Facile Synthesis of Gold Nanoparticle (AuNP)-Carbon Nanotube (CNT) Hybrids through an Interfacial Michael Addition Reaction

Pierangelo Gobbo^a, Mark C. Biesinger^b, and Mark S. Workentin^{*a}

^a The University of Western Ontario and the Centre for Materials and Biomaterials Research, Richmond Street, London, Ontario, Canada. E-mail: mworkent@uwo.ca; Tel: +1 519-661-2111 extn 86319
^b Surface Science Western, University of Western Ontario, 999 Collip Circle, London (ON), N6G 0J3 (Canada).

Supporting Information

General Materials and Methods

The following reagents were used for the synthesis of the compounds in this article. Potassium thioacetate, triethylene glycol monomethylether, tetraethylene glycol, 4-dimethylaminopyridine (DMAP), sodium borohydride, p-toluenesulfonyl chloride, Gold(III) chloride trihydrate, O-Benzotriazole-N,N,N',N'-tetramethyl-uronium-hexafluoro-phosphate (HBTU), N,N-Diisopropylethylamine (DIPEA), and single wall carbon nanotubes (carbon >90 %, 50-70% carbon as SWCNT, D = 1.2-1.5 nm, L = 2-5 μ m) were purchased from Aldrich. All common solvents, dry methanol, hydrochloric acid, sodium hydroxide, triethylamine, and magnesium sulfate were purchased from Caledon. Glacial acetic acid (99.7%) was purchased from BDH. Ethanol and methanol were purchased from Commercial Alcohols. Dialysis membranes (MWCO 6000-8000) were purchased from Spectra/Por.

Transmission electron microscopy (TEM) images were recorded from a TEM Philips CM10. Infrared spectra were recorded using a Bruker Vector33 spectrometer and making a thin film of sample onto a KBr disk.

The XPS analyses were carried out with a Kratos Axis Ultra spectrometer using a monochromatic Al K(alpha) source (15mA, 14kV). XPS can detect all elements except hydrogen and helium, probes the surface of the sample to a depth of 5-7 nanometres, and has detection limits ranging from 0.1 to 0.5 atomic percent depending on the element. The instrument work function was calibrated to give a binding energy (BE) of 83.96 eV for the Au 4f7/2 line for metallic gold and the spectrometer dispersion was adjusted to give a BE of 932.62 eV for the Cu 2p3/2 line of metallic copper. Specimens were mounted on a double side adhesive and the Kratos charge neutralizer system was used on all specimens. Survey scan analyses were carried out with an analysis area of 300 x 700 microns and a pass energy of 160 eV. High resolution analyses were carried out with an analysis area of 300 x 700 microns and a pass energy of 20 eV. Spectra have been charge corrected to the main line of the carbon 1s spectrum set to 284.5 eV for graphitic/nanotube type species. Spectra were analyzed using CasaXPS software (version 2.3.14).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2013

Figure SI1: IR spectra of a) SWCNT starting material; b) SWCNT-SH; c)SWCNT-AuNP hybrid material.

Figure SI2: High resolution XPS spectra for SWCNT-SH.

Figure SI3: High resolution XPS spectra for SWCNT-AuNP hybrid material.