Supplementary Information

Chemo-enzymatic Approach to specifically click-modified RNA molecules

Claudine M. Dojahn, Marlen Hesse and Christoph Arenz

*a Humboldt Universität zu Berlin, Institute for Chemistry, Brook-Taylor Str-2, 12489 Berlin, German.
Fax:+49-30-2093-6947; E-mail: christoph.arenz@chemie.hu-berlin.de (C. Arenz)

Table of Contents

I. Experimental Procedures for the Synthesis of modified Nucleosides
II. Secondary Structures of modified pre-miRNAs
III. Experimental Procedures for Labeling of RNA
IV. 1H-, 31P- and 13C-NMR Spectra
V. UHPLC-UV/Vis-MS chromatograms of selected pre-miRNAs
VI. References
I. Experimental Procedures for the Synthesis of modified Nucleosides

General information: All reagents were purchased from Sigma–Aldrich or Acros and were used as received. Dry solvents were taken from a solvent purification system SPS 800 von MBraun or purchased and stored over molecular sieves. Whenever required, reactions were performed under an argon atmosphere using standard Schlenk-technique. For reaction monitoring thin-layer chromatography aluminium sheets from Merck (Kieselgel 60 F254) were used. Flash chromatography was performed on silica gel 60 from Merck or octadecyl-modified silica gel from Macherey-Nagel. 1H- and 13C-NMR spectra were recorded with Avance-II-300- or Avance-II-500-NMR-spectrometer. Chemical shifts are reported in parts per million relative to the residual solvent signal.1 High-resolution mass spectra (HRMS) were obtained by electrospray ionization (ESI) with a LTQ FT Ultra™ spectrometer. Compound 2,2′ THPTA,3 Dabcyl azide,4 teab buffer5 as well as the used phosphoramidites6,7 were synthesized and produced according to literature, teaa buffer was prepared by dissolving 5.6 ml glacial acetic acid in 950 ml water. Analytical HPLC-UV-MS was performed with an Agilent 1100 series system equipped with a VL-Quadrupol mass spectrometer, a UV-detector (λ = 260 nm) and a Polaris-C18-A column from Varian (5 µm, tempered to 55 °C), the flow rate was set to 0.3 ml min−1.

2′-O-tert-Butyldimethylsilyl-3′,5′-O-bis(tert-butyl)silyl-5-ethinyl uridine 3

Di-tert-butyldisilylethynylmethanesulphonate (217 mg, 0.49 mmol) was added dropwise to a cooled solution of 5-ethinyl uridine 2 (120 mg, 0.45 mmol) in 0.9 ml dmf. After stirring for 60 min at 0 °C, imidazole (152 mg, 2.25 mmol) was added, the ice-bath was removed and the solution was stirred for further 25 min. Upon addition of tert-butyldimethylsilyl chloride (73.8 mg, 0.49 mmol) the solution was heated to 60 °C for 2.5 h, cooled to room temperature within 30 min and finally quenched with 20 ml 0.1 M aq. HCl solution. The aqeous phase was extracted with 3 × 100 ml CH2Cl2. The combined organic layers were washed with 100 ml saturated NaHCO3 solution, dried over Na2SO4 and concentrated in vacuo. The crude product was purified by flash chromatography (0-2.5% meoh in CH2Cl2) to yield 3 as a colorless solid (162 mg, 0.31 mmol, 69 %). | C25H32N6O6Si3 | Rr = 0.43, 5 % MeOH in CH2Cl2 | 1H-NMR (CDCl3, 500 MHz): δ = 0.12 (3H, Si-CH3), 0.17 (3H, Si-CH3), 0.91 (3H, 'BuSi-CH3), 1.01 (3H, 'BuSi-CH3), 1.04 (3H, 'BuSi-CH3), 3.19 (3H, 'CH3), 3.83 (dd, J = 9.7, 4.7 Hz, 1H, H5), 3.96 – 4.02 (2H, 1H, H3), 4.17 (td, J = 10.2, 5.2 Hz, 1H, H4), 4.27 (d, J = 4.6 Hz, 1H, H2'), 4.51 (dd, J = 9.3, 5.1 Hz, 1H, H5'), 5.64 (3H, 1H, H1'), 7.54 (3H, 1H, H6), 9.54 (3H, 1H, 3NH) ppm | 13C-NMR (CDCl3, 126 MHz): δ = -5.1 (Si-CH3), -4.3 (Si-CH3), 18.1 ('BuSi-Cq), 20.3 ('BuSi-Cq), 22.7 ('BuSi-Cq), 3 × 25.8 ('BuSi-CH3), 3 × 26.9 ('BuSi-CH3), 3 × 27.4 ('BuSi-CH3), 67.5 (C5), 74.4 (=CH), 74.6 (C2'), 75.3 (C3'), 75.9 (C4'), 82.2 (=Cq), 93.9 (C1'), 99.1 (C5), 142.8 (C6), 148.7 (C2) 161.3 (C4) ppm | ESI-HRMS m/z calc. for [C25H32N6O6Si3]: 521.2503, found 521.2508

2′-O-tert-Butyldimethylsilyl-5-ethinyl uridine

HF × pyridine (28.3 µl, 70 % HF) was diluted with 400 µl dry pyridine and added slowly to an ice-cold solution of 3 (160 mg, 0.31 mmol) in 1.5 ml dry thf. Within 40 min the solution was warmed to room temperature, stopped by addition of 540 µl pyridine and diluted with 20 ml CH2Cl2 and 15 ml water. The aqeous phase was extracted with 3 × 30 ml CH2Cl2 and the combined extracts were washed with 20 ml saturated NaHCO3 solution. The NaHCO3 layer was extracted with 30 ml CH2Cl2 and the combined organic layers were dried over Na2SO4 and evaporated to dryness to afford 2′-O-tert-Butyldimethylsilyl-5-ethinyl uridine as a colorless solid (130 mg, 0.34 mmol, > 99 %). | C17H26N2O6Si
Phosphoramidite P(OCE)$_2$(NiP$_2$) (193 mg, 0.71 mmol) and a tetrazole solution (1.59 ml, 0.71 mmol, 0.45 M in acetonitrile) were added dropwise to an ice-cooled suspension of 2′-O-tert-Butylidimethylsilyl-5-ethyluridine (90.8 mg, 0.24 mmol) in 0.6 ml dry CH$_2$Cl$_2$. After stirring for 2 h at 0 °C a solution of tert-Butyl hydroperoxide (0.26 ml, 1.43 mmol, 5-6 M in decan) was added. The solution was allowed to stir for 10 min at 0 °C and further 45 min at room temperature. The organic solvents were removed under reduced pressure (max 35 °C) and the resulting residue was purified by flash chromatography (0-5% meoh in CH$_2$Cl$_2$) to yield the phosphorylated compound 4 as a colorless solid (124 mg, 0.17 mmol, 69 %). | $R_f = 0.42$, 5 % meOH in CH$_2$Cl$_2$ | 1H-NMR (CD$_2$OD, 500 MHz): $\delta = 0.11$ (s, 3H, Si-CH$_3$), 0.13 (s, 3H, Si-CH$_3$), 0.89 (s, 9H, 1BuSi-CH$_3$), 2.82 – 2.86 (m, 8H, CH$_2$), 3.47 (s, 1H, CH$_2$), 4.26 – 4.32 (m, 8H, CH$_2$), 4.38 – 4.43 (m, 1H, H5′), 4.43 – 4.50 (m, 3H, H3′, H4′, H5′), 4.80 (dt, J = 8.2, 5.0 Hz, 1H, H2′), 5.79 (d, J = 4.4 Hz, 1H, H1′), 7.90 (s, 1H, H6), 8.95 (s, 1H, 3NH) ppm | 13C-NMR (CD$_2$CN, 126 MHz): $\delta = –4.8$ (Si-CH$_3$), –4.7 (Si-CH$_3$), 18.6 (1BuSi-C$_4$), 20.2 × 20.2 (d, J = 3.8 Hz, CH$_2$), 2 × 20.3 (d, J = 3.8 Hz, CH$_2$), 3 × 25.9 (1BuSi-CH$_3$), 2 × 63.9 (d, J = 4.3 Hz, O-CH$_2$), 64.1 (d, J = 4.3 Hz, O-CH$_2$), 64.2 (d, J = 4.3 Hz, O-CH$_2$), 66.8 (d, J = 4.9 Hz, C5′), 74.7 (d, J = 4.9 Hz, C3′), 75.2 (d, J = 4.9 Hz, C2′), 76.0 (≡CH), 81.3 (dd, J = 8.2, 4.1 Hz, C4′), 83.1 (≡C$_4$), 90.3 (C1′), 99.7 (C5′), 2 × 118.4 (CN), 2 × 118.4 (CN), 144.6 (C6), 150.3 (C2′), 162.2 (C4′) ppm | 31P-NMR (CD$_2$CN, 162 MHz): $\delta = –0.8$, –1.2 ppm | ESI-HRMS m/z calc. for [C$_{29}$H$_{60}$O$_{12}$P$_2$SiNa]$^+$ 777.1846, found 777.1835

3′,5′-0,0-Bisphosphate-5-ethyluridine 5 pUp$^{\text{Alk}}$

Substance 4 (101 mg, 0.13 mmol) was dried by co-evaporation with 2 × 5 ml dry pyridine and dissolved in 13 ml dry pyridine. To this solution 1.25 ml N,O-Bis(trimethyl silyl)acetamide and 120 μl DBU were added and the resulting solution was stirred for 5.5 h. The reaction was quenched with 25 ml water and diluted with 25 ml diethyl ether. The organic layer was extracted with 2 × 10 ml water and the combined aqueous phases were evaporated to dryness. The residue was treated with 3 × 5 ml toluene, 2 × 5 ml pyridine and dried in fine vacuum. In an argon atmosphere the brown oil was dissolved in 1 ml methanol and evaporated to dryness. The residue was dissolved in 0.3 M teab buffer, equilibrating in 0.3 M teab buffer, stepwise gradient 0.3-0.4-0.5…1.0 M). The product containing fractions were pooled, concentrated in vacuo and lyophilized to yield pUp$^{\text{Alk}}$ as a colorless solid (101 mg, 0.11 mmol with 49 % NHET$_3$, 85 %). | $R_f = 0.5$, 60 % 3PrOH in water with
0.1 % 1 M aq. HCl-solution | 1H-NMR (D$_2$O, 500 MHz): δ = 1.27 (t, J = 7.3 Hz, 29H, NHEt$_3^+$), 3.20 (q, J = 7.3 Hz, 15H, NHEt$_3^+$), 3.60 (s, 1H, ≡CH), 4.09 − 4.21 (m, 2H, H5'), 4.45 (d, J = 4.7 Hz, 2H, H3', H4'), 4.62 − 4.68 (m, 1H, H1'), 6.00 (d, J = 5.3 Hz, 1H, H6) ppm | 13C-NMR (D$_2$O, 126 MHz): δ = 8.2 (NHEt$_3^+$), 46.6 (NHEt$_3^+$), 63.8 (d, J = 4.2 Hz, C2'), 72.3 (d, J = 3.8 Hz, C5'), 73.5 (d, J = 2.6 Hz, C3'), 74.3 (=CH), 83.0 (dd, J = 8.0, 5.9 Hz, C4'), 83.5 (=C=C), 88.8 (C1'), 99.0 (C5), 145.4 (C6), 150.7 (C2), 164.6 (C4) ppm | 31P-NMR (D$_2$O, 202 MHz): δ = 0.6, 1.0 ppm | ESI-HRMS m/z calc. for [C$_{11}$H$_{13}$N$_2$O$_{12}$P$_2$]− 426.9944, found 426.9948.

5(6)FAM-labeled 3',5'-O,O-Bisphosphat uridine pUp

In a 15 ml flask 3',5'-O,O-Bisphosphat-5-ethinyl uridine (30 mg with 43 m% NHEt$_3^+$, 0.04 mmol) was dissolved in 0.5 ml water and diluted with 6 ml of a dmso-water mixture (1:1, v/v). Azido labeled 5(6)-FAM 10 was added (103 μl, 82.4 μmol, 0.8 M in dmso) and the solution was heated to 40 °C. Then a portion of THPTA (208 mg, 0.48 mmol) was added. The reaction mixture was degassed for 30 sec with argon and sodium ascorbate (181 mg, 0.96 mmol) as well as copper sulfate pentahydrate (76.6 mg, 0.30 mmol) were added. The resulting solution was stirred for 2 d at 40 °C. Despite incomplete conversion of 5 the reaction was stopped by evaporation of the solvents to a minimum and impurities were removed by column chromatography on RP$_{18}$-modified silica gel (Ø 1 cm × 3 cm, conditioning in acetonitrile, equilibrating in 3 × 6 ml water with 0.1 % 1 M aqueous HCl, 0.1 % acetonitrile, stepwise gradient with increasing amounts of acetonitrile from 0.1-3-5-7.5 %). Pooling the product containing fractions yielded a yellow solid (~ 5 mg, 5.1 μmol, 13 %). | C$_{38}$H$_{38}$N$_6$O$_{20}$P$_2$ | R$_f$ = 0.90, 0.1 % aqueous HCl 70 % iPrOH in water | 31P-NMR (DMSO-d$_6$, 121 MHz): δ = −0.1, −0.2 ppm | ESI-HRMS m/z calc. for [C$_{38}$H$_{37}$N$_5$O$_{20}$P$_2$] − 959.1538, found 959.1549 | HPLC/UV/MS 13.92 and 14.90 min, Gradient 0-50 % B (98.9 % acetonitrile, 1 % water, 0.1 %) in A (98.9 % water, 1 % acetonitrile, 0.1 % HCOOH) within 20 min

pUp$_{(5/6}$-regioisomer):

m/z calc.[M+H]$^+$ = 959.2

m/z calc. [M+2H]$_{2+}$ = 480.1

Fig. S1 HPLC-UV-chromatogram (λ = 260 nm) and m/z at retention times as specified.
To a suspension of protected guanosine 7 (760 mg, 2.01 mmol) in 5 ml dry CH$_2$Cl$_2$ phosphoramidite P(OCE)(NiPr$_2$)$_2$ (757 mg, 2.51 mmol) and tetrazole solution (5.58 ml, 2.51 mmol, 0.45 M in acetonitrile) were added at 0 °C. The reaction was allowed to warm to room temperature within 60 min and cooled again to 0 °C followed by the addition of 3-(Trimethylsilyl)propargyl alcohol (513 mg, 4.02 mmol) and a further portion of tetrazole solution (5.58 ml, 2.51 mmol, 0.45 M in acetonitrile). After stirring at room temperature for 60 min oxidation was initiated by addition of tert-Butyl hydroperoxide (1.10 ml, 6.03 mmol, 5 - 6 M in decan) at 0 °C. After stirring for 30 min at room temperature, the solution was diluted with 50 ml chloroform, consecutively washed with 0.3 % NaHSO$_3$, brine and water (each with 20 ml). The organic layer was separated, dried over Na$_2$SO$_4$ and concentrated in vacuo to a yellowish oil. The purification was effected by column chromatography on silica gel with a stepwise gradient 0-1.5-3 % methanol in CH$_2$Cl$_2$ and enabled the isolation of the fully protected intermediate 8 as a colorless solid (R$_f$ = 0.24, 5 % methanol in CH$_2$Cl$_2$, 706 mg, 1.14 mmol, 57 %). For removal of the protecting groups 8 was dissolved in 10 ml 7 N ammonia solution in methanol and heated to 50 °C for 2 h without venting. Then the solution was allowed to cool to room temperature, stirred for further 20 h, evaporated to dryness and kept in fine vacuum overnight. The colorless solid was washed with 2 × 10 ml ethyl acetate and again dried in fine vacuum for 12 h. The residue was suspended in 1.5 ml water, cooled to 0 °C and diluted with 1.5 ml trifluoroacetic acid. After stirring the solution for 5 h at room temperature, all volatiles were removed and the crude product was dried in in fine vacuum overnight. A column chromatography on DEAE-Cellulose (Ø 1.5 cm × 7 cm, conditioning and equilibrating in 0.1 M teab buffer pH 7.7, stepwise gradient 0.1-0.2 M) ended in the collection of two product containing fractions which were concentrated in vacuo (< 35 °C) separately. Apart from varying amounts of triethylamine salt both were identical in accordance to NMR. The transcription starter 9 was isolated a yellowish solid (556 mg, 0.32 mmol with 77m% NEt$_3$, 16 % and 148 mg, 0.28 mmol, 25m% NEt$_3$, 14 %). | C$_{13}$H$_{16}$N$_5$O$_8$P | R$_f$=0.71, 15 % water in 3PrOH | 1H-NMR (D$_2$O, 500 MHz): δ = 1.19 (t, J = 7.4 Hz, 119H, NEt$_3$), 2.83 (t, J = 2.4 Hz, 1H, ≡CH), 3.11 (q, J = 7.3 Hz, 79H, NEt$_3$), 4.01 – 4.11 (m, 2H, H5'), 4.25 (dt, J = 5.3, 2.8 Hz 1H, H4'), 4.37 (dd, J = 9.4, 2.4 Hz, 2H, O-CH$_2$), 4.39 – 4.42 (t, J = 4.8 Hz, 1H, H3'), 4.79 (m, 1H, H2'), 5.85 (d, J = 5.2 Hz, 1H, H1'), 8.26 (s, 1H, H8) ppm | 13C-NMR (D$_2$O, 126 MHz): δ = 8.2 (NEt$_3$), 46.7 (NEt$_3$), 53.5 (d, J = 3.3 Hz, O-CH$_2$), 65.0 (d, J = 4.9 Hz, C5'), 70.4 (br, C3'), 73.6 (br, C2'), 75.6 (br, =CH), 79.1 (d, J = 7.6 Hz, =Cq), 83.6 (dd, J = 8.1, 2.1 Hz, C4'), 87.1 (C1'), 116.2 (C5), 137.4 (C8), 151.6 (C4), 153.8 (C2/6), 158.7 (C2/6) ppm | 31P (D$_2$O, 202 MHz) δ = 0.5 ppm | ESI-HRMS m/z calc. for [C$_{13}$H$_{15}$N$_5$O$_8$P] 13C$_{13}$H$_{15}$N$_5$O$_8$P 13N$_5$O$_8$P 13O$_8$P
II. Secondary Structures of pre-miRNAs

Fig. S3 Sequences of modified pre-miRNAs: Secondary Structures were modeled with the Mfold Web Server. Original sequences were taken from miRBase.

III. Experimental Procedures for Labeling of RNA

Plastic materials for RNA experiments were certified pyrogen/DNase/RNase free whenever possible. Deionized water was obtained from a membraPure Astacus purification system. All buffers were additionally sterile filtered through 0.22 μM filters. Filters, enzymes and reagents were purchased from the following providers: Amicon Ultra-0.5 ml centrifugal filters 3/10K (Merck Millipore), SYBR® Gold (Invitrogen), recombinant human Dicer (Genlantis), RiboLock® (Fermentas), Calf Intestinal Phosphatase/miRNA marker/low range ssRNA ladder/T4 RNA Ligase 1 (New England Biolabs), RiboMAX™ Large Scale RNA Production System-T7 (Promega). RNA analyses in terms of identity and concentration were based on ε₂₆₀ and mass values which were calculated with the Oligo Analyzer 3.1, that is available online. Mass detection was performed on an Agilent UHPLC system equipped with a BEH C18 column from waters (1.7 μm, tempered to 70 °C) and connected with an ESI-Q-TOF-mass spectrometer. A gradient from 0 to 40% meoh in aq. triethylamine with hexafluor isopropanol was used as eluent and the flow rate was set to 0.3 ml min^{−1}. Additionally denaturing urea (8M) PAGE-gels were made to verify the formation of the full-length product. Pre-miRNAs were purified on a Gilson 1105 HPLC System with detection at λ₅ = (260/280) nm, (260/495) nm or (260/633) nm using an XBridge C18 column from Waters (5 μm, tempered to 70 °C), the gradient 0-40% acetonitrile in 0.1 M tea buffer pH 7.7 in 40 min with a flow rate set to 1 ml min^{−1}.

Oligonucleotides were purchased from IBA (Göttingen, Germany), Biotez (Berlin, Germany) or Proligo (Boulder, USA):

>>DNA-T7-promotor | Proligo | 20 nt | MW = 6126 g mol^{−1} | ε₂₆₀ = 203900 l (mol cm)^{−1} | 5'-GGT AAT ACG ACT CAC TAT AG -3'

>>DNA-template pre-let-7 | IBA | 77 nt | MW = 23705 g mol^{−1} | ε₂₆₀ = 769400 l (mol cm)^{−1} | 5'-A_{OMe}C_{OMe}A AAG CTA GCA CAT TGT ATA GTA TGA TGT GTA ATT ACT ACT -3'

>>DNA-template pre-miRNA-21 | IBA | 76 nt | MW = 23512 g mol^{−1} | ε₂₆₀ = 748100 l (mol cm)^{−1} | 5'-A_{OMe}A_{OMe}G GCC CAT CGA CTG GTG TTG CCA TGA GAT TCA ACA GTC AAC ATC AGT CTG ATA AGC CCT ATA GTG AGT CGT ATT A -3'
Fluorescence-based detection of Dicer-cleavage:11,12 The rate of Dicer cleavage was measured in 384-well plates and a final volume of 40 µL was used. A 40 µL reaction which contained 20 nM beacon (renatured prior use in dicer buffer: 3 min at 95 °C, cooled to room temperature within 2 min with minor modifications. To generate the promotor double stranded, 37 °C, Dicer buffer (20 mM Tris-HCl, pH 6.8, 12.5 mM NaCl, 2.5 mM MgCl\textsubscript{2}, 1 mM DTT) was placed on ice. Then 0.05 U Dicer was added and the fluorescence increase measured every minute for 3 h at 37 °C. All Fluorescence measurements were done in triplicate on a BMG Labtech Fluorostar Optima plate reader with λ\textsubscript{ex/em} = (485/520±5) nm and the average values are given. For the Alexa-labeled probe (90 nM in 50 µl final volume, 0.5 U Dicer, 37 °C) the fluorescence increase was measured every 60 min in a Varian Cary Eclipse fluorescence spectrophotometer with λ\textsubscript{ex} = (633±5) nm, λ\textsubscript{em} = 645±5 - 750±5 nm using 3 × 3 mm ultra-micro-cuvettes.

In-vitro-transcription of pre-miRNAs: Transcriptions of pre-miRNAs were performed using a RiboMAX™ Large Scale RNA Production System-T7 kit with DNA template and T7 promotor according to manufacturer's protocol but with minor modifications. To generate the promotor double strand, water, T7-promotor and DNA-template were heated to 95 °C for 2 min. After 10 min at room temperature, the tabulated volumes of buffer, MgCl\textsubscript{2}, rNTPs and GMP\textsuperscript{P\textsubscript{7G}} were added in the order specified (Tab. 1). The reaction was warmed to 37 °C and a further equivalent of GTP was added every 15 min (8 ×). Afterwards the transcription was continued for 30 min. Then the reaction was stopped by addition of DNase. RNA was isolated by PCI-extraction, ethanol precipitation and used for CuAAC without further purification.

Tab. 1 Pipetting scheme for in-vitro-transcription

<table>
<thead>
<tr>
<th>Compound</th>
<th>c\textsubscript{Stock}</th>
<th>c\textsubscript{Final}</th>
<th>V [µL]</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>-</td>
<td>-</td>
<td>45</td>
</tr>
<tr>
<td>T7-Promotor</td>
<td>310 µM</td>
<td>7.5 µM</td>
<td>7.2</td>
</tr>
<tr>
<td>DNA-template</td>
<td>100 µM</td>
<td>3.7 µM</td>
<td>11.2</td>
</tr>
<tr>
<td>T7-buffer</td>
<td>5 ×</td>
<td>1 ×</td>
<td>60</td>
</tr>
<tr>
<td>MgCl\textsubscript{2}</td>
<td>1 M</td>
<td>10 mM</td>
<td>3.0</td>
</tr>
<tr>
<td>rNTPs</td>
<td>25 mM ACU, 2.5 mM G</td>
<td>7.5 mM, 0.75 mM G</td>
<td>90</td>
</tr>
<tr>
<td>GMP\textsuperscript{P\textsubscript{7G}}</td>
<td>37.8 mM</td>
<td>6.75 mM</td>
<td>53.6</td>
</tr>
<tr>
<td>Enzyme mixture</td>
<td>10 ×</td>
<td>1 ×</td>
<td>30</td>
</tr>
<tr>
<td>sum</td>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>DNase</td>
<td>1 U µL1</td>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>
CuAAC: RNA transcript was dissolved in water and diluted with PUS-buffer (1 ×: 1 M Tris-HCl, pH 8.0, 10 mM MgCl₂, 1 M NH₄OAc). Stock solutions of sodium ascorbate (freshly prepared prior use), copper sulfate, THPTA and azide were degassed with Ar through an Eppendorf tip (10 sec) and added in the amounts and order outlined in Tab. 2. The resulting reaction volume was degassed again and shaken for 2 h at 25 °C followed by PCI extraction (containing additional 10 mM EDTA to remove copper). The aqueous layer was purified and concentrated with Amicon Ultra-0.5 ml centrifugal filters 10 K to separate non-incorporated rNTPs from transcription and other small molecules. The labeled RNA was separated by HPLC (0-40 % acetonitrile in 0.1 teaa buffer, 40 min). The product containing fractions (tᵣ ~ 34 min in case of labeling with Dabcyl) as well as the GTP-primed fractions (tᵣ ~ 22 min) were pooled, desalted and concentrated by Amicon Ultra-0.5 ml centrifugal filters 10 K. In case of small scale CuAAC (e. g. internal labeling with known conc. of RNA) the concentrations of reagents were changed slightly (Tab.2, right).

Tab. 2 Pipetting scheme for CuAAC

<table>
<thead>
<tr>
<th>Compounds</th>
<th></th>
<th>Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ε<sub>Stock</sub></td>
<td>ε<sub>Final</sub></td>
</tr>
<tr>
<td>water</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PUS-buffer</td>
<td>10 ×</td>
<td>1 ×</td>
</tr>
<tr>
<td>pre-miR-transcript</td>
<td>~50 µM</td>
<td>~ 25µM</td>
</tr>
<tr>
<td>DAB-N<sub>4</sub> in dmsso</td>
<td>10 mM</td>
<td>50 µm</td>
</tr>
<tr>
<td>THPTA</td>
<td>50 mM</td>
<td>3.75 mM</td>
</tr>
<tr>
<td>Sodium ascorbate</td>
<td>150 mM</td>
<td>7.5 mM</td>
</tr>
<tr>
<td>CuSO₄</td>
<td>75 mM</td>
<td>0.75 mM</td>
</tr>
<tr>
<td>sum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DAB_{pre-let7} | 60 nt | ε₂₆₀ = 642000 l (mol cm)⁻¹ | n = 0.89 nmol | 5'⁻ DAB-GGA GGU AGU AGG UUG UAU AGU AGU AAU UAC ACA UCA UAC UAU ACA AUG UGC UAG UGU -3'

DAB_{pre-let7} | 60 nt | ε₂₆₀ = 630900 l (mol cm)⁻¹ | n = 1.57 nmol | 5'-pppGGA GGU AGU AGG UUG UAU AGU AGU AAU UAC ACA UCA UAC UAU ACA AUG UGC UAG UGU -3' | ESI-MS (deconvoluted) from UHPLC/UV-Vis/MS calc. 19502.4, found 19502.4 | isolated yield n_{total} = 2.46 nmol (36 % **DAB**_{pre-let7}, 64 % **pre-let7**)

DAB_{pre-miR-21} | 59 nt | ε₂₆₀ = 589000 l (mol cm)⁻¹ | n = 0.65 nmol | 5'⁻ DAB-GGG CUU AUC AGA CUG AUG UUG ACU GUU GAA UCU CAU GGC AAC ACC AGU CUA GGC UGG GCC UU -3'

DAB_{pre-miR-21} | 59 nt | ε₂₆₀ = 577900 l (mol cm)⁻¹ | n = 1.84 nmol | 5'- pppGGG CUU AUC AGA CUG AUG UUG ACU GUU GAA UCU CAU GGC AAC ACC AGU CUA GGC UGG GCC UU -3' | ESI-MS (deconvoluted) from UHPLC/UV-Vis/MS calc. 19153.2, found 19153.3 | isolated yield n_{total} = 2.49 nmol (26 % **DAB**_{pre-miR-21}, 74 % **pre-miR-21**)

DAB_{pre-mir-142} | 59 nt | ε₂₆₀ = 621400 l (mol cm)⁻¹ | n = 0.41 nmol | 5'⁻ DAB-GAU AAA GUA GAA AGC ACU ACU AAC AGC ACU GGA GGG UGU AGU GUU UCC UAC UUU AUC GA -3' | ESI-MS (dekonvuliert) aus UHPLC/UV-Vis/MS ber. 19519.6, found 19519.8

DAB_{pre-mir-142} | 59 nt | ε₂₆₀ = 610300 l (mol cm)⁻¹ | n = 0.68 nmol | 5'- pppGAU AAA GUA GAA AGC ACU ACU AAC AGC ACU GGA GGG UGU AGU GUU UCC UAC UUU AUC GA -3' | ESI-MS (deconvoluted) from UHPLC/UV-Vis/MS calc. 19216.3, found 19216.3 | isolated yield n_{total} = 1.09 nmol (38 % **DAB**_{pre-mir-142}, 62 % **pre-mir-142**) starting from 100 µl scale in-vitro-transcription
DAB**Pre-miR-122** | 58 nt | \(\varepsilon_{260} = 595700 \) | isolated yield \(n = 2.61 \times 10^{-3} \) | 5' DAB-GUG AGU GUG ACA AUG GUG UUU GUG UCU AAA CUA UCA AAC GCC AUU AUC ACA CUC ACU A -3'
pre-miR-122 | 58 nt | \(\varepsilon_{260} = 584600 \) | isolated yield \(n = 2.95 \times 10^{-3} \) | 5' pppGUG AGU GUG ACA AUG GUG UUU GUG UCU AAA CUA UCA AAC GCC AUU AUC ACA CUC ACU A -3' | ESI-MS (deconvoluted) from UHPLC/UV-Vis/MS calc. 18745.0, found 18745.2
isolated yield \(n_{\text{total}} = 2.61 \times 10^{-3} \) (21% DAB**Pre-miR-122**, 79% **pre-miR-122**)

DAB**Pre-miR-122-A** | 48 nt | \(\varepsilon_{260} = 497500 \) | isolated yield \(n = 0.73 \times 10^{-3} \) | 5' DAB-GUG AGU GUG ACA AUG GUG UUU GUG UCU AAA CUA UCA AAC GCC AUU AUC ACA CUC ACU A -3'
pre-miR-122-A | 48 nt | \(\varepsilon_{260} = 486400 \) | isolated yield \(n = 1.67 \times 10^{-3} \) | 5' pppGUG AGU GUG ACA AUG GUG UUU GUG UCU AAA CUA UCA AAC GCC AUU AUC ACA CUC ACU A -3' | ESI-MS (deconvoluted) from UHPLC/UV-Vis/MS calc. 15595.1, found 15595.2
isolated yield \(n_{\text{total}} = 2.40 \times 10^{-3} \) (30% DAB**Pre-miR-122-A**, 70% **pre-miR-122-A**)

Ligation of pUpAlk/FAM: T4 RNA Ligase 1 was used for ligation of pUpAlk or pUpFAM to the 3'-end of RNA strands. Compound pUpFAM was dissolved in a mixture of dmos/water (3:2, v/v), pUpAlk was dissolved in water. Both stock solutions were stored at -20°C. For renaturation a mixture of buffer, water, RNA (final conc.: 1.75 mM) and dmos (final conc.: 20%) were vortexed, heated to 95°C for 3 min and placed on ice for 5 min. Afterwards modified uridine (final conc.: 0.65 mM) as well as ATP (final conc.: 1 mM) were added. Again the reaction was allowed to cool on ice for 5 min. After addition of Ribolock® and Ligase (both final conc.: 0.70 U µl-1) the vial was kept at 16°C for 20 h. RNA was purified with PCI extraction and HPLC (0-40% acetonitrile in 0.1 teaa buffer, 40 min). The product containing fractions (tR ~ 36 min in case of labeling with FAM/Dabcyl) were pooled, desalted and concentrated by Amicon Ultra-0.5 ml centrifugal filters 3 K. In case of pUpAlk ligation RNA was purified with PCI extraction, desalted and concentrated by Amicon Ultra-0.5 ml centrifugal filters 3 K.

Pre-let7U | 61 nt | \(\varepsilon_{260} = 640600 \) | isolated yield \(n = 0.43 \times 10^{-3} \) (87%) | 5' ppp-GGA GGU AGG UUG UAU AGU AGU AAU UAC ACA UCA UAC UAU ACA AUG UGC CUU UGUp-Ethynyl-3' | ESI-MS (deconvoluted) from UHPLC/UV-Vis/MS calc. 19912.6, found 19912.3

DAB**Pre-let7**FAM | 61 nt | \(\varepsilon_{260} = 672600 \) | isolated yield \(n = 0.60 \times 10^{-3} \) (56%) | 5' DAB-GGA GGU AGU AGG UUG UAU AGU AGU AAU UAC ACA UCA UAC UAU ACA AUG UGC CUU UGUp-FAM -3' | ESI-MS (deconvoluted) from UHPLC/UV-Vis/MS calc. 20748.0, found 20748.6

DAB**Pre-miR-21**FAM | 60 nt | \(\varepsilon_{260} = 619600 \) | isolated yield \(n = 0.26 \times 10^{-3} \) (44%) | 5' DAB-GGG CUU AUC AGA CUG AUG UUG ACU GUU GAA UCU CAU GGC AAC ACC AGU CGA UGG GCC UUUp-FAM -3' | ESI-MS (deconvoluted) from UHPLC/UV-Vis/MS calc. 20398.8, found 20399.3

DAB**Pre-miR-142**FAM | 60 nt | \(\varepsilon_{260} = 650900 \) | isolated yield \(n = 0.10 \times 10^{-3} \) (39%) | 5' DAB-GAU AAA GUA AGC ACU ACU AAC AGC ACU GGA GGG UGU AGU GUU UCC UAC UUU AUC GAUp-FAM -3' | ESI-MS (deconvoluted) from UHPLC/UV-Vis/MS calc. 20461.9, found 20462.4

*isolated yield after HPLC
Fig. S4 a 20% denat. PAGE-Gel of pre-miRNA probes, legend: 1 = DAB pre-miR-122\(^{FAM}\), 2 = DAB pre-miR-21\(^{FAM}\), 3 = DAB pre-miR-122\(^{FAM}\), 4 = DAB pre-miR-142\(^{FAM}\), L = RNA-ladder b schematic illustration of the concept of DAB pre-miRNA\(^{FAM}\) probes, c Fluorescence intensity (F-F\(_{\text{min}}\)) per min after incubation of DAB pre-miRNA\(^{FAM}\) (20 nM) at 37 °C with denat./nat. Dicer (0.05 U\(\mu\text{l}^{-1}\)), pre-miR-142 (○/■), pre-let7 (●/■), pre-miR-21 (●/□), pre-miR-122 (○/□), \(\lambda_{ex}/\lambda_{em} = (485/520±5)\) nm, all measurements were performed in triplex, mean values are given

Dephosphorylation: Calf Intestinal Phosphatase was used according to manufacturer’s protocol with minor modifications: RNA was diluted to 3 µM and 4 U CIP per 0.1 nmol RNA was used. After incubation for 60 min at 37 °C the enzyme was removed by PCI-extraction. Finally the dephosphorylated RNA was purified and concentrated with Amicon Ultra-0.5 ml centrifugal filters 3K.

Ligation of RNA-oligonucleotides: *T4 RNA Ligase 1* was used for ligation of RNA strands. For renaturation a mixture of buffer, water, both RNA oligomers (final conc.: DAB pre-miR-122-A/pre-let7 3 µM, pre-miR-122-B\(^{ALX}\) 9 µM, pre-miR-122-C 30 µM) and dmso (final conc.: 20 %) were vortexed, heated to 95 °C for 3 min and placed on ice for 5 min. Afterwards dmso (final conc.: 10 %) as well as ATP (final conc.: 1 mM) were added. Again the reaction was allowed to cool on ice for 5 min. After addition of Ribolock® (final conc.: 0.75 U\(\mu\text{l}^{-1}\)) and Ligase (final conc.: 1 U\(\mu\text{l}^{-1}\)) the vial was kept at 16 °C for 20 h. RNA was purified with PCI extraction and HPLC (0-40 % acetonitrile in 0.1 teaa
buffer, 45 min). The product containing fractions \(t_{R} \sim 40 \text{ min for } \text{pre-miR-122}^{\text{ALX}} \) were pooled, desalted and concentrated with Amicon Ultra-0.5 ml centrifugal filters 3 K. In case of prolonged pre-miR-122\(^{\text{ALX}}\) no purifications steps were performed.

\[\text{DAB pre-miR-122}^{\text{ALX}} \text{ | 58 nmol } | \varepsilon_{260} = 595700 \text{ l (mol cm)}^{-1} | n = 0.20 \text{ nmol (29%) } \] 5'-DAB-GUG AGU GUG ACA AUG GUG UUU GUG UCU AAA CUA UCA AAC GCC AUU AUC -3' | ESI-MS (deconvoluted) from UHPLC/UV-Vis/MS calc. 20165.8, found 20166.3

Fig. S5 a retrosynthetic analysis of \(\text{DAB pre-miR-122}^{\text{ALX}} \) b 10 % denat. PAGE gel, legend: 1 = \(\text{DAB pre-miRNA-122}^{\text{ALX}} \), 2 = pre-miRNA-122\(^{\text{ALX}}\), 3 = \(\text{DAB pre-miRNA-122-A} \), 4 = \(\text{DAB pre-miRNA-122-FAM} \) 5 = pre-miRNA-122, L = RNA ladder c 20 % denat. PAGE gel, legend: 1 = \(\text{DAB pre-miR-122}^{\text{ALX}} \) before HPLC purification, 2 = \(\text{DAB pre-miR-122}^{\text{ALX}} \) after HPLC purification contaminated with L = RNA ladder d fluorescence intensity after incubation with nat/denat. Dicer (0.5 U), measurements were taken every 60 min, \(\lambda_{\text{em}} = (633\pm5) \text{ nm, } \lambda_{\text{em}} = (645-750\pm5) \text{ nm, } \text{DAB pre-miRNA-122}^{\text{ALX}} \text{ (90 nM), in Dicer buffer, 37 } ^{\circ} \text{C.} \]

* isolated yield after HPLC
Fig. S6 PAGE analysis of internal labeling experiments, 20 % denat. PAGE gel after ligation, legend: 1 DAB Pre-miR-122, 2 and 3 Pre-miR-122-A in different concentrations, 4 Pre-miR-122-B, 5 Pre-miR-122_{ALX} before HPLC, 6 Pre-miR-122_{ALX} after HPLC, 7 DAB Pre-miR-122_{ALX} before HPLC, 8 DAB Pre-miR-122_{ALX} after HPLC, 9 pre-miR-122, lane 8 and 9 are contaminated with RNA ladder
IV. 1H-, 31P- and 13C-NMR Spectra

$2'$-O-tert-Butyldimethylsilyl-3',5'-O-bis(tert-butyl)silyl-5-ethinyl uridine 3 (CDCl$_3$)

$2'$-O-tert-Butyldimethylsilyl-5-ethinyl uridine (CD$_3$OD)
$2\text{'}-O\text{-}\text{tert-Butyldimethylsilyl}-3\text{',}5\text{'}-O\text{-}O\text{-}\text{bis}[\text{di}(2\text{-cyanoethyl})]\text{phosphoryl}\text{-}5\text{-ethinyl uridine}$

(CD_3CN)
3',5'-O,O-Bisphosphate-5-ethyluridine 5\textup{pU}^\textup{alk} (\textup{D}_2\textup{O})

5(6)FAM-labeled 3',5'-O,O-Bisphosphat uridine pUpFAM (\textup{D}_2\textup{O})
V. UPLC/UV-Vis/MS-chromatograms of selected pre-miRNAs

pre-miR-142 /DAB pre-miR-142 before HPLC purification
UPLC/UV-Vis/MS-chromatograms of isolated oligomers after HPLC with $t_R \sim 22$ min

pre-miR-let7 after HPLC purification

pre-miR-21 after HPLC purification
pre-miR-122 after HPLC purification

- Scan (2.207-2.680 min, 58 scans) 122L-fr 13+ 14.d Subtract Deconvoluted (Isotope Width=8.7)

pre-miR-122-A after HPLC purification

- Scan (2.207-2.439 min, 29 scans) 122A fr7.d Subtract Deconvoluted (Isotope Width=8.0)
UPLC/UV-Vis/MS-chromatograms of pre-let7U after labeling with pUpAlk without any HPLC but with filtration with centrifugal filters

pre-let7U

![UPLC/UV-Vis/MS-chromatogram of pre-let7U](image)

UPLC/UV-Vis/MS-chromatograms of fully labeled oligomers after HPLC with t_R ~ 36 min

DAB pre-let7UFAM

![UPLC/UV-Vis/MS-chromatogram of fully labeled oligomers](image)
DAB pre-miR-21^{FAM}

![Graph 1](image1)

DAB pre-miR-142^{FAM}

![Graph 2](image2)
VI. References

