-127°C (pentane); IR (film) v_{max} 1612 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 1.31 (9H, s, C(CH₃)₃), 6.77 (1H, d, *J* 2.0, H-4), 7.35-7.49 (6H, m, H_{arom}), 7.72-7-75 (1H, m, H_{arom}), 7.82 (1H, d, *J* 2.0, H-3), 7.82-7.84 (1H, m, H_{arom}); ¹³C-NMR (62.8 MHz, CDCl₃) δ 31.2 (C(CH₃)₃), 34.5 (C(CH₃)₃), 109.8 (C-3"), 110.8 (C-4), 122.2, 123.7, 123.9, 125.2, 125.8, 125.9 (C_{arom}-H), 127.3 (*C*_{arom}-C, C_{arom}-S), 133.7, 137.1, 137.7, 138.7 (*C*_{arom}-C, C_{arom}-S, C_{arom}-N), 139.9 (C-3), 150.6 (C-4"); HRMS (*m*/*z*): [M]⁺ calcd for C₂₁H₁₉BrN₂S: 410.0452, found: 410.0439.

5-(3-Bromothiophen-2-yl)-1-(4-methylphenyl)pyrazole (2i). 87%, brownish solid: mp 66-67°C (hexane); IR (film) ν_{max} 1600 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 2.35 (3H, s, CH₃), 6.65 (1H, d, *J* 1.6, H-4), 6.98 (1H, d, *J* 5.5, H-4", H-5"), 7.13 (2H, d, *J* 8.3, H-2', H-

3''), 7.21 (2H, d, *J* 8.3, H-2', H-3''), 7.30 (1H, d, *J* 5.5, H-4'', H-5''), 7.74 (1H, d, *J* 1.6, H-3); ¹³C-NMR (62.8 MHz, CDCl₃) δ 20.9 (CH₃), 110.1 (C-4), 112.2 (C-3''), 124.3 (C_{arom}-H), 126.9 (C-4', C-2''), 127.6, 129.2, 130.4 (C_{arom}-H), 133.4, 137.1, 137.3 (C-4', C-2'', C_{arom}-N), 139.7 (C-3); HRMS (*m/z*): [M]⁺ calcd for C₁₄H₁₁BrN₂S: 317.9826, found: 317.9822.

5-(3-Bromothiophen-2-yl)-1-(4-methoxyphenyl)pyrazole (2j). 77%, brown solid: mp 76-78°C (hexane); IR (film) v_{max} 1614 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 3.80 (3H, s, OCH₃), 6.66 (1H, d, *J* 2.0, H-4), 6.83-6.87 (2H, m, H_{arom}), 6.98 (1H, d, *J* 5.5, H-4", H-5"), 7.22-7.26 (2H, m, H_{arom}), 7.30 (1H, d, *J* 5.5, H-4", H-5"), 7.73 (1H, d, *J* 1.6, H-3); ¹³C-NMR (62.8 MHz, CDCl₃) δ 55.4 (OCH₃), 109.9 (C-4), 112.3 (C-3"), 113.9, 126.3 (C_{arom}-H), 127.0 (C-2"), 127.7, 130.6 (C_{arom}-H), 132.8, 133.8 (C_{arom}-N), 139.7 (C-3), 159.0 (C-4"); HRMS (*m/z*): [M]⁺ calcd for C₁₄H₁₁BrN₂OS: 333.9775, found: 333.9779.

5-(3-Bromothiophen-2-yl)-1-(4-trifluoromethylphenyl)pyrazole (2k). 61%, orange solid: mp 73-74°C (hexane); IR (film) v_{max} 1608 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 6.72 (1H, d, *J* 2.0, H-4), 7.06 (1H, d, *J* 5.5, H-4'', H-5''), 7.42 (1H, d, *J* 5.5, H-4'', H-5''), 7.53-7.56 (2H, m, H_{arom}), 7.66-7.69 (2H, m, H_{arom}), 7.86 (1H, d, *J* 2.0, H-3); ¹³C-NMR (62.8 MHz, CDCl₃) δ 111.5 (C-4), 112.8 (C-3''), 123.7 (q, *J* 272.9, CF₃), 123.9 (C_{arom}-H), 125.9 (q, *J* 3.6, C-3'), 126.4 (C-2''), 128.1 (C_{arom}-H), 129.1 (q, *J* 32.1, C-4'), 130.8 (C_{arom}-H), 133.6 (C_{arom}-N), 140.7 (C-3), 142.4 (C_{arom}-N); HRMS (*m*/*z*): [M]⁺ calcd for C₁₄H₁₈F₃BrN₂S: 371.9544, found: 371.9554.

5-(3-Bromothiophen-2-yl)-1-(4-*tert***-buthylphenyl)pyrazole (2l).** 78%, brownish solid: mp 102-103°C (hexane); IR (film) v_{max} 1625 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 1.31 (9H, s, C(CH₃)₃), 6.66 (1H, d, *J* 1.6, H-4), 7.00 (1H, d, *J* 5.5, H-4", H-5"), 7.22-7.37 (5H, m, H_{arom}), 7.75 (1H, d, *J* 2.0, H-3); ¹³C-NMR (62.8 MHz, CDCl₃) δ 31.1 (C(CH₃)₃), 34.3 (C(CH₃)₃, 110.2 (C-4), 112.2 (C-3"), 123.9, 125.6 (C_{arom}-H), 126.9 (C-2"), 127.6, 130.4 (C_{arom}-H), 133.3, 137.0 (C_{arom}-N), 139.7 (C-3), 150.4 (C-4"); HRMS (*m/z*): [M]⁺ calcd for C₁₇H₁₇BrN₂S: 360.0296, found: 360.0284.

Synthesis of quinolines 1

Table S1. Selected assays for the direct arylation of benzothienylphenylpyrazole 2a

			[Pd]				
		2a		1a			
Entry	cat/L (% mol)	base (equiv)	additive	solvent	T (°C)	time (h)	1a $(\%)^a$
1	$Pd(OAc)_2/PPh_3$ (5)	Cs_2CO_3 (2)		dioxane	100	23	41
2	$Pd(OAc)_2$ (5)	K_2CO_3 (3)	18-crown-6	DMF	140	16	22
3	$Pd(PPh_3)_4 \qquad (10)$	KOAc (1.5)		toluene	100	22	41
4	$Pd(OAc)_2/PPh_3(10)$	KOAc (2.5)		DMA	130	20	36
5	$Pd(OAc)_2/PPh_3(10)$	K_2CO_3 (2.5)	ⁿ Bu ₄ NBr	CH ₃ CN	80	96	12
6	Pd/C (10)	KOAc (1.5)		NMP	100	72	25
7	$Pd(OAc)_2 \qquad (10)$	K_2CO_3 (2.5)	ⁿ Bu ₄ NBr, LiCl	DMF	130	15	62

^aIsolated yield. Reaction conditions: 2a (0.2 mmol), cat/L:1/4, solvent (2 mL) sealed tube under Ar.

General procedure A (using Pd(OAc)₂). Dry degassed DMF (1.5 mL) was added to an oven-dried heavy-wall pressure tube charged with Pd(OAc)₂ (0.03 mmol), K₂CO₃ (1.6 mmol), LiCl (0.5 mmol), ^{*n*}Bu₄NBr (0.3 mmol), and pyrazole **2** (0.3 mmol) under argon at room temperature. After the tube was closed, it was heated to 130 °C until TLC showed the completion of the reaction (15-18 h). After cooling, the crude was diluted with CH₂Cl₂ (10 mL), filtered to remove the inorganic salts and the resulting organic layer was washed with H₂O (1 x 5 mL). The organic phase was dried over anhydrous sodium sulfate and the solvent was evaporated under reduced pressure. The so-obtained residue was purified by flash column chromatography (EtOAc in hexane).

General procedure B (using pincers 3a) and C (using pincers 3b). Dry degassed DMA (2 mL) was added to an oven-dried heavy-wall pressure tube charged with complex 3a or 3b (0.002 mmol), KOAc (0.3 mmol), and pyrazole 2 (0.2 mmol) under argon at room temperature. After the tube was closed, it was heated to 130 °C until TLC showed the completion of the reaction (16-18 h). After cooling, the crude was diluted with EtOAc (10 mL) and washed with H_2O (1 x 5 mL). The organic phase was dried over anhydrous sodium sulfate and the solvent was evaporated under reduced pressure. The so-obtained residue was purified by flash column chromatography(EtOAc in hexane).

Pyrazolo[1,5-a]benzothieno[2,3-c]quinoline (1a). 62% (method A), 86% (method B), 92%

(method C), yellow solid: mp 80-82°C (pentane); IR (film) v_{max} 1632 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 6.77 (1H, d, J 2.0, H-3), 7.43-7.59 (3H, m, H_{arom}), 7.64-7.70 (1H, m, H_{arom}), 7.92-7.96 (1H, m, H_{arom}), 8.04 (1H, d, J 1.6, H-2), 8.61-8.64 (1H, m, H_{arom}), 8.70-8.76 (2H, m, H_{arom}); ¹³C-NMR (62.8 MHz, CDCl₃) δ 98.9 (C-3), 116.6 (C_{arom}-H), 120.9 (C-3b), 123.3, 123.9, 124.2, 125.1, 125.4, 125.5, 127.9 (C_{arom}-H), 128.5, 133.3, 134.1, 136.1,

139.6 (C_{arom} -C, C-4a, C_{arom} -N), 141.4 (C-2); HRMS (m/z): [M]⁺ calcd for $C_{17}H_{10}N_2S$: 274.0565, found: 274.0570.

Pyrazolo[1,5-a]thieno[2,3-c]quinoline (1b). 58% (method A), 64% (method B), 83% (method

C), yellow solid: mp 151-152°C (pentane); IR (film) v_{max} 1596 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 6.76 (1H, d, J 1.2, H-3), 7.49-7.55 (1H, m, H-8, H-9), 7.58 (1H, d, J 5.2, H-5, H-6), 7.63-7.69 (1H, m, H-8, H-9), 7.82 (1H, d, J 5.5, H-5, H-6), 8.02 (1H, d, J 1.2, H-2), 8.14-8.17 (1H, m, H-7, H-10), 8.62-8.65 (1H, m, H-7, H-10); ¹³C-NMR (62.8 MHz, CDCl₃) δ 97.8 (C-3), 116.4 (C_{aron}-H),

119.9 (C-3b), 122.4, 124.3, 125.0, 126.4 (C_{arom} -H), 127.0 (C_{arom} -C), 128.3 (C_{arom} -H), 132.8, 133.1, 134.5 (C_{arom} -C, C_{arom} -N), 141.3 (C-2); HRMS (m/z): [M]⁺ calcd for $C_{13}H_8N_2S$: 224.0408, found: 224.0417.

12-Ethylpyrazolo[**1**,**5**-*a*]**benzothieno**[**2**,**3**-*c*]**quinoline** (**1c**). 65% (method A), 88% (method B), 91% (method C), yellow solid: mp 130-131°C (pentane); IR (film) v_{max} 1619 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 1.42 (3H, t, *J* 7.1, CH₂CH₃), 3.71 (2H, q, *J* 7.1, CH₂CH₃), 6.73 (1H, d, *J* 2.0, H-3), 7.38-7.52 (4H, m, H_{arom}), 7.86-7.89 (1H, m, H_{arom}), 8.04 (1H, d, *J* 2.0, H-2), 8.53-8.61 (2H, m, H_{arom}); ¹³C-NMR (62.8 MHz, CDCl₃) δ 16.3 (CH₂CH₃), 30.2 (CH₂CH₃), 98.1 (C-3), 121.9 (C_{arom}-H), 122.6 (C-3b), 123.2, 124.2, 124.4, 125.1, 125.2 (C_{arom}-H), 125.8, 128.3 (C_{arom}-C), 130.7 (C_{arom}-H), 132.3, 135.2, 135.5, 136.3, 139.8 (C_{arom}-C, C-4a, C_{arom}-N), 140.5 (C-2); HRMS (*m*/*z*): [M]⁺ calcd for C₁₉H₁₄N₂S: 302.0878, found: 302.0878.

10-Ethylpyrazolo[**1,5-***a***]thieno[2,3-***c*]**quinoline (1d).** 37% (method A), 78% (method B), 92% (method C), yellow solid: mp 89-90°C (pentane); IR (film) v_{max} 1608 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 1.39 (3H, t, *J* 7.5, CH₂CH₃), 3.70 (2H, q, *J* 7.5, CH₂CH₃), 6.74 (1H, d, *J* 2.0, H-3), 7.41-7.50 (2H, m, H_{arom}), 7.51 (1H, d, *J* 5.5, H-5, H-6), 7.76 (1H, d, *J* 5.5, H-5, H-6), 8.02 (1H, d, *J* 2.0, H-2), 8.01-8.05 (1H, m, H_{arom}); ¹³C-NMR (62.8 MHz, CDCl₃) δ 16.3 (CH₂CH₃), 29.7 (CH₂CH₃), 96.8 (C-3), 121.6 (C-3b), 122.6, 122.8, 124.6, 126.0 (C_{arom}-H), 126.8 (C_{arom}-C), 130.9 (C_{arom}-H), 132.0, 133.4, 135.3, 135.6 (C_{arom}-C, C_{arom}-N), 140.2 (C-2); HRMS (*m*/*z*): [M]⁺ calcd for C₁₅H₁₂N₂S: 252.0721, found: 252.0711.

10-Methylpyrazolo[**1**,**5**-*a*]**benzothieno**[**2**,**3**-*c*]**quinoline** (**1e**). 73% (method A), 85% (method B), 88% (method C), yellow solid: mp 136-139°C (pentane); IR (film) v_{max} 1600 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 2.48 (3H, s, CH₃), 6.61 (1H, d, *J* 2.0, H-3), 7.32-7.44 (3H, m, H_{arom}), 7.77-7.81 (1H, m, H_{arom}), 7.94 (1H, d, *J* 2.0, H-2), 8.21 (1H, s, H-9), 8.35-8.38 (1H, m, H_{arom}), 8.42 (1H, d, *J* 8.7, H-12); ¹³C-NMR (62.8 MHz, CDCl₃) δ 21.6 (CH₃), 98.4 (C-3), 116.1 (C_{arom}-H), 120.6 (C-3b), 123.0, 123.4, 124.0 (C_{arom}-H), 124.9 (C_{arom}-C), 125.0, 125.1 (C_{arom}-H), 128.1 (C_{arom}-C), 128.8 (C_{arom}-H), 131.1, 133.5, 134.4, 135.8, 139.3 (C_{arom}-C, C-4a, C_{arom}-N), 140.8 (C-2); HRMS (*m/z*): [M]⁺ calcd for C₁₈H₁₂N₂S: 288.0721, found: 288.0715.

10-Methoxypyrazolo[**1**,**5**-*a*]**benzothieno**[**2**,**3**-*c*]**quinoline** (**1f**). 72% (method A), 88% (method B), 90% (method C), yellow solid: mp 170-172°C (pentane); IR (film) v_{max} 1614 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 3.98 (3H, s, OCH₃), 6.71 (1H, d, *J* 2.0, H-3), 7.23 (1H, dd, *J* 9.1, *J* 2.8, H-11), 7.41-7.54 (2H, m, H-6, H-7), 7.88-7.92 (1H, m, H-5, H-8), 7.97 (1H, d, *J* 2.4, H-2), 8.05 (1H, d, *J* 2.8, H-9), 8.46-8.49 (1H, m, H-5, H-8), 8.57 (1H, d, *J* 9.1, H-12); ¹³C-NMR (62.8 MHz, CDCl₃) δ 55.6 (OCH₃), 98.5 (C-3), 107.1, 115.2, 117.7 (C_{arom}-H), 121.7 (C-3b), 123.2, 123.7 (C_{arom}-H), 124.8 (*C*_{arom}-C), 125.2, 125.3 (C_{arom}-H), 127.9, 128.9, 133.2, 135.9, 139.4 (*C*_{arom}-C, C-4a, C_{arom}-N), 140.7 (C-2), 156.8 (C-10); HRMS (*m*/*z*): [M]⁺ calcd for C₁₈H₁₂N₂OS: 304.0670, found: 304.0670.

10-Trifluoromethylpyrazolo[**1**,**5**-*a*]**benzothieno**[**2**,**3**-*c*]**quinoline** (**1g**). 75% (method A), 89% (method B), 92% (method C), yellow solid: mp 185-186°C (pentane); IR (film) v_{max} 1625 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 6.70 (1H, d, *J* 2.0, H-3), 7.43-7.58 (2H, m, H_{arom}), 7.82-7.88 (2H, m, H_{arom}), 8.02 (1H, d, *J* 2.0, H-2), 8.40-8.43 (1H, m, H_{arom}), 8.68-8.72 (1H, m, H_{arom}), 8.85 (1H, s, H-9); ¹³C-NMR (62.8 MHz, CDCl₃) δ 99.5 (C-3), 117.2 (C_{arom}-H), 120.3 (C-3b), 121.2 (q, *J* 3.6, C-9, C-11), 123.4, 123.7 (C_{arom}-H), 124.2 (q, *J* 3.6, C-9, C-11), 124.2 (q, *J* 271.1, CF₃), 124.5 (*C*_{arom}-C), 125.8, 125.9 (C_{arom}-H), 126.9 (q, *J* 32.3, C-10), 129.6, 134.4, 134.7, 135.3, 139.4 (*C*_{arom}-C, C-4a, C_{arom}-N), 142.3 (C-2); HRMS (*m*/*z*): [M]⁺ calcd for C₁₈H₁₉F₃N₂S: 342.0439, found: 342.0436.

10-*tert*-**Buthylpyrazolo**[**1**,**5**-*a*]**benzothieno**[**2**,**3**-*c*]**quinoline** (**1h**). 55% (method A), 77% (method B), 85% (method C), yellow solid: mp 174-176°C (pentane); IR (film) v_{max} 1609 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 1.54 (9H, s, C(CH₃)₃), 6.74 (1H, d, *J* 2.0, H-3), 7.41-7.47 (1H, m, H_{arom}), 7.52-7.58 (1H, m, H_{arom}), 7.76 (1H, dd, *J* 8.7, *J* 1.6, H_{arom}), 7.89-7.92 (1H, m, H_{arom}), 8.02 (1H, d, *J* 2.0, H-2), 8.58-8.65 (2H, m, H_{arom}), 8.77 (1H, s, H-9); ¹³C-NMR (62.8 MHz, CDCl₃) δ 31.6 (C(CH₃)₃), 35.0 (C(CH₃)₃), 98.6 (C-3), 116.2, 120.1 (C_{arom}-H), 120.6 (C-3b), 123.3, 124.0, 125,3 (C_{arom}-H), 125.6 (*C*_{arom}-C), 125.8 (C_{arom}-H), 128.3, 131.3, 133.9, 136.1, 139.6 (*C*_{arom}-C, C-4a, C_{arom}-N), 141.1 (C-2), 147.9 (C-10); HRMS (*m*/*z*): [M]⁺ calcd for C₂₁H₁₈N₂S: 330.1191, found: 330.1205.

8-Methylpyrazolo[1,5-*a*]thieno[2,3-*c*]quinoline (1i). 58% (method A), 79% (method B), 80% (method C), yellow solid: mp 127-129°C (hexane); IR (film) v_{max} 1596 (C=N) cm⁻¹; ¹H-NMR

(250 MHz, CDCl₃) δ 2.53 (3H, s, CH₃), 6.71 (1H, d, *J* 1.6, H-3), 7.42-7.46 (1H, m, H-9, H-10), 7.52 (1H, d, *J* 5.1, H-5, H-6), 7.73 (1H, d, *J* 5.1, H-5, H-6), 7.85 (1H, s, H-7), 7.98 (1H, d, *J* 1.6, H-2), 8.46-8.49 (1H, m, H-9, H-10); ¹³C-NMR (62.8 MHz, CDCl₃) δ 21.3 (CH₃), 97.6 (C-3), 116.2 (C_{arom}-H), 119.8 (C-3b), 122.3, 124.1, 126.2 (C_{arom}-H), 126.9 (*C*_{arom}-C), 129.6 (C_{arom}-H), 131.2, 132.7, 134.2, 134.6 (*C*_{arom}-C, C_{arom}-N), 140.9 (C-2); HRMS (*m*/*z*): [M]⁺ calcd for C₁₄H₁₀N₂S: 238.0565, found: 238.0559.

8-Methoxypyrazolo[1,5-*a*]thieno[2,3-*c*]quinoline (1j). 40% (method A), 80% (method B), 88% (method C), yellow solid: mp 126-127°C (pentane); IR (film) v_{max} 1614 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 3.91 (3H, s, CH₃), 6.66 (1H, d, *J* 2.0, H-3), 7.17 (1H, dd, *J* 9.1, 2.4, H-9), 7.37 (1H, d, *J* 2.8, H-7), 7.45 (1H, d, *J* 5.1, H-5, H-6), 7.60 (1H, d, *J* 5.1, H-5, H-6), 7.94 (1H, d, *J* 2.0, H-2), 8.45 (1H, d, *J* 9.1. H-10); ¹³C-NMR (62.8 MHz, CDCl₃) δ 55.6 (OCH₃), 97.4 (C-3), 106.6, 116.3, 117.7 (C_{arom}-H), 120.8 (C-3b), 122.2, 126.1, (C_{arom}-H), 127.4, 127.8, 132.3, 133.6 (*C*_{arom}-C, C_{arom}-N), 140.5 (C-2), 156.8 (C-9); HRMS (*m/z*): [M]⁺ calcd for C₁₄H₁₀N₂OS: 254.0514, found: 254.0512.

8-Trifluoromethylpyrazolo[1,5-*a*]thieno[2,3-*c*]quinoline (1k). 58% (method A), 76% (method B), 89% (method C), yellow solid: mp 110-113°C (hexane); IR (film) v_{max} 1602 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 6.76 (1H, d, *J* 2.0, H-3), 7.61 (1H, d, *J* 5.1, H-5, H-6), 7.79 (1H, d, *J* 5.1, H-5, H-6), 7.85 (1H, d, *J* 8.7, H-9, H-10), 8.04 (1H, d, *J* 2.0, H-2), 8.35 (1H, s, H-7), 8.70 (1H, d, *J* 8.7, H-9, H-10); ¹³C-NMR (62.8 MHz, CDCl₃) δ 98.4 (C-3), 117.2 (C_{arom}-H), 116.9 (C-3b), 121.8 (q, *J* 3.6, C-7, C-9), 122.2 (C_{arom}-H), 124.7 (q, *J* 3.6, C-7, C-9), 126.9 (q, *J* 32.3, C-8), 127.1 (C_{arom}-H), 127.2 (C_{arom}-C, C_{arom}-N), 132.0, 134.7, 134.9 (C_{arom}-C, C_{arom}-N), 142.2 (C-2); HRMS (*m*/*z*): [M]⁺ calcd for C₁₄H₇F₃N₂S: 292.0282, found: 292.0290.

8-*tert*-**Buthylpyrazolo**[1,5-*a*]**thieno**[2,3-*c*]**quinoline** (11). 52% (method A), 82% (method B), 87% (method C), yellow solid: mp 71-73°C (pentane); IR (film) v_{max} 1602 (C=N) cm⁻¹; ¹H-NMR (250 MHz, CDCl₃) δ 1.46 (9H, s, C(CH₃)₃), 6.73 (1H, d, *J* 2.4, H-3), 7.56 (1H, d, *J* 5.1, H-5, H-6), 7.72 (1H, dd, *J* 8.7, 2.0, H-9), 7.84 (1H, d, *J* 5.1, H-5, H-6), 8.00 (1H, d, *J* 2.0, H-2, H-7), 8.10 (1H, d, *J* 2.0, H-2, H-7), 8.54 (1H, d, *J* 8.7, H-10); ¹³C-NMR (62.8 MHz, CDCl₃) δ 31.5 (C(CH₃)₃), 34.8 (C(CH₃)₃), 97.5 (C-3), 116.1 (C_{arom}-H), 119.5 (C-3b), 120.3, 122.3, 126.2, 126.3 (C_{arom}-H), 126.8, 131.1, 133.0, 134.2 (C_{arom}-C, C_{arom}-N), 141.0 (C-2), 147.9 (C-8); HRMS (*m*/*z*): [M]⁺ calcd for C₁₇H₁₆N₂S: 280.1034, found: 280.1038.

Catalyst recycling procedure (B, using pincer 3a). Dry degassed DMA (2 mL) was added to an oven-dried heavy-wall pressure tube charged with complex **3a** (0.002 mmol), KOAc (0.3 mmol), and pyrazole **2** (0.2 mmol) under argon at room temperature. After the tube was closed, it was heated to 130 °C until TLC showed the completion of the reaction (16h). After

cooling, the crude was diluted with EtOAc (10 mL) and washed with H₂O (10 x 5 mL). The aqueous phase was concentrated in vacuo (T<50°C) to remove water, and to the resulting DMA yellowish mixture KOAc (0.3 mmol) and pyrazole 2 (0.2 mmol) were added at room temperature and then, after closing, the mixture was heated at 130 °C for 16h. Every time, after cooling and work.up, the reagent and base were added and the reaction repeated. As previously explained in the general procedure, the organic phase was dried over anhydrous sodium sulfate and the solvent was evaporated under reduced pressure to provide a residue which was purified by flash column chromatography, thus affording benzothienoquinoline 1a as a yellow powder.

Recycling Experiments for Procedure B (complex 3a).

Run	1a (%) ^a			
1	86			
2	80			
3	64			
4	34			
5	<5			
^a Isolated yields.				

TEM images of the DMA/H₂O layer after extraction with ethyl acetate (Procedure B (complex 3a))

Conversion of benzothienylphenylpyrazole **2a** as a function of time for intramolecular direct arylation at 130 °C with complex **3a** (Table 1, entry 7)

General procedure A (using pincer 3a as catalysts) and B (using pincer 3b as catalysts). Dry degassed DMA (2 mL) was added to an oven-dried heavy-wall pressure tube charged with complex 3a or $3b(0.54 \mu mol)$, KOAc (0.4 mmol), bromobenzene (0.27 mmol) and thiophene 4 (0.27 mmol) under argon at room temperature. After the tube was closed, it was heated to 130 °C until TLC showed the completion of the reaction (18 h). After cooling, the crude was diluted with CH₂Cl₂ (10 mL) and washed with H₂O (1 x 5 mL). The organic phase was dried and the solvent was evaporated under reduced pressure. The so-obtained residue was purified by silica gel column chromatography (EtOAc in hexane).

5-Acetyl-2-phenylthiophene 5a. 86% (method A), 83% (method B), yellow needles: mp 113-114°C (hexane), Lit¹ 114-115°C.

5-Methyl-2-phenylthiophene 5b. 82% (method A), 78% (method B), white needles: mp 38-40°C (hexane), Lit² 39-41°C.

¹ L. Bai, Y. M. Zhang and J.-X. Wang, *QSAR Comb. Sci.*, 2004, **23**, 857.

² W.-D. Liu, C.-C. Chi, I.-F. Pai, A.-T. Wu and W.-S. Chung, J. Org. Chem., 2002, 67, 9267.

(E)-1-(3-Bromobenzo[b]thiophen-2-yl)-3-(N,N-dimethylamino)-2-propen-1-one.

(E)-1-(3-Bromothiophen-2-yl)-3-(N,N-dimethylamino)-2-propen-1-one.

5-(3-Bromobenzo[*b*]thiophen-2-yl)-1-phenylpyrazole (2a).

5-(3-Bromothiophen-2-yl)-1-phenylpyrazole (2b).

5-(3-Bromobenzo[b]thiophen-2-yl)-1-(2-ethylphenyl)pyrazole (2c).

5-(3-Bromobenzo[b]thiophen-2-yl)-1-(4-methylphenyl)pyrazole (2e).

5-(3-Bromobenzo[b]thiophen-2-yl)-1-(4-methoxyphenyl)pyrazole (2f).

5-(3-Bromobenzo[b]thiophen-2-yl)-1-(4-trifluoromethylphenyl)pyrazole (2g).

S21

5-(3-Bromothiophen-2-yl)-1-(4-methoxyphenyl)pyrazole (2j).

5-(3-Bromothiophen-2-yl)-1-(4-trifluoromethylphenyl)pyrazole (2k).

S26

Pyrazolo[1,5-*a*]benzothieno[2,3-*c*]quinoline (1a).

Pyrazolo[1,5-*a*]thieno[2,3-*c*]quinoline (1b).

12-Ethylpyrazolo[1,5-*a*]benzothieno[2,3-*c*]quinoline (1c).

10-Ethylpyrazolo[1,5-*a*]thieno[2,3-*c*]quinoline (1d).

10-Methylpyrazolo[1,5-*a*]benzothieno[2,3-*c*]quinoline (1e).

10-Trifluoromethylpyrazolo[1,5-*a*]benzothieno[2,3-*c*]quinoline (1g).

10-*tert*-Buthylpyrazolo[1,5-*a*]benzothieno[2,3-*c*]quinoline (1h).

8-Methylpyrazolo[1,5-*a*]thieno[2,3-*c*]quinoline (1i).

8-Methoxypyrazolo[1,5-*a*]thieno[2,3-*c*]quinoline (1j).

8-Trifluoromethylpyrazolo[1,5-*a*]thieno[2,3-*c*]quinoline (1k).

8-*tert*-Buthylpyrazolo[1,5-*a*]thieno[2,3-*c*]quinoline (11).

5-Acetyl-2-phenylthiophene 5a.

5-Methyl-2-phenylthiophene 5b.

