SUPPORTING INFORMATION

One-Pot Propargylamine Synthesis by Plasmon Mediated Catalysis with Gold Nanoparticles on ZnO

María González-Béjar, Kate Peters, Geniece L. Hallett-Tapley,

Michel Grenier, and Juan C. Scaiano

Page S1: This page.

Page S2-S3: Experimental Details.

Page S4: Table S1. Summary of the propargylamine yields (%) obtained using AuNP@ZnO, AuNP@Al₂O₃ and AuNP@TiO₂ upon 2h LED irradiation.

Page S4. Figure S1. IR spectra of Phenylacetylene (PhA), PhA on ZnO and PhA on AuNP@ZnO.

Page S7. ¹H-NMR and ¹³C-NMR spectra of product 4e.

Page S8. TEM micrographs of AuNP on ZnO before and after catalysis.
Materials and methods

All materials were used without further purification. Isovaleraldehyde, piperidine (99%), phenylacetylene (98%), benzaldehyde, formaldehyde, morpholine and pyrrolidine were purchased from Sigma Aldrich. Reactions were done in Aldrich HPLC grade dry acetonitrile.

Commercial 1% gold on zinc oxide granulate (AUROlite™ AuNP/ZnO), 1% gold on aluminum oxide (AUROlite™ AuNP/Al₂O₃) and 1% gold on titanium dioxide (AUROlite™ AuNP/TiO₂) were purchased from Strem Chemicals and were ground with a mortar and pestle prior to use. For control experiments, ZnO (99.0% Sigma Aldrich), γ-Al₂O₃ (BDH Chemicals) and TiO₂ P25 (a gift from Evonik Degussa) were used.

Synthesis of propargylamines: All reactions were performed following the same procedure. Aldehydes (0.5 mmol) and amines (0.5 mmol) were stirred together for several seconds to form the enamine. Phenylacetylene (0.25 mmol) was then added along with 50 mg of supported nanoparticles and 200 µL of dry acetonitrile. The sample was then bubbled with N₂ for 10 min. All reactions were performed in 1 mL Pyrex test tubes capped with rubber septa. The reaction mixtures were irradiated for the indicated amount of time with LEDs having emission in the SPB range (see Figure 2). The reaction mixtures were centrifuged at ~ 3000 rpm for 20 minutes using a Horizon Horizontal Separation Centrifuge in ~2 mL of acetonitrile in order to separate the solid supported AuNP and the solvent was removed in vacuo. Control experiments in the dark were prepared using the same protocol, but kept in the absence of light for the appropriate amount of time.

TLC was performed on silica gel precoated aluminum foils, Merck 60F 254, 0.25 mm. The propargylamine products were purified using a 7924T Chromatotron from T-squared Technology Inc. 1 mm circular pre-coated, Si plates were used as the stationary phase for purification of products 4a-4d and silica column chromatography for 4e. In both cases, purification was carried out using varying concentrations of ethyl acetate in hexanes as eluents.
Yields refer to the NMR spectra of the crude product. 1H and 13C NMR spectra were collected at room temperature in CDCl$_3$ solution with 1% (v/v) TMS in a Brucker Advance 400 MHz NMR. Chemical shifts are reported in parts per million (ppm) using traces of undeuterated solvent (δ 7.26) or the carbon signal of the deuterated solvent (δ 77.0) as internal references. The following abbreviations are used to describe the NMR signal multiplicity: s (singlet), d (doublet), t (triplet), m (complex multiplet). GC-MS analysis of the products were done using and a Agilent Technologies 5973 inert mass detector gas chromatograph coupled to a quadrupole mass ionization detector. High-resolution mass spectra were obtained on a Kratos Concept II.

Transmission electron microscopy (TEM) were collected using a field emission JEM-2100F FETEM. The mixture was sonicated for 30 seconds and 10 mL deposited onto a Cu grid and evacuated under vacuum to remove the solvent.

UV-Visible absorption measurements

All the absorbance spectra were run using a Cary-50-Bio UV-Visible spectrophotometer. Diffuse reflectance spectra were run on a Cary-1 UV-Visible spectrophotometer coupled with a Varian diffuse reflectance accessory.

Instrumentation

The light emitting diode system consisted of four, 530 nm LedEngin 10 Watt LZ4-40G110 emitters attached to aluminum heat sinks in a custom design irradiator using a bath recirculator for cooling. LED emission spectra were recorded with a Luzchem SPR1 spectroradiometer. The pyrex test tubes were exposed to LED irradiation for varying amounts of time (30 min-4 h). Following the reaction, the AuNP mixtures were centrifuged and the reaction mixture analyzed by NMR as described above.
Table S1. Summary of propargylamine yields (%) obtained using AuNP/ZnO, AuNP/γ-Al₂O₃ and AuNP/TiO₂, ZnO, γ-Al₂O₃, TiO₂ and in absence of catalyst following 2h LED irradiation.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>LED</th>
<th>Dark</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuNP@ZnO</td>
<td>95</td>
<td>15</td>
</tr>
<tr>
<td>ZnO</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>AuNP@Al₂O₃</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AuNP@TiO₂</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No catalyst</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure S1. IR spectra of Phenylacetylene (PhA), PhA on ZnO (light blue) and PhA on AuNP@ZnO (dark blue).
Compound characterization and structure

4-(5-Methyl-1-phenylhexynyl)piperidine $C_{18}H_{25}N$ (4a):1,3

1H NMR (400 MHz, CDCl$_3$): δ = 7.47-7.45 (m, 2 H), 7.41-7.27 (m, 3 H), 3.57-3.53 (dd, J = 5.6, 10.0 Hz, 1 H), 2.71-2.66 (m, 2 H), 2.53-2.46 (m, 2 H), 1.94-1.83 (m, 1 H), 1.75-1.50 (m, 6 H), 1.48-1.42 (m, 2 H), 0.95 (d, J = 6.4 Hz, 3 H), 0.93 (d, J = 6.8 Hz, 3 H). 13C NMR (CDCl$_3$, 100 MHz): δ = 131.7, 128.2, 127.7, 123.6, 88.1, 85.7, 56.7, 50.6, 42.2, 26.2, 25.4, 24.6, 23.2, 22.0. MS (m/z) (%) 255 (M$^+$, 0.5), 240 (1), 198 (100), 172 (2), 157 (3), 138 (2), 129 (8), 115 (14), 84 (1), 77 (1), 55 (2).

4-(5-Methyl-1-phenylhex-1-ynyl)morpholine $C_{17}H_{23}NO$ (4b):3,4

1H NMR (400 MHz, CDCl$_3$): δ = 7.44-7.41 (m, 2 H), 7.32-7.28 (m, 3 H), 3.83-3.73 (m, 4 H), 3.65-3.61 (m, 1 H), 2.83-2.75 (m, 2 H), 2.65-2.60 (m, 2 H), 1.95-1.85 (m, 1 H), 1.70-1.54 (m, 2 H), 0.99-0.95 (m, 6 H). 13C NMR (75 MHz, CDCl$_3$) δ = 131.7, 128.3, 128.1, 123.1, 86.6, 86.1, 66.9, 56.3, 49.9, 41.5, 25.3, 23.0, 22.0. MS (m/z) (%) 257 (M$^+$, 0.3), 242 (0.5), 200 (100), 184 (0.2), 140 (1), 128 (6), 115 (10), 77 (1).
4-(1,3-Diphenyl-2-propynyl)-morpholine, C$_{19}$H$_{19}$NO (4c):5,9

1H-NMR (CDCl$_3$, 400MHz) δ = 7.63-7.58 (m, 2H), 7.53-7.49 (m, 2H), 7.37-7.33 (m, 6H), 4.86 (s, 1H), 2.68 (m, 4H), 1.69 (t, 4H); MS (m/z) (%) 261 (M$^+$, 19), 232 (6), 191 (100), 184 (55), 165 (9), 115 (9), 89 (2), 77 (1), 55 (0.5).

I-(3-Phenylprop-2-yn-1-yl)piperidine C$_{14}$H$_{17}$N (4d):2,5

1H NMR (CDCl$_3$, 400 MHz): δ = 7.44-7.42 (m, 2 H), 7.30-7.28 (m, 3 H), 3.48 (s, 2 H), 2.57 (br, 4 H), 1.66-1.53 (m, 4 H), 1.48-1.41 (br, 2 H). MS (m/z) (%) 199 (M$^+$, 40), 198 (M-1, 70), 184 (2), 170 (11), 156 (44), 143 (11), 122 (9), 115 (100%), 89 (10), 77 (2), 55 (6).

4-(5-Methyl-1-phenylhex-1-yn-3-yl)pirrolidine C$_{17}$H$_{23}$N (4e):

1H-NMR (CDCl$_3$, 400 MHz): δ = 7.43-7.40 (m, 2H), 7.30-7.27 (m, 3H), 3.83-3.79 (dd, J= 5.6, 10.0 Hz, 1H), 2.80-2.68 (m, 4H), 1.96-1.88 (m, 1H), 1.80-1.76 (m, 4H), 1.72-1.65 (m, 1H), 1.58-1.51 (m, 1H), 0.98 (d, J= 6.8 Hz, 3H), 0.95 (d, J= 6.8 Hz, 3H). 13C NMR (CDCl$_3$, 100MHz): δ = 131.7, 128.2, 127.8, 123.5, 88.1, 85.4, 53.1, 49.5, 44.0, 25.4, 23.5, 23.4, 21.9. MS (m/z) (%) 241(M$^+$, 0.3), 226(0.5), 198(0.4), 184(100), 172(0.7), 157(1), 142(1), 128(2), 115(16), 102(6), 77(1), 55(0.7). HRMS (ESI) calculated for C$_{17}$H$_{23}$N [M$^+$] 241.1830 found 241.1756.
Figure S2. 1H-NMR spectrum of product 4e.

Figure S3. 13C-NMR spectrum of product 4e.
Figure S4. TEM image for 1% Au supported on ZnO: Before catalysis (left) and after catalysis (right) (AUROlite™ AuNP/ZnO).

References: