Supporting Information for

Dual 1,3-dipolar cycloaddition of carbon dioxide: two C=O bonds of CO₂ react in one reaction

Li-Li Zhao, Shun-Yi Wang*, Xiao-Ping Xu and Shun-Jun Ji*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
E-mail: shunyi@suda.edu.cn; chemjsj@suda.edu.cn

Table of Contents

Experimental Section ---2
Characterization Data of Compounds 4a-4p 5a 7a----------------------------------- 3-7
Copies of ¹H and ¹³C NMR Spectra for Compounds 4a-4p 5a 7a------------------- 8-19
In situ IR experiments-- 20
Experimental Section

General
Melting points were recorded on an Electrothermal digital melting point apparatus and were uncorrected. IR spectra were recorded on a Varian FT-1000 spectrophotometer using KBr optics. In situ IR spectra were recorded on a METTLER TOLEDO ReacIR-ic10 spectrophotometer. 1H NMR and 13C NMR spectra were recorded on a Varian INOVA 300 or 400 MHz (1H NMR) and 75 or 100 MHz (13C NMR) spectrometer using CDCl$_3$ or DMSO-d_6 as solvent and TMS as internal standard. High resolution mass spectra were obtained using GCT-TOF instrument with ESI source.

Typical procedure for the the synthesis of 1,6-dioxospiro[4,4]nonane-3,8-diene derivatives:
To a mixture of isocyanides 1(1.0 mmol) and dialkyl acetylenedicarboxylates 2 (1.5 mmol) and CO$_2$ (balloon, 1 atm) in 2.5 ml toluene at 80 $^\circ$C. The mixture was stirred under room temperature for 24-48 h. After the completion (monitored by TLC), The solvent was then removed under reduced pressure and the residue was separated by column chromatography (silica gel, Merck 300–400 mesh) using Petroleum ether–Acetone (30~15 :1) as eluent.
(2E,7Z)-tetramethyl 2,7-bis(cyclohexylimino)-1,6-dioxaspiro[4.4]nona-3,8-diene-3,4,8,9-tetracarboxylate (4a)

Yield 55% (80°C, 24h). White solide. mp 176-177 °C; 1H NMR (CDCl$_3$, 300 MHz) δ 3.95 (s, 6H), 3.76 (s, 6H), 3.62-3.60 (m, 2H), 1.74-1.71 (m, 4H), 1.62-1.57 (m, 4H), 1.43-1.16 (m, 12H); 13C NMR (CDCl$_3$, 75 MHz) δ 161.60, 159.83, 150.84, 139.87, 136.04, 111.49, 57.44, 53.53, 53.14, 33.45, 33.10, 25.74, 24.76, 24.66; I.R. (KBr) 2933, 2860, 1743, 1442, 1350, 1296, 1200, 1081, 1020 cm$^{-1}$; HRMS (ESI-TOF) calcd for C$_{27}$H$_{34}$N$_2$O$_{10}$Na$^+$: 569.2111 ([M+ Na$^+$]), found: 569.2074.

(2E,7Z)-tetramethyl 2,7-bis(2,6-dimethylphenylimino)-1,6-dioxaspiro[4.4]nona-3,8-diene-3,4,8,9-tetracarboxylate (4b)

Yield 54% (80°C, 24h). Yellow solide. mp 185-186 °C; 1H NMR (CDCl$_3$, 400 MHz) δ 7.01 (d, J = 7.0 Hz, 4H), 6.98-6.91 (m, 2H), 3.98 (s, 6H), 3.81 (s, 6H), 2.05 (s, 12H); 13C NMR (CDCl$_3$, 75 MHz) δ 160.82, 159.36, 150.72, 142.97, 138.86, 137.27, 127.78, 127.39, 124.65, 106.98, 53.68, 53.41, 18.08; I.R. (KBr) 2934, 1739, 1447, 1360, 1295, 1094, 1020 cm$^{-1}$; HRMS (ESI-TOF) calcd for C$_{31}$H$_{30}$N$_2$O$_{10}$Na$^+$: 613.1798 ([M+Na$^+$]), found: 613.1808.

(2Z,7Z)-tetramethyl 2,7-bis(benzylimino)-1,6-dioxaspiro[4.4]nona-3,8-diene-3,4,8,9-tetracarboxylate (4c)
Yield 39% (80°C, 36h). Pale yellow solid. mp 45–46 °C; $^1\text{H NMR}$ (DMSO, 300 MHz) δ 7.31–7.24 (m, 10H), 4.64 (s, 4H), 3.89 (s, 6H), 3.74 (s, 6H); $^{13}\text{C NMR}$ (DMSO, 75 MHz) δ 165.67, 164.12, 157.30, 143.54, 143.45, 141.13, 133.56, 132.76, 132.12, 116.74, 58.78, 56.76; I.R. (KBr) 3027, 2949, 1740, 1444, 1350, 1293, 1050 cm$^{-1}$; HRMS (ESI-TOF) calcd for C$_{29}$H$_{26}$N$_2$O$_{10}$Na$: 585.1485 ([M+Na]$^+$), found: 585.1486.

(2E,7Z)-tetramethyl
2,7-bis(tert-butylimino)-1,6-dioxaspiro[4.4]nona-3,8-diene-3,4,8,9-tetracarboxylate(4d)

Yield 45% (80°C, 24h). Pale yellow solid. mp 78–79 °C; $^1\text{H NMR}$ (CDCl$_3$, 300 MHz) δ 3.96 (s, 6H), 3.78 (s, 6H), 1.28 (s, 18H); $^{13}\text{C NMR}$ (CDCl$_3$, 100 MHz) δ 161.88, 159.87, 148.69, 141.17, 135.08, 112.16, 55.97, 53.48, 53.12, 29.70, 29.63, 29.59; I.R. (KBr) 2969, 2056, 1744, 1446, 1310, 1295, 1218, 1096, 1031 cm$^{-1}$; HRMS (ESI-TOF) calcd for C$_{23}$H$_{30}$N$_2$O$_{10}$Na$: 517.1798 ([M+Na]$^+$), found: 517.1812.

(2Z,7Z)-tetramethyl
2,7-bis(butylimino)-1,6-dioxaspiro[4.4]nona-3,8-diene-3,4,8,9-tetracarboxylate(4e)

Yield 56% (80°C, 36h). Pale yellow oil; $^1\text{H NMR}$ (CDCl$_3$, 400 MHz) δ 3.96 (s, 6H), 3.78 (s, 6H), 3.45 (t, 4H, J = 7.0 Hz), 1.58-1.52 (m, 4H), 1.35-1.28 (m, 4H), 0.89 (t, 6H, J = 7.3 Hz); $^{13}\text{C NMR}$ (DMSO, 75 MHz) δ 161.03, 159.47, 151.84, 138.72, 135.95, 111.57, 53.84, 48.08, 32.07, 20.13, 13.85; I.R. (KBr) 2958, 2874, 1736, 1700, 1439, 1354, 1300, 1252 cm$^{-1}$; HRMS (ESI-TOF) calcd for C$_{23}$H$_{31}$N$_2$O$_{10}$: 495.1979 ([M+H]$^+$), found: 495.1967.

(2E,7Z)-tetraethyl
2,7-bis(cyclohexylmimino)-1,6-dioxaspiro[4.4]nona-3,8-diene-3,4,8,9-tetracarboxylate(4i)
Yield 54% (80°C, 36h). White solid. mp 108-109 °C; **¹H NMR (CDCl₃, 400 MHz)** δ 4.44 (dd, J = 14.1, 7.0 Hz, 4H), 4.21 (dd, J = 13.1, 6.1 Hz, 4H), 3.65-3.62 (m, 2H), 1.77-1.73 (m, 6H), 1.64-1.59 (m, 4H), 1.42-1.23 (m, 2H); **¹³C NMR (CDCl₃, 75 MHz)** δ 161.20, 159.37, 151.01, 140.33, 136.41, 111.53, 62.74, 62.39, 57.22, 33.48, 33.21, 25.79, 24.72, 24.62, 14.17, 13.84; **I.R. (KBr)** ν 2933, 2850, 1744, 1384, 1296, 1239, 1087, 1018 cm⁻¹; **HRMS (ESI-TOF)** calcd for C₃₁H₄₂N₂O₁₀Na⁺: 625.2737 ([M+Na⁺]⁺), found: 625.2701.

(2E,7Z)-tetraethyl

2,7-bis(2,6-dimethylphenylimino)-1,6-dioxaspiro[4.4]nona-3,8-diene-3,4,8,9-tetracarboxylate(4j)

Yield 63% (80°C, 24h). Yellow solid. mp 188-189 °C; **¹H NMR (CDCl₃, 400 MHz)** δ 7.02 (d, J = 7.0 Hz, 4H), 6.97-6.94 (m, 2H), 4.47-4.43 (m, 4H), 4.35-4.31 (m, 2H), 4.21-4.17 (m, 2H), 2.06 (s, 12H), 1.39 (t, J = 6.0 Hz, 6H), 1.30 (t, J = 7.0 Hz, 6H); **¹³C NMR (CDCl₃, 75 MHz)** δ 160.44, 158.91, 150.96, 143.10, 138.90, 137.53, 127.78, 127.47, 124.58, 62.98, 62.74, 18.16, 14.22, 13.95; **I.R. (KBr)** ν 2982, 2941, 2909, 1729, 1706, 1659, 1593, 1472, 1446, 1377, 1300, 1259, 1196, 1093, 1027 cm⁻¹; **HRMS (ESI-TOF)** calcd for C₃₅H₃₈N₂O₁₀Na⁺: 669.2424 ([M+Na⁺]⁺), found: 669.2443.

(2Z,7Z)-tetraethyl

2,7-bis(benzylimino)-1,6-dioxaspiro[4.4]nona-3,8-diene-3,4,8,9-tetracarboxylate(4k)

Yield 35% (80°C, 36h). Pale yellow oil; **¹H NMR (DMSO, 400 MHz)** δ 7.35-7.24 (m, 10H), 4.67(s, 4H), 4.40-4.35 (m, 4H), 4.24-4.17 (m, 4H), 1.30 (t, J = 7.0 Hz, 6H), 1.12 (t, J = 7.0 Hz, 6H); **¹³C NMR (DMSO, 75 MHz)** δ 165.19, 163.55, 157.43, 143.83, 143.65, 141.35, 133.50, 132.70, 132.08, 116.76, 67.84, 67.76, 56.69, 18.99, 18.49; **I.R. (KBr)** ν 2983, 1737, 1450, 1382, 1340, 1289, 1100, 1019 cm⁻¹; **HRMS (ESI-TOF)** calcd for C₃₃H₃₄N₂O₁₀Na⁺: 641.2111 ([M+Na⁺]⁺), found: 641.2097.
2,7-bis(tert-butylimino)-1,6-dioxaspiro[4.4]nona-3,8-diene-3,4,8,9-tetracarboxylate (4l)

Yield 54% (80°C, 36h). Pale yellow solid. mp 58-59 °C; \(^1\)H NMR (CDCl\(_3\), 400 MHz) \(\delta\) 4.57 (q, \(J_1 = 7.1\) Hz, \(J_2 = 12\) Hz, 4H), 4.37-4.33 (m, 4H), 1.52 (t, \(J = 7.1\) Hz, 6H), 1.42-1.38 (m, 24H); \(^13\)C NMR (CDCl\(_3\), 75 MHz) \(\delta\) 161.43, 159.39, 148.81, 141.45, 135.39, 112.20, 62.56, 62.26, 55.75, 29.78, 29.58, 14.27, 14.09, 13.97; I.R. (KBr) 2976, 2936, 1733, 1699, 1466, 1375, 1336, 1296, 1242, 1212, 1095, 1037 cm\(^{-1}\); HRMS (ESI-TOF) calcd for C\(_{27}\)H\(_{38}\)N\(_2\)O\(_{10}\)Na\(^+\): 573.2424 ([M+Na\(^+\)], found: 573.2406.

(2Z,7Z)-tetraethyl 2,7-bis(butylimino)-1,6-dioxaspiro[4.4]nona-3,8-diene-3,4,8,9-tetracarboxylate (4m)

Yield 55% (80°C, 36h). Pale yellow oil; \(^1\)H NMR (DMSO, 400 MHz) \(\delta\) 4.36-4.33 (m, 4H), 4.21-4.18 (m, 4H), 3.41 (t, \(J = 6.7\) Hz, 4H), 1.52-1.45 (m, 4H), 1.30-1.23 (m, 10H), 1.16 (t, \(J = 7.0\) Hz, 6H); \(^13\)C NMR (DMSO, 75 MHz) \(\delta\) 160.54, 158.91, 151.94, 139.05, 136.18, 111.58, 62.91, 62.82, 48.03, 32.15, 20.16, 14.18, 13.88, 13.77; I.R. (KBr) 2935, 2874, 1733, 1702, 1578, 1466, 1375, 1338, 1299, 1249, 1095, 1018 cm\(^{-1}\); HRMS (ESI-TOF) calcd for C\(_{27}\)H\(_{38}\)N\(_2\)O\(_{10}\)Na\(^+\): 573.2424 ([M+Na\(^+\)], found: 573.2456.

N-((2E,4Z)-6-methoxy-2,3,4-tris(methoxycarbonyl)-6-oxohexa-2,4-dienylidyne)cyclohexanamine (5a)

Yield 2% (80°C, 24h). Pale yellow oil; \(^1\)H NMR (DMSO, 400 MHz) \(\delta\) 3.87 (s, 3H), 3.84 (s, 3H), 3.78 (s, 3H), 3.48 (s, 3H), 1.70-1.65 (m, 4H), 1.59-1.56 (m, 1H), 1.30-1.16 (m, 6H); \(^13\)C NMR (DMSO, 101 MHz) \(\delta\) 166.30, 164.49, 157.67, 156.12, 143.99, 143.30, 106.68, 84.30, 81.88, 62.18, 59.31, 59.24, 59.20, 58.88, 38.64, 38.49, 30.77, 29.70, 29.60; I.R. (KBr) 2934, 2856, 1727, 1692, 1437, 1350, 1264, 1134, 1092, 1032 cm\(^{-1}\); HRMS (ESI-TOF) calcd for C\(_{19}\)H\(_{23}\)NO\(_8\(-\)): 393.1424 ([M-H\(^-\)], found: 393.1412.
Yield 3% (80°C, 24h). Pale yellow solide. mp 162-163 °C; 1H NMR (DMSO, 400 MHz) δ 7.71 (d, 1H, $^{3}J_{HH} = 17.6$ Hz), 6.69 (s, 1H), 3.74 (s, 3H), 3.72 (s, 3H), 3.62 (s, 3H), 3.53-3.51(m, 1H), 3.37 (s, 3H), 2.42-2.34 (m, 1H), 1.93-1.69(m, 8H), 1.54-1.29 (m, 8H), 1.16-1.06 (m, 4H); 13C NMR (DMSO, 101 MHz) δ 173.62, 172.35, 171.90, 170.20, 167.50, 150.80, 150.78, 144.11, 131.32, 115.03, 61.99, 58.93, 58.84, 57.88, 55.99, 38.37, 37.98, 37.01, 35.96, 34.71, 33.89, 31.75, 31.37, 30.75, 30.42, 30.07; I.R. (KBr) 2924, 2853, 1753, 1675, 1618, 1461, 1322, 1265, 1218, 1101, 1031 cm$^{-1}$; HRMS (ESI-TOF) calcd for C$_{26}$H$_{35}$N$_{2}$O$_{9}$: 519.2343 ([M-H]$^-$), found: 519.2328.
In situ IR experiments

![In situ IR experiment of 1a with 2a in toluene without CO2.](image1)

Figure 1. In situ IR experiment of 1a with 2a in toluene without CO2.

![In situ IR experiment of 1a with 2a and CO2 (1 atm).](image2)

Figure 2. In situ IR experiment of 1a with 2a and CO2 (1 atm).