DOUBLE PARALLEL DYNAMIC RESOLUTION THROUGH LIPASE-CATALYZED ASYMMETRIC TRANSFORMATION

Yan Zhang, Lei Hu, and Olof Ramström*

KTH Royal Institute of Technology, Department of Chemistry, Teknikringen 30, S-10044 Stockholm, Sweden

Table of contents

General methods S2
Generation of dynamic systems and lipase-catalyzed asymmetric transformation S2
Synthesis of racemic compound 4B S2
NMR-spectra of product 4B S3
HPLC analyses S4
General methods

Reagents were obtained from commercial suppliers and used as received. Lipase PS “Amano” IM (EC 3.1.1.3) was purchased from Amano Enzyme Inc. 1H and 13C NMR data were recorded on a Bruker Avance 400 (100 MHz) and/or a Bruker Avance 500 (125 MHz), respectively. Chemical shifts are reported as δ values (ppm) with CDCl$_3$ (1H NMR δ7.26, 13C NMR δ77.0) as an internal standard. J values are given in Hertz (Hz). Analytical high performance liquid chromatography (HPLC) with chiral stationary phase was performed on an HP-Agilent 1110 Series controller and a UV detector, using a Daicel Chiralpak OJ column (4.6 × 250 mm, 10 µm). Solvents for HPLC use were of spectrometric grade. Thin layer chromatography (TLC) was performed on precoated Polygram® SIL G/UV 254 silica plates (0.20 mm, Macherey-Nagel), visualized with UV-detection. Flash column chromatography was performed on silica gel 60, 0.040-0.063 mm (SDS).

Generation of dynamic systems and lipase-catalyzed asymmetric transformation

The dynamic systems were generated by adding 1 equiv of each aldehyde (1, 2 and 3, 0.1 mmol), together with 1 equiv of 2-nitropropane A (0.1 mmol), 1-butanethiol B (0.1 mmol) and TEA (0.5 mmol) in the specific dry solvent (0.6 mL). After addition of phenyl acetate (3 equiv, 0.3 mmol), the solution was transferred to a 1.5 mL sealed-cap vial containing PS-IM and ground 4 Å molecular sieves (20 mg), dried for 2 days before use, under argon atmosphere at RT or 0 °C. 1H NMR was used to follow the reaction process until completion. For complex systems, work-up and column purification were necessary before chiral analysis. The reaction mixture was filtered to remove PS-IM, and the solvent removed by evaporation. The crude product was dissolved in CH$_2$Cl$_2$, and the solution was extracted with water and brine. Drying over MgSO$_4$, filtration and evaporation provided a yellow oil, which was purified by flash column chromatography using hexanes/EtOAc (25:1, v/v) as eluent. For similar systems but with only one aldehyde as starting material, the crude reaction mixtures were directly sampled and analyzed by 1H NMR and HPLC.

Synthesis of racemic compound 4B

3-nitrobenzaldehyde 1 (30.2 mg, 0.2 mmol) was dissolved in CH$_2$Cl$_2$ (0.6 mL), after which 1-butanethiol (21.6 µL, 0.24 mmol), TEA (83.4 µL, 0.6 mmol) and acetic anhydride (56.7 µL, 0.6 mmol) were added to the solution. The reaction mixture was stirred at RT for 2 d. After neutralization with 1M HCl solution, the reaction solution was extracted with CH$_2$Cl$_2$ (2 mL × 3), dried over MgSO$_4$, filtered, and the solvent evaporated under vacuum. The crude product was further purified using column chromatography (hexane/EtOAc, 10:1 (v/v)) providing compound 4B (10.6 mg) as a light yellow oil. 1H NMR (500 MHz, CDCl$_3$, 25 °C) δ 0.90 (t, J=7.4, H, CH$_3$), 1.39 (m, 2H, CH$_2$), 1.59 (m, 2H, CH$_2$), 2.20 (s, 3H, CH$_3$), 2.54 (m, 1H, CH$_2$), 2.71 (m, 1H, CH$_2$), 7.03 (s, 1H, CH), 7.55 (t, J=7.9, 1H, CH), 7.77 (d, J=7.9, 1H, CH), 8.18 (d, J=7.9, 1H, CH), 8.30 (s, 1H, CH); 13C NMR (125 MHz, CDCl$_3$, 25 °C) δ 13.7, 21.3, 22.0, 31.0, 31.7, 78.2, 121.5, 123.5, 129.7, 132.5, 140.4, 148.5, 169.9.
1H NMR-, 13C NMR-spectra of product 4B
HPLC analyses
The enantiomeric purity of product 4B from the dynamic systems was determined by analytical HPLC using a Daicel Chiralpak OJ column. Analyses were carried out at 298 K and 210 nm for 40 min, using hexane:iPrOH (90:10, v/v) as mobile phase.

a) Racemic mixture of 4B.

b) Product 4B separated from dynamic system.