## Supporting Information

# Synthesis of 1,5-triazole bridged vancomycin CDE-ring bicyclic mimics using RuAAC macrocyclization 

Jinqiang Zhang, ${ }^{\text {a }}$ Johan Kemmink, ${ }^{\text {a }}$ Dirk T. S. Rijkers, ${ }^{\text {a }}$ and Rob M. J. Liskamp*ab

${ }^{a}$ Medicinal Chemistry \& Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands; E-mail: R.M.J.Liskamp@uu.nl
${ }^{b}$ Chemical Biology \& Medicinal Chemistry, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, Scotland, United Kingdom; E-mail: Robert.Liskamp@glasgow.ac.uk

## Table of Contents

1. Synthetic Procedures ..... 2-9
1.1 General Experimental Procedures ..... 2
1.2 Syntheses Schemes ..... 3
1.3 Synthesis and Compound Analyses ..... 4
1.4 References ..... 9
2. ITC Experiments ..... 10-20
3. Copies of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR Spectra and the 2 D ..... 21-30
HSQC NMR Spectrum
4. Copies of the Analytical HPLC Chromatograms and ..... 31-35

## 1. Synthetic Procedures

### 1.1 General Experimental Procedures

Chemicals were used as obtained from commercial sources without further purification unless stated otherwise. Azidoamino acids $\mathbf{1 6}$ and 17 were synthesized using literature procedures starting from the corresponding diamino acid residues. ${ }^{[1]}$ The solvents were obtained as peptide synthesis grade and stored over molecular sieves ( $4 \AA$ ) prior to use.
Column chromatography was performed on Silicycle SiliFlash P60 silica gel (particle size 40-63 $\mu \mathrm{m}$ ).
Thin Layer Chromatography was performed on Merck precoated silica gel 60F254 glass plates. Compound spots were visualized by UV-quenching, ninhydrin, or $\mathrm{Cl}_{2} / \mathrm{TDM}$.
Optical rotations were measured on a $J A S C O$ P-1010 Polarimeter using a 10 cm cell with a Na 589 nm filter. The specific concentrations (in $\mathrm{g} / 100 \mathrm{~mL}$ ) are indicated.
${ }^{\mathbf{1}} \mathbf{H}$-NMR data were acquired on a Varian Mercury 300 MHz or a Varian Innova 500 MHz spectrometer in $\mathrm{CDCl}_{3}$ or $\mathrm{CD}_{3} \mathrm{OD}$ as solvent. Chemical shifts are reported in delta ( $\delta$ ) units, in parts per million $(\mathrm{ppm})$ relative to TMS $(0.00 \mathrm{ppm})$. Coupling constants $(J)$ are reported in Hertz (Hz). Splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), doublet of doublet (dd), and broad (br). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data were acquired on a Varian Mercury 75 MHz or a Varian Innova 125 MHz spectrometer in $\mathrm{CDCl}_{3}$ or $\mathrm{CD}_{3} \mathrm{OD}$ as solvent. Chemical shifts are reported in delta ( $\delta$ ) units, in parts per million ( ppm ) relative to the solvent residual signal, $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ or $\mathrm{CD}_{3} \mathrm{OD}(49.0 \mathrm{ppm})$.
Analytical HPLC was performed on an automated HPLC system (Shimadzu) equipped with a UV/Vis detector operating at 220/254 nm and an evaporative light scattering detector using a Dr. Maisch Reprosil-Pur C18-AQ column (pore size: $100 \AA$, particle size: $5 \mu \mathrm{~m} ; 250 \times 4.6$ $\mathrm{mm})$ at a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}\left(100 \%\right.$ buffer A $\left(0.1 \%\right.$ TFA in $\left.\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 5: 95 \mathrm{v} / \mathrm{v}\right)$ to $100 \%$ buffer $\mathrm{B}\left(0.1 \%\right.$ TFA in $\left.\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 95: 5 \mathrm{v} / \mathrm{v}\right)$ in 60 min$)$.
Preparative HPLC was performed on an automated preparative HPLC system (Applied Biosystems) equipped with a UV/Vis detector operating at 214 nm using a Dr. Maisch Reprosil-Pur C18-AQ column (pore size: $100 \AA$, particle size: $10 \mu \mathrm{~m} ; 250 \times 22 \mathrm{~mm}$ ) at a flow rate of $2.0 \mathrm{~mL} / \mathrm{min}\left(100 \%\right.$ buffer A $\left(0.1 \% \mathrm{TFA}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 95: 5 \mathrm{v} / \mathrm{v}\right)$ to $100 \%$ buffer B ( $0.1 \% \mathrm{TFA}$ in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 5: 95 \mathrm{v} / \mathrm{v}$ ) in 90 min ).
ESI-MS was performed on a Shimadzu LCMS-QP8000 electrospray ionization mass spectrometer.
MALDI-TOF MS was performed on a Shimadzu Kratos AXIMA-CFR mass spectrometer using $\alpha$-cyano-4-hydroxycinnamic acid (CHCA) as a matrix and human ACTH (18-39) as the reference.

### 1.2 Syntheses Schemes



Scheme SI1. Synthesis of, (I) (I) the C-terminal dipeptide: a) $\mathrm{MeNH}_{2}$, BOP, DCM, 20 h ; b) TFA/DCM, 1 h ; c) Boc-D-Leu-OH, BOP, DIPEA, DCM, $3 \mathrm{~h}, 82 \%$ over three steps; (II) the N-terminal dipeptide: d) H-Ala-O ${ }^{t} \mathrm{Bu}, \mathrm{BOP}$, DIPEA, DCM, $3 \mathrm{~h}, 80 \%$; e) TFA/DCM, 1 h , quant.; and (III) the central amino acid: f) $\mathrm{Ac}_{2} \mathrm{O}$, aq. $1 \mathrm{~N} \mathrm{NaOH} / \mathrm{DCM}, 3 \mathrm{~h}, 88 \%$; g) TIPS-acetylene, $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$, CuI, DIPEA, THF, $20 \mathrm{~h}, 91 \%$.


Scheme SI2. The carbon atoms $\alpha C^{1}, \alpha C^{2}, \alpha C^{3}, \alpha C^{4}, \alpha C^{5}$, arom- $C^{6}$, arom- $C^{7}$ and triazole- $C^{8}$ and $\mathrm{C}^{9}$ have been used as fixed coordinates for superimposition (this Scheme belongs to Figure 1 of the main manuscript).

### 1.3 Syntheses and Compound Analyses

Boc-D-Leu-Lys( $\mathbf{N}_{\mathbf{3}}$ )-NHMe 4: Boc-Lys $\left(\mathrm{N}_{3}\right)$ - OH 16 ( $2.18 \mathrm{~g}, 8.0 \mathrm{mmol}$ ) was dissolved in DCM ( 80 mL ). To this solution, BOP ( $3.90 \mathrm{~g}, 8.8 \mathrm{mmol}$ ) was added, and followed by the addition of $\mathrm{MeNH}_{2}(2 \mathrm{M}$ in $\mathrm{THF}, 12 \mathrm{~mL}, 24 \mathrm{mmol})$ dropwise during 20 min at $0{ }^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature and stirred for 20 h . Then, the solvents were removed by evaporation and the residue was redissolved in EtOAc ( 150 mL ). The resulting solution was washed with $1 \mathrm{~N} \mathrm{KHSO}_{4}\left(100 \mathrm{~mL}\right.$, twice), saturated $\mathrm{NaHCO}_{3}(100 \mathrm{~mL}$, twice) and brine ( 100 mL , once), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and removal of the solvent, the residue was purified by column chromatography ( $\mathrm{EtOAc} / \mathrm{hexane}$, $1: 3$ to $1: 1, \mathrm{v} / \mathrm{v})$. Boc-Lys $\left(\mathrm{N}_{3}\right)$-NHMe was obtained as white solid ( $2.10 \mathrm{~g}, 92 \%$ ). Subsequently, the obtained amide $(1.43 \mathrm{~g}, 5.0 \mathrm{mmol})$ was dissolved in DCM $(50 \mathrm{~mL})$, and to this solution TFA ( 30 mL ) was added. The reaction mixture was stirred for 1 h , after which the volatiles were removed by evaporation and the residual TFA was removed by coevaporation with DCM ( 30 mL , twice). After drying for 1 h at high vacuum, the free amine was dissolved in DCM ( 80 mL ). To this solution Boc-D-Leu-OH ( $1.27 \mathrm{~g}, 5.5 \mathrm{mmol}$ ) and BOP ( $2.43 \mathrm{~g}, 5.5$ mmol) were added, followed by the addition of DiPEA ( $2.59 \mathrm{~mL}, 15.0 \mathrm{mmol}$ ). The reaction mixture was stirred for 3 h . Then, the solvent was removed and the residue was redissolved in EtOAc ( 100 mL ). The resulting solution was successively washed with $1 \mathrm{~N} \mathrm{KHSO}_{4}(100 \mathrm{~mL}$, twice), saturated $\mathrm{NaHCO}_{3}(100 \mathrm{~mL}$, twice) and brine ( 100 mL , once), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and removal of the solvent, the residue was purified by column chromatography (hexane/EtOAc, $3: 1$ to $1: 1$, v/v). Boc-D-Leu-Lys $\left(\mathrm{N}_{3}\right)$-NHMe 4 was obtained as viscous oil $(1.64 \mathrm{~g}, 82 \%) ; \mathrm{R}_{f}=0.64(\mathrm{DCM} / \mathrm{MeOH}, 9: 1, \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}=-9.0(\mathrm{c}=1.0$ $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=7.01(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{q}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{~d}, J$ $=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 1 \mathrm{H}), 1.75-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.52-1.30(\mathrm{~m}, 12 \mathrm{H}), 0.91(\mathrm{t}, J=5.2 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=173.2,172.0,156.1,80.3,53.8,53.0,51.1,40.8,31.4$, 28.4, 28.3, 26.2, 24.7, 22.9, 22.7, 22.1; MS (ESI) $m / z$ calcd for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{~N}_{6} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+399.27$, found 399.45; calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]+421.25$, found 421.20.

The synthesis of Fmoc-D-Lys( $\mathbf{N}_{3}$ )-Ala-O ${ }^{t}$ Bu (6) and Fmoc-D-Lys( $\mathbf{N}_{3}$ )-Ala-OH (10): Fmoc-D-Lys $\left(\mathrm{N}_{3}\right)$-OH 17 ( $680 \mathrm{mg}, 1.72 \mathrm{mmol}$ ) was dissolved in DCM ( 30 mL ). To this solution $\mathrm{H}-\mathrm{Ala}-\mathrm{O}^{t} \mathrm{Bu} \cdot \mathrm{HCl}(343 \mathrm{mg}, 1.89 \mathrm{mmol})$ and $\mathrm{BOP}(836 \mathrm{mg}, 1.89 \mathrm{mmol})$ were added, followed by the addition of DiPEA ( $743 \mu \mathrm{~L}, 4.30 \mathrm{mmol}$ ). The reaction mixture was stirred for 3 h . Then, the solvent was removed and the residue was redissolved in EtOAc ( 100 mL ). The resulting solution was successively washed with $1 \mathrm{~N} \mathrm{KHSO}_{4}(100 \mathrm{~mL}$, twice), saturated $\mathrm{NaHCO}_{3}\left(100 \mathrm{~mL}\right.$, twice) and brine ( 100 mL , once), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and removal of the solvent, the residue was purified by column chromatography (hexane/EtOAc, $4: 1$, v/v). Fmoc-D-Lys( $\mathrm{N}_{3}$ )-Ala-O ${ }^{t}$ Bu 6 was obtained as a white solid ( 720 $\mathrm{mg}, 80 \%) ; \mathrm{R}_{f}=0.76(\mathrm{DCM} / \mathrm{MeOH}, 9: 1, \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}=+1.3\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.76(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=7.4,6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.31(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dt}$, $J=9.5,4.8 \mathrm{~Hz}, 3 \mathrm{H}), 4.22(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.78(\mathrm{~m}, 1 \mathrm{H})$, $1.76-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 12 \mathrm{H}), 1.37(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta=172.1,170.9,156.3,144.0,144.0,141.5,128.0,127.3,125.3,120.2,82.5,67.3$, $54.8,51.3,49.0,47.4,32.6,28.7,28.2,22.8,18.8$; MS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{H}]+522.27$, found 522.00; calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]+544.25$, found 544.55.
Fmoc-D-Lys $\left(\mathrm{N}_{3}\right)$-Ala-OH 10 was obtained in quantitative yield by treatment of dipeptide tert-butyl ester $\mathbf{6}$ with TFA and used without further purification.
( $R$ )- $N$ - $\alpha$-Boc-(4-hydroxy-3,5-diiodo)phenylglycine 19 was synthesized according to a literature procedure. ${ }^{[2]}$ D-4-Hydroxyphenylglycine $18(10.5 \mathrm{~g}, 63.0 \mathrm{mmol})$ was dissolved in $\mathrm{AcOH}(90 \mathrm{~mL})$. To this solution $\mathrm{ICl}(22.5 \mathrm{~g}, 138.6 \mathrm{mmol})$ in $\mathrm{AcOH}(5.0 \mathrm{~mL})$ was added dropwise during 10 min under argon. After stirring for 72 h at room temperature, the reaction mixture was poured into ice water $(1000 \mathrm{~mL})$. The precipitated crystals were filtered off, washed with EtOH ( 100 mL twice) to provide 3,5-diiodo-D-4-hydroxyphenylglycine ( 22.1 g , $85 \%$ ) as light brown crystals and was used without further purification in the next step. 3,5-Diiodo-D-4-hydroxy- phenylglycine ( $4.19 \mathrm{~g}, 10 \mathrm{mmol}$ ) was dissolved in $\mathrm{H}_{2} \mathrm{O}$ /dioxane ( 60 $\mathrm{mL}, 1: 1, \mathrm{v} / \mathrm{v})$. To this solution $\mathrm{Boc}_{2} \mathrm{O}(2.62 \mathrm{~g}, 12 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(2.1 \mathrm{~mL}, 15 \mathrm{mmol})$ were added. The reaction mixture was stirred for 4 h . The reaction mixture was diluted with EtOAc $(50 \mathrm{~mL})$ and the resulting solution was extracted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL}$, twice). The aqueous phase was combined and acidified with $\mathrm{KHSO}_{4}$ to $\mathrm{pH} 2-3$, extracted with EtOAc ( 100 mL , twice). The organic phase was washed with brine ( 150 mL , once), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and removal of the solvent, the residue was purified by column chromatography (hexane/EtOAc, 3:1, v/v, with $0.1 \% \mathrm{AcOH}$ ). Diiodo compound 19 was obtained as a light yellowish solid ( $3.54 \mathrm{mg}, 68 \%$ ); $\mathrm{R}_{f}=0.57$ (hexane/EtOAc, $1: 1$, v/v, with $0.1 \% \mathrm{AcOH}) ;[\alpha]_{\mathrm{D}}{ }^{20}=-94.3\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.02(\mathrm{~s}, 1 \mathrm{H})$, 7.75 (s, 2H), 4.97 (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H})$.
( $R$ )- $N$ - $\alpha$-Boc-(4-acetoxy-3,5-diiodo)phenylglycine 20 was synthesized according to a literature procedure. ${ }^{[3]}$ Hydroxy compound $19(2.60 \mathrm{~g}, 5.00 \mathrm{mmol})$ was dissolved in ice-cold aq. $1 \mathrm{~N} \mathrm{NaOH} / \mathrm{DCM}(60 \mathrm{~mL}, 1: 1, \mathrm{v} / \mathrm{v})$ and to this mixture, $\mathrm{Ac}_{2} \mathrm{O}(2.36 \mathrm{~mL}, 25.0 \mathrm{mmol})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$. Then, the reaction mixture was stirred at room temperature for 3 h . Subsequently, the aqueous solution was acidified with $\mathrm{KHSO}_{4}$ to $\mathrm{pH} 2-3$ and extracted with DCM ( 30 mL , twice). The organic phases were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and removal of the solvent, the residue was purified by column chromatography (EtOAc/hexane, $1: 3$ to $1: 2, \mathrm{v} / \mathrm{v}$, with $0.1 \% \mathrm{HOAc}$ ). Acetyl ester 20 was obtained as a white solid ( $2.47 \mathrm{~g}, 88 \%$ ); $\mathrm{R}_{f}=0.61$ (hexane/EtOAc, $1: 1, \mathrm{v} / \mathrm{v}$, with $0.1 \% \mathrm{HOAc}$ ); $[\alpha]_{\mathrm{D}}{ }^{20}=-72.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.08(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 2 \mathrm{H})$, $5.02(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=172.5$, $167.4,157.0,151.5,139.5,138.3,90.5,83.1,57.3,28.3,21.6$.

Bis-alkyne 8: Diiodo compound $20(2.24 \mathrm{~g}, 4.0 \mathrm{mmol}),\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](462 \mathrm{mg}, 0.4 \mathrm{mmol})$, and $\mathrm{CuI}(228 \mathrm{mg}, 1.2 \mathrm{mmol})$ were placed in a flask sealed with a rubber septum. The flask was evacuated and refilled with dry $\mathrm{N}_{2}$ (repeated for three times). THF ( 40 mL ) (purged with dry $\mathrm{N}_{2}$ for 1 h prior to use) was added to the flask via a syringe. The resulting solution was degassed again using a freeze-pump-thaw procedure (repeated three times). Then, DiPEA $(1.39 \mathrm{~mL}, 8.0 \mathrm{mmol})$ and TIPS-acetylene $(3.60 \mathrm{~mL}, 16 \mathrm{mmol})$ were added to the mixture via a
syringe. After stirring the reaction mixture for 20 h at room temperature under $\mathrm{N}_{2}$, the resulting suspension was filtered through a path of celite and the filtrate was evaporated to dryness. Subsequently the residue was redissolved in EtOAc ( 100 mL ). The resulting solution was successively washed with $1 \mathrm{~N} \mathrm{KHSO}_{4}\left(100 \mathrm{~mL}\right.$, twice), saturated $\mathrm{NaHCO}_{3}(100 \mathrm{~mL}$, twice) and brine ( 100 mL , once), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and removal of the solvent, the residue was purified by column chromatography (EtOAc/hexane, $1: 4$ to $1: 2, \mathrm{v} / \mathrm{v}$, with $0.1 \% \mathrm{AcOH}$ ). Bis-alkyne 8 was obtained as a yellowish solid ( 2.45 g , $91 \%) . \mathrm{R}_{f}=0.26(\mathrm{DCM} / \mathrm{MeOH}, 9: 1, \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}=-51.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.99(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{~s}, 42 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=172.6,167.4,156.9,152.6,135.9,132.4,118.6,100.6,96.6$, 82.7, 58.2, 27.9, 20.6, 18.6, 11.2; MS (ESI) $m / z$ calcd for $\mathrm{C}_{37} \mathrm{H}_{59} \mathrm{NNaO}_{6} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 692.38$, found 692.25. This compound is abbreviated as: D-Phg(4-OAc-3,5-bis-TIPS-alkyne).

## Boc-D-Phg(4-OAc-3,5-bis-TIPS-alkyne)-D-Leu-Lys( $\mathbf{N}_{3}$ )-NHMe 9:

Boc-D-Leu-Lys( $\mathrm{N}_{3}$ )-NHMe $4(877 \mathrm{mg}, 2.2 \mathrm{mmol})$ was dissolved in DCM $(15 \mathrm{~mL})$, and to this solution, TFA ( 15 mL ) was added. The reaction mixture was stirred for 1 h , after which the volatiles were removed by evaporation and the residual TFA was removed by coevaporation with DCM ( 20 mL , twice). After drying for 1 h at high vacuum, the free amine was dissolved in DCM ( 60 mL ). To this solution Boc-D-Phg(4-OAc-3,5-bis-TIPS-alkyne) compound 8 (1.34 $\mathrm{g}, 2.0 \mathrm{mmol}$ ) and BOP ( $973 \mathrm{mg}, 2.2 \mathrm{mmol}$ ) were added, followed by the addition of DiPEA $(1.04 \mathrm{~mL}, 6.0 \mathrm{mmol})$. This reaction mixture was stirred for 3 h . Then, the solvent was removed by evaporation and the residue was redissolved in EtOAc ( 100 mL ). The resulting solution was successively washed with $1 \mathrm{~N} \mathrm{KHSO}_{4}\left(50 \mathrm{~mL}\right.$, twice), saturated $\mathrm{NaHCO}_{3}$ (50 mL , twice) and brine ( 50 mL , once), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and removal of the solvent, the residue was purified by column chromatography (hexane/EtOAc, $3: 1$ to $1: 1, \mathrm{v} / \mathrm{v})$. Boc-D-Phg(4-OAc-3,5-bis-TIPS-alkyne)-D-Leu-Lys( $\mathrm{N}_{3}$ )-NHMe 9 was obtained as a diastereoisomeric mixture: $R R S: S R S=5.4: 1$ based on analytical HPLC $(1.60 \mathrm{~g}$, 84\%); MS (ESI) $m / z$ calcd for $\mathrm{C}_{50} \mathrm{H}_{84} \mathrm{~N}_{7} \mathrm{O}_{7} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 950.60$, found 951.00.

## Fmoc-d-Lys( $\mathbf{N}_{3}$ )-Ala-d-Phg(4-OAc-3,5-bis-TIPS-alkyne)-d-Leu-Lys( $\mathbf{N}_{3}$ )-NHMe 11:

Boc-D-Phg(4-OAc-3,5-bis-TIPS-alkyne)-D-Leu-Lys( $\mathrm{N}_{3}$ )-NHMe 9 ( $300 \mathrm{mg}, 0.316 \mathrm{mmol}$ ) was dissolved in 8 mL of DCM, and to this solution TFA ( 2 mL ) was added. The obtained reaction mixture was stirred for 1 h . Then, the volatiles were removed by evaporation and the residual TFA was removed by coevaporation with DCM ( 10 mL , twice). After drying for 1 h at high vacuum, the free amine was dissolved in DCM ( 10 mL ). To this solution, Fmoc-D-Lys $\left(\mathrm{N}_{3}\right)$-Ala-OH 10 ( $161 \mathrm{mg}, 0.347 \mathrm{mmol}$ ), EDCI ( $66.3 \mathrm{mg}, 0.347 \mathrm{mmol}$ ), and HOBt ( $46.9 \mathrm{mg}, 0.347 \mathrm{mmol}$ ) were added, followed by the addition of DiPEA ( $192 \mu \mathrm{~L}, 1.11$ mmol ), and the reaction mixture was stirred for 4 h . Subsequently the solvent was removed by evaporation and the residue was redissolved in EtOAc $(100 \mathrm{~mL})$. The resulting solution was successively washed with $1 \mathrm{~N} \mathrm{KHSO}_{4}\left(50 \mathrm{~mL}\right.$, twice), saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL}$, twice) and brine ( 50 mL , once), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and removal of the solvent, the residue was purified by column chromatography ( $\mathrm{MeOH} / \mathrm{DCM}, 1: 99$ to 2:98, v/v). Fmoc-D-Lys $\left(\mathrm{N}_{3}\right)$-Ala-D-Phg(4-OAc-3,5-bis-TIPS-alkyne)-D-Leu-Lys( $\mathrm{N}_{3}$ )-NHMe 11 was obtained as a white solid (230 mg, 56\%); $\mathrm{R}_{f}=0.68(\mathrm{DCM} / \mathrm{MeOH}, 9: 1, \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}=+19.7(\mathrm{c}$
$\left.=1.0 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.76(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{dd}, J=14.2,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.59-4.31(\mathrm{~m}, 3 \mathrm{H}), 4.23(\mathrm{dd}, J=13.5,6.7 \mathrm{~Hz}, 3 \mathrm{H}), 4.06-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.27-$ $3.18(\mathrm{~m}, 4 \mathrm{H}), 2.75(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.65(\mathrm{~m}, 6 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 4 \mathrm{H})$, $1.47-1.34(\mathrm{~m}, 8 \mathrm{H}), 1.11(\mathrm{~s}, 42 \mathrm{H}), 0.92(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=174.0,173.5$, $173.0,172.7,169.0,167.6,157.8,153.5,143.9,143.6,141.3,133.3,127.7,127.1,127.0$, $125.2,125.1,119.9,119.6,100.0,98.0,67.1,59.1,54.0,53.6,52.0,51.1,50.6,47.2,39.2$, $30.4,29.7,28.5,28.4,26.2,25.2,23.3,23.1,23.0,20.7,20.6,18.6,16.3,11.2,-0.0$; MS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{69} \mathrm{H}_{101} \mathrm{~N}_{12} \mathrm{O}_{9} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]{ }^{+}$1297.74, found 1297.75.

## Boc- $N$-Me-D-Leu-D-Lys( $\mathbf{N}_{3}$ )-Ala-D-Phg(4-OH-3,5-bis-TIPS-alkyne)-D-Leu-Lys( $\mathbf{N}_{3}$ )-NH

Me 12: Fmoc-D-Lys( $\mathrm{N}_{3}$ )-Ala-D-Phg(4-OAc-3,5-bis-TIPS-alkyne)-D-Leu-Lys( $\mathrm{N}_{3}$ )-NHMe 11 $(430 \mathrm{mg}, 0.331 \mathrm{mmol})$ was dissolved in THF $(10 \mathrm{~mL})$ and to this solution $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}(8.28$ $\mathrm{mL}, 2 \mathrm{M}$ in THF, 16.6 mmol ) was added, followed by the addition of 1-propanethiol ( $292 \mu \mathrm{~L}$, $3.31 \mathrm{mmol}){ }^{[4]}$ The resulting reaction mixture was stirred for 1 h . After removal of the solvent under reduced pressure, the free amine was obtained and after drying for 1 h at high vacuum, the free amine was dissolved in DCM ( 20 mL ), and to this solution Boc- $N$-Me-D-Leu-OH (81 $\mathrm{mg}, 0.331 \mathrm{mmol}$ ), EDCI ( $69.5 \mathrm{mg}, 0.364 \mathrm{mmol}$ ), and HOBt ( $49.2 \mathrm{mg}, 0.364 \mathrm{mmol}$ ) were added, followed by the addition of $\operatorname{DiPEA}(126 \mu \mathrm{~L}, 0.728 \mathrm{mmol})$. The reaction mixture was stirred for 3 h . Then, the solvent was removed by evaporation and the residue was redissolved in EtOAc ( 100 mL ). The resulting solution was successively washed with $1 \mathrm{~N} \mathrm{KHSO}_{4}(50 \mathrm{~mL}$, twice), saturated $\mathrm{NaHCO}_{3}$ ( 50 mL , twice) and brine ( 50 mL , once), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and removal of the solvent, the residue was purified by column chromatography ( $\mathrm{MeOH} / \mathrm{DCM}$, 1:99 to 2:98, v/v). Hexapeptide, Boc- $N$-Me-D-Leu-D-Lys( $\mathrm{N}_{3}$ )-Ala-D-Phg(4-OH-3,5-bis-TIPS-alkyne)-D-Leu-Lys( $\mathrm{N}_{3}$ )-NHMe 12 was obtained as a white solid ( $310 \mathrm{mg}, 74 \%$ ); $\mathrm{R}_{f}=0.55(\mathrm{DCM} / \mathrm{MeOH}, 9: 1, \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}=$ $+25.5\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.43(\mathrm{~s}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 4.65-$ $4.48(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.11(\mathrm{~m}, 3 \mathrm{H}), 3.29(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.73(\mathrm{~s}, 6 \mathrm{H}), 1.58-1.85(\mathrm{~m}$, $12 \mathrm{H}), 1.47(\mathrm{~s}, 12 \mathrm{H}), 1.37(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.15(\mathrm{~s}, 44 \mathrm{H}), 1.01-0.82(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}\right) \delta=177.8,177.1,177.0,176.4,175.4,162.8,136.6,131.3,115.4$, $104.9,101.0,84.2,62.2,59.6,58.0,57.2,56.5,54.9,54.8,53.0,43.1,40.3,34.8,33.8,32.2$, $31.8,31.5,29.4,28.6,28.5,26.9,26.7,26.6,26.4,25.0,24.4,21.9,20.3,15.0 ;$ MS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{64} \mathrm{H}_{110} \mathrm{~N}_{13} \mathrm{O}_{9} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$1260.81, found 1261.20.

## Boc- $N$-Me-D-Leu-D-Lys( $\mathbf{N}_{3}$ )-Ala-D-Phg(4-OMe-3,5-bis-TIPS-alkyne)-D-Leu-Lys( $\mathbf{N}_{3}$ )-NH Me 13:

Boc- $N$-Me-D-Leu-D-Lys( $\mathrm{N}_{3}$ )-Ala-D-Phg(4-OH-3,5-bis-TIPS-alkyne)-D-Leu-Lys $\left(\mathrm{N}_{3}\right)$-NHMe $12(310 \mathrm{mg}, 0.246 \mathrm{mmol})$ was dissolved in acetone ( 20 mL ). To this solution, MeI ( $46 \mu \mathrm{~L}$, $0.738 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(102 \mathrm{mg}, 0.738 \mathrm{mmol})$ were added. The obtained reaction mixture was stirred for 24 h . After the reaction was complete, as judged by ESI-MS, the solvent was removed by evaporation and the residue was redissolved in EtOAc ( 100 mL ). The resulting solution was successively washed with $1 \mathrm{~N} \mathrm{KHSO}_{4}\left(50 \mathrm{~mL}\right.$, once), saturated $\mathrm{NaHCO}_{3}$ ( 50 mL , once) and brine ( 50 mL , once), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and
removal of the solvent, the residue was purified by column chromatography $(\mathrm{MeOH} / \mathrm{DCM}$, $2: 98$, v/v). The protected hexapeptide Boc- N-Me-D-Leu-D-Lys( $\mathrm{N}_{3}$ )-Ala-D-Phg(4-OMe-3,5-bis-TIPS-alkyne)-D-Leu-Lys( $\mathrm{N}_{3}$ )-NHMe 13 was obtained as a white solid ( $295 \mathrm{mg}, 94 \%$ ); $\mathrm{R}_{f}=0.55(\mathrm{DCM} / \mathrm{MeOH}, 9: 1, \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}=+26.9\left(\mathrm{c}=1.0 \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.63(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 2 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.19(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~d}, J=$ $3.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.86-2.71(\mathrm{~m}, 6 \mathrm{H}), 1.77(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 8 \mathrm{H}), 1.57-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~s}$, $12 \mathrm{H}), 1.39(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.12(\mathrm{~s}, 44 \mathrm{H}), 0.93(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $173.5,173.0,172.4,169.3,163.2,133.4,131.0,119.0,101.5,96.8,80.3,77.2,61.1,58.8,57.5$, $53.5,51.9,51.1,51.1,50.3,39.8,37.0,30.7,28.4,28.3,26.1,25.2,25.0,23.4,23.2,23.0,21.8$, $20.8,18.6,16.0,11.6,11.3,11.2,10.9,-0.0 ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{65} \mathrm{H}_{112} \mathrm{~N}_{13} \mathrm{O}_{9} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 1274.82, found 1275.05 .

Boc- $N$-Me-D-Leu-d-Lys( $\mathbf{N}_{3}$ )-Ala-d-Phg(4-OMe-3,5-bis-alkyne)-d-Leu-Lys( $\mathbf{N}_{3}$ )-NHMe 14: Boc- $N$-Me-D-Leu-D-Lys $\left(\mathrm{N}_{3}\right)$-Ala-D-Phg(4-OMe-3,5-bis-TIPS-alkyne)-D-Leu-Lys( $\mathrm{N}_{3}$ )-NHMe 13 ( $275 \mathrm{mg}, 0.216 \mathrm{mmol}$ ) was dissolved in $\mathrm{THF} / \mathrm{MeOH}(20 \mathrm{~mL}, 19: 1, \mathrm{v} / \mathrm{v}$ ), and to this solution TBAF ( $0.65 \mathrm{~mL}, 1 \mathrm{M}$ in THF, 0.647 mmol ) was added. After stirring for 1 h , another portion of TBAF ( $0.65 \mathrm{~mL}, 1 \mathrm{M}$ in THF) was added. The obtained reaction mixture was stirred for another 2 h . Based on TLC analysis, the reaction was complete. Subsequently the solution was diluted with EtOAc ( 100 mL ) and the resulting solution was successively washed with $1 \mathrm{~N} \mathrm{KHSO}_{4}\left(50 \mathrm{~mL}\right.$, once), saturated $\mathrm{NaHCO}_{3}$ ( 50 mL , once) and brine ( 50 mL , once), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and removal of the solvent, the residue was purified by column chromatography ( $\mathrm{MeOH} / \mathrm{DCM}, 2: 98$ to $4: 96$, v/v), and Boc- $N$-Me-D-Leu-D-Lys( $\mathrm{N}_{3}$ )-Ala-D-Phg(4-OMe-3,5-bis-alkyne)-D-Leu-Lys( $\mathrm{N}_{3}$ )-NHMe 14 was obtained as a white solid ( $190 \mathrm{mg}, 91 \%$ ); $\mathrm{R}_{f}=0.49(\mathrm{DCM} / \mathrm{MeOH}, 9: 1, \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}=$ $-15.0(\mathrm{c}=1.0 \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.52(\mathrm{~s}, 2 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 4.73-$ $4.48(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=9.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.42-3.17(\mathrm{~m}, 4 \mathrm{H}), 2.72(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.96-1.51(\mathrm{~m}, 10 \mathrm{H}), 1.51-1.22(\mathrm{~m}, 20 \mathrm{H}), 0.93(\mathrm{dd}, J=15.2,6.1 \mathrm{~Hz}, 12 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=177.6,177.1,177.0,176.5,174.9,166.8,137.7,135.7,120.8$, $86.9,84.1,82.2,81.8,64.3,61.2,59.9,57.6,57.3,57.2,56.7,54.8,54.8,53.0,43.2,40.6$, $34.7,34.6,33.6,32.1,31.9,31.2,29.1,28.5,26.9,26.7,26.2,25.9,24.4,21.7,20.2 ; \mathrm{MS}$ (ESI) $m / z$ calcd for $\mathrm{C}_{47} \mathrm{H}_{72} \mathrm{~N}_{13} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+} 962.56$, found 963.05; calcd for $\mathrm{C}_{47} \mathrm{H}_{71} \mathrm{~N}_{13} \mathrm{NaO}_{9}[\mathrm{M}+\mathrm{Na}]^{+}$ 984.54, found 985.30; MALDI-TOF MS $m / z$ calcd for $\mathrm{C}_{47} \mathrm{H}_{71} \mathrm{~N}_{13} \mathrm{NaO}_{9}[\mathrm{M}+\mathrm{Na}]^{+}$984.540, found 984.813; calcd for $\mathrm{C}_{47} \mathrm{H}_{71} \mathrm{KN}_{13} \mathrm{NO}_{9}[\mathrm{M}+\mathrm{K}]^{+} 1000.513$, found 1000.788.
$N$-Boc protected bicyclic hexapeptide 15: Boc- $N$-Me-D-Leu-D-Lys $\left(\mathrm{N}_{3}\right)$-Ala-D-Phg(4-OMe-3,5-bis-alkyne)-D-Leu-Lys( $\mathrm{N}_{3}$ )-NHMe $14(75 \mathrm{mg}, 0.078 \mathrm{mmol})$ and $[\mathrm{Cp} * \mathrm{RuCl}]_{4}(25.2 \mathrm{mg}$, 0.0234 mmol ) were placed in a capped flask. The flask was evacuated and refilled with dry $\mathrm{N}_{2}$ (repeated three times). Then, THF/MeOH ( $15.6 \mathrm{~mL}, 19: 1, \mathrm{v} / \mathrm{v}$ ) was added to the flask via a syringe. The solvents were purged with dry $\mathrm{N}_{2}$ for 1 h prior to use. The resulting solution was degassed using a free-pump-thaw procedure (repeated three times). Then, the reaction mixture was stirred for 24 h at $50^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$, after which the solvents were removed under reduced pressure and the residue was absorbed on silica gel and purified by column chromatography ( $\mathrm{MeOH} / \mathrm{DCM}, 5: 95$ to $10: 90, \mathrm{v} / \mathrm{v}$ ). A product fraction was obtained which was further
purified with preparative RP-HPLC. $N$-Boc-protected bicyclic hexapeptide 15 was obtained as a white solid after lyophilization ( $30 \mathrm{mg}, 40 \%$ ); $\mathrm{R}_{f}=0.25(\mathrm{DCM} / \mathrm{MeOH}, 9: 1, \mathrm{v} / \mathrm{v}) ;{ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=8.02(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~s}$, 1 H ), $4.59(\mathrm{~s}, 1 \mathrm{H}), 4.45-4.28(\mathrm{~m}, 3 \mathrm{H}), 4.28-4.05(\mathrm{~m}, 5 \mathrm{H}), 3.96-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H})$, $2.89(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.77(\mathrm{~m}, 5 \mathrm{H}), 1.75-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.47$ $(\mathrm{s}, 9 \mathrm{H}), 1.42(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.04(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 11 \mathrm{H})$, $0.90\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}\right.$ ); MS (ESI) $m / z$ calcd for $\mathrm{C}_{47} \mathrm{H}_{72} \mathrm{~N}_{13} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+} 962.56$, found 963.05 ; calcd for $\mathrm{C}_{47} \mathrm{H}_{71} \mathrm{~N}_{13} \mathrm{NaO}_{9}[\mathrm{M}+\mathrm{Na}]^{+} 984.54$, found 984.60; MALDI-TOF MS m/z calcd for $\mathrm{C}_{47} \mathrm{H}_{71} \mathrm{~N}_{13} \mathrm{NaO}_{9}[\mathrm{M}+\mathrm{Na}]^{+}$984.540, found 984.740; calcd for $\mathrm{C}_{47} \mathrm{H}_{71} \mathrm{KN}_{13} \mathrm{NO}_{9}[\mathrm{M}+\mathrm{K}]^{+}$ 1000.513, found 1000.701 .

Bicyclic hexapeptide 2: $N$-Boc-protected bicyclic hexapeptide $\mathbf{1 5}$ ( $20 \mathrm{mg}, 0.021 \mathrm{mmol}$ ) was treated with TFA ( 1 mL ) in DCM ( 1 mL ) for 1 h , after which the volatiles were removed under reduced pressure. The residue was purified with preparative RP-HPLC. Bicyclic hexapeptide 2 was obtained as a white solid after lyophilization ( $10.2 \mathrm{mg}, 55 \%$ ); HPLC analysis, $R_{\mathrm{t}}=18.9 \mathrm{~min}$; MS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{~N}_{13} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 862.51$, found 862.85; MALDI-TOF MS $m / z$ calcd for $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{~N}_{13} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$862.505, found 862.685; calcd for $\mathrm{C}_{42} \mathrm{H}_{63} \mathrm{~N}_{13} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 884.487$, found 862.685 .

### 1.4 References

1 Goddard-Borger, E. D.; Stick, R. V. Org. Lett. 2007, 9, 3797-3800.
2 Yamada, Y.; Akiba, A.; Arima, S.; Okada, C.; Yoshida, K.; Itou, F.; Kai, T.; Satou, T.; Takeda, K.; Harigaya, Y. Chem. Pharm. Bull. 2005, 53, 1277-1290.
3 Tran-Huu-Dau, M. E.; Wartchow, R.; Winterfeldt, E.; Wong, Y. S. Chem. Eur. J. 2001, 7, 2349-2369.
4 Ueki, M.; Nishigaki, N.; Aoki, H.; Tsurusaki, T.; Katoh, T. Chem. Lett. 1993, 721-724.

## 2. ITC Experiments

Binding affinity measurement was determined by using microcalorimetry, which was performed on automated MicroCal Auto-iTC 200 equipment.

ITC (isothermal titration calorimetry) experiment was carried out by injection the ligand solution ( $10-15 \mathrm{mM}$ ) into the cell containing the solution of the synthesized mimics or vancomycin ( $0.1-0.3 \mathrm{mM}$ ) dissolved in a 0.02 M Na -citrate/citric acid buffer ( pH 5.1 ). The typical experiment contains 16 injections in 40 min and the resulting data was analyzed by non-linear fitting in Origin software.


Figure S1. ITC experiment of vancomycin (1) + Ac-D-Ala.


Figure S2. ITC experiment of vancomycin (1) + Ac-D-Ala-D-Ala.


Figure S3. ITC experiment of vancomycin (1) + Ac-Lys-D-Ala-D-Ala.


Figure S4. ITC experiment of vancomycin (1) + Ac-Lys-D-Ala-D-Lac.


Figure S5. ITC experiment of vancomycin mimic $2+$ Ac-D-Ala.


Figure S6. ITC experiment of vancomycin mimic $2+$ Ac-D-Ala-D-Ala.


Figure S7. ITC experiment of vancomycin mimic $2+$ Ac-Lys-D-Ala-D-Ala.


Figure S8. ITC experiment of vancomycin mimic $\mathbf{2}+$ Ac-Lys-D-Ala-D-Lac.


Figure S9. ITC experiment of vancomycin (1) + Ac-L-Ala-OH.


Figure S10. ITC experiment of vancomycin (1) + Ac-L-Ala-L-Ala-OH.

## 3. Copies of the ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR Spectra and the 2D HSQC

## NMR Spectrum




Figure S11 and S12. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of Boc-D-Leu-Lys $\left(\mathrm{N}_{3}\right)$-NHMe 4.



Figure S13 and S14. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of Fmoc-D-Lys $\left(\mathrm{N}_{3}\right)$-Ala-O ${ }^{t} \mathrm{Bu} 6$.



Figure S15 and S16. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of $(R)$ - N - $\alpha$-Boc-(4-acetoxy-3,5-diiodo)phenylglycine 20 (indicated as 13).



Figure S17 and S18. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of Boc-D-Phg(4-OAc-3,5-bis-TIPS-alkyne) 8 (indicated as 14 ).



Figure S19 and S20. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of Fmoc-D-Lys $\left(\mathrm{N}_{3}\right)$ -Ala-D-Phg(4-OAc-3,5-bis-TIPS-alkyne)-D-Leu-Lys( $\mathrm{N}_{3}$ )-NHMe 11 (indicated as 16).



Figure S21 and S22. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of Boc- N -Me-D-Leu-D-Lys $\left(\mathrm{N}_{3}\right)$ -Ala-D-Phg(4-OH-3,5-bis-TIPS-alkyne)-D-Leu-Lys( $\mathrm{N}_{3}$ )-NHMe 12 (indicated as 17).


Figure S23 and S24. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of Boc- $N$-Me-D-Leu-D-Lys $\left(\mathrm{N}_{3}\right)$-Ala -D-Phg(4-OMe-3,5-bis-TIPS-alkyne)-D-Leu-Lys( $\mathrm{N}_{3}$ )-NHMe 13 (indicated as 18).



Figure S25 and S26. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of Boc- $N$-Me-D-Leu-D-Lys $\left(\mathrm{N}_{3}\right)$ -Ala-D-Phg(4-OMe-3,5-bis-alkyne)-D-Leu-Lys( $\mathrm{N}_{3}$ )-NHMe 14 (indicated as 19).


Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum of $N$-Boc-protected bicyclic hexapeptide $\mathbf{1 5}$ (indicated as 20).


Figure S28. 2D-HSQC spectrum of $N$-Boc-protected bicyclic hexapeptide 15.

## 4. Copies of the Analytical HPLC Chromatograms and MALDI-TOF

## MS Spectra



Figure S29. HPLC analysis of (a) the linear hexapeptide $\mathbf{1 4}$ (Boc-N-Me-D-Leu-D-Lys( $\mathrm{N}_{3}$ )-Ala-D-Phg(4-OMe-3,5-bis-alkyne)-D-Leu-Lys $\left(\mathrm{N}_{3}\right)$-NH Me ) and (b) the reaction mixture after RuAAC macrocyclization of linear hexapeptide 14.


Figure S30. HPLC analysis of $N$-Boc-protected bicyclic hexapeptide 15.


Figure S31. HPLC analysis of bicyclic hexapeptide 2.


Figure S32. MALDI-TOF MS spectrum of compound 14 (Boc- $N$-Me-D-Leu-D-Lys( $\mathrm{N}_{3}$ )-Ala-D-Phg(4-OMe-3,5-bis-alkyne)-D-Leu-Lys( $\mathrm{N}_{3}$ )-NHMe).


Figure S33. MALDI-TOF MS spectrum of compound $\mathbf{1 4}$ after treatment with TCEP.


Figure S34. MALDI-TOF MS spectrum of $N$-Boc-protected bicyclic hexapeptide $\mathbf{1 5}$.


Figure S35. MALDI-TOF MS spectrum of $N$-Boc-protected bicyclic hexapeptide 15 after treatment with TCEP.


Figure S36. MALDI-TOF MS spectrum of bicyclic hexapeptide 2.


Figure S37. HPLC analysis of the TCEP reduction experiment: (a) linear hexapeptide 14 (indicated as hexapeptide 41), (b) linear hexapeptide 14 after treatment with TCEP, (c) bicyclic hexapeptide 2 (indicated as bicyclic compound 43) and (d) bicyclic hexapeptide $\mathbf{2}$ after treatment with TCEP.
Linear hexapeptide 14: Boc-N-Me-D-Leu-D-Lys( $\mathrm{N}_{3}$ )-Ala-D-Phg(4-OMe-3,5-bis-alkyne)-D-Leu-Lys( $\mathrm{N}_{3}$ )-NHMe.

