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Two-dimensional Monte Carlo model 

The lattice-gas model developed by Rabani [1] is used here to rationalize the observed 
morphologies as measured by atomic force microscopy (AFM). First, it is assumed that the 
relevant processes governing evaporative self-assembly of polymeric nanoparticles can be 
captured in a two-dimensional model, thus neglecting any changes in film-thickness. Second, it is 
assumed that all relevant dynamics arise from the diffusion of nanoparticles and evaporation of 
the solvent. These assumptions have proven to be adequate in understanding the formation of 
polygonal networks and spinodal structures of inorganic nanoparticles resulting from the 
dewetting of an ultrathin liquid film that remains behind the mesoscopic dewetting front, where 
the nanoparticles are regarded as a two-dimensional subsystem [2-4]. At an initial diameter of ~10 
nm, globular polymeric nanoparticles are comparable in size to inorganic nanoparticles [5,2-4], so 
their diffusive properties ought to be similar. For a film-thickness equal to or below 10 nm and 
about equal to nanoparticle thickness, convective transport of the solution can be neglected [4]. 
The height of the polymeric nanoparticle after evaporation [5] is lower than 10 nm. Furthermore, 
intermolecular interactions between polymeric nanoparticles are not ‘sticky’, allowing association 
and dissociation of diffusing particles. And finally, through AFM, single layers of polymeric 
nanoparticles are measured. Therefore, the aforementioned assumptions underlying the Monte 
Carlo model seem very reasonable for our systems with polymeric nanoparticles as well. 

 

Hamiltonian 

The Monte Carlo model utilizes a Hamiltonian which defines the interactions between adjacent 
lattice cells and takes into account the chemical potential,  . We define a square lattice, where a 

single lattice cell i, can be occupied by solvent, either in the liquideous state of matter (li = 1, ni = 
0) or in the gaseous state of matter (li = 0, ni = 0), or by a part of a nanoparticle (li = 0, ni = 1). A 
polymeric nanoparticle is represented by 3×3 lattice cells, and will keep this shape throughout the 
simulation. An illustration of the computational grid is depicted in figure S1. Assuming that the 
interaction between two liquid particles, two nanoparticles or between a liquid particle and a 
nanoparticle is much higher than any interaction with gas, three interaction terms are introduced. 

The liquid-liquid interaction term ll reflects interactions between liquid lattice cells, the 

nanoparticle-nanoparticle interaction term nl reflects adhesive interactions between nanoparticles 

and liquid particles, and the nanoparticle-nanoparticle interaction term nn reflects the adhesive 
interactions between the nanoparticles. Furthermore, the solvent in the liquid phase has a chemical 

potential, 1 , which is higher than the chemical potential of the solvent in the gas phase, 2 . 

Solvent molecules tend to move from areas of higher chemical potential to lower chemical 
potential [6]. Polymeric nanoparticles follow random walk statistics, meaning that a nanoparticle 
can move in all directions with equal probability. The Hamiltonian of the system can now be 
written as in equation (S1). 

 ll i j nl i j nn i j i
ij ij ij i

H l l n l n n l            (S1) 
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Here, ij  indicates summation over nearest neighbour interactions and   is the effective 

chemical potential comprising both the liquid-gas chemical potential 2 1   and the 

homogeneous interaction of liquid with the substrate [7]. 

In the computational implementation, we first define the entire lattice as L. If a certain lattice cell i 
represents solvent in the gas phase, Li = 0, if it represents solvent in the liquid phase, Li = 1, and if 
it represents a single lattice cell of a 3×3 nanoparticle, Li = 2. With the lattice matrix defined, the 
Hamiltonian can now be written in terms of L as depicted in equation (S2). 

 ,1 ,1 ,1 ,1 ,1,2 ,2 ,2 ,2j i i j ij i i j
ll L L nl L L nn LL L L L

ij ij ij ij i

H                

 
       

 
      (S2) 

In equation (S2), ,a b  represents the Kronecker delta, and the summations run over two adjacent 

lattice cells: the one on the right and the one below the current lattice cell i. This avoids counting 
interactions twice. Our simulations employ periodic boundary conditions, that is, cells on the 

boundary of the lattice have interactions with cells on the other side of the lattice. Lastly, 
iL  

indicates that a lattice cell on the edge of a 3×3 nanoparticle is considered. 

 

Next-nearest neighbour Hamiltonian 

In order to obtain more realistic simulation results, Moriarty and coworkers [8] introduced the use 
of next-nearest neighbour interactions when calculating the energy change upon a solvent 
transition or diffusion step. Particularly, it was shown that the inclusion of these next-nearest 

neighbour interactions, scaled with 
1

2
 to reflect a linear decay in interaction strength with 

distance, resulted in an increased isotropy in the evaporation of the solvent [2-4,7-11]. Hence, the 
Hamiltonian becomes (S3): 

 

,1 ,1 ,1 ,1,2 ,2 ,2 ,2

,1 ,1 ,1 ,1 ,1,2 ,2 ,2 ,2

2

1 2

1

2

j i i jj i i j

k i i k ik i i k

ll L L nl L L nnL L L L
ij ij ij ij

ll L L nl L L nn LL L L L
ik ik ik ik i

H           

            

   

   

  
           

  
          

   

    
 (S3) 

Renormalization of 
2

1 2
 is introduced to provide a similar global energy for the next-nearest 

neighbour model as for the original, nearest neighbour model in equation (S2), where ij  

indicates summation over the adjacent cells of current cell i (to the right and below) and ik  

indicates summation over the bottom right and bottom left cells of current cell i. 
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Local Hamiltonian differences 

Simulations start with a lattice that is initially covered with randomly placed nanoparticles and 
further filled with liquid solvent. Updates are performed using the Metropolis algorithm [12], 
where a single Monte Carlo step is defined such that in expectation, each solvent cell is 
considered once for evaporation or condensation, and each nanoparticle is considered a certain 
number of times (MR, the mobility ratio) for diffusion in one of the directions left, right, up or 
down [1-4,7-10]. Upon a local move not the entire Hamiltonian needs to be recalculated, instead 
ΔH can be calculated locally. Figure S2 depicts a solvent cell Li,j under consideration for 
evaporation or condensation and the lattice cells which are used in determining the change in the 
Hamiltonian, ΔH. Note the two-dimensional notation Li,j, for ease of evaluating local Hamiltonian 
differences. If the considered solvent cell is in the liquid phase, the local change of the 
Hamiltonian is defined in equation (S4). 

 
1, , 1 1, , 1 1, , 1 1, , 1

1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1

evap ,1 ,1 ,1 ,1 ,2 ,2 ,2 ,2

,1 ,1 ,1 ,1 ,2 ,2 ,2

2
( + + + ) ( + + + )

1 2
1

{ ( + + + ) ( + + +
2

i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j

ll L L L L nl L L L L

ll L L L L nl L L L

H          

        

       

             

   

 
1, 1 ,2 )}

i jL 
 

 

 (S4) 

If this solvent cell is in the gas phase, the change is ΔHcond = –ΔHevap. Figure S3 displays a 
nanoparticle in a graphical 7×7 submatrix S and shows the affected nearest neighbour and next-
nearest neighbour lattice sites when the particle would move upward. The associated change in 
Hamiltonian upon movement of the nanoparticle in the upward direction using nearest and next-
nearest neighbour interactions can now be expressed as in equation (S5). The derivation is similar 
for the movement of a nanoparticle into the other directions, except that other lattice cells in S 
should be considered. 

 

1,3 1,4 1,5 2,2 2,6

1,3 1,4 1,5 2,2 2,6

6,3 6,4 6,5 5,2 5,6

6,3 6,4 6,5

,1 ,1 ,1 ,1 ,1

,2 ,2 ,2 ,2 ,2

,1 ,1 ,1 ,1 ,1

,2 ,2 ,2

2
( )( )

1 2
( )( )

( )( )

( )(

       
      

      

    

ll nl S S S S S

nl nn S S S S S

nl ll S S S S S

nn nl S S S

H       

      

      

     
5,2 5,6

1,2 1,3 1,4 1,5 1,6 3,2 3,6

1,2 1,3 1,4 1,5 1,6 3,2 3,6

6,2 6,3 6,4 6,5

,2 ,2

,1 ,1 ,1 ,1 ,1 ,1 ,1

,2 ,2 ,2 ,2 ,2 ,2 ,2

,1 ,1 ,1 ,1

)

1
{( )( 2 )

2
( )( 2 )

( )( 2

 

        

        

    

S S

ll nl S S S S S S S

nl nn S S S S S S S

nl ll S S S S



        

        

     
6,6 4,2 4,6

6,2 6,3 6,4 6,5 6,6 4,2 4,6

,1 ,1 ,1

,2 ,2 ,2 ,2 ,2 ,2 ,2

)

( )( 2 )}

   

        

S S S

nn nl S S S S S S S

  

        

 (S5) 

A move (i.e. diffusion, condensation or evaporation) is accepted with the Metropolis acceptance 
probability Pacc as given in equation (S6). 

 acc min 1,
H

kTP e


 
  

 
 (S6) 
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Here, T is the temperature and k is the Boltzmann constant. If the lattice contains N2 cells and n 
nanoparticles (9n < N2), the Metropolis algorithm for a single Monte Carlo (MC) step in the 
simulations is now summarized as follows: 

1) Diffusion of nanoparticles is done first, the following steps are repeated MR×n times: 
1. Randomly select a nanoparticle in the lattice. 
2. Choose a direction into which it will move with probability 0.25 (up, down, left or 

right). 
3. If the chosen direction has three liquid cells filled adjacent to the nanoparticle, 

determine ΔH using equation (S5), if not, this trial move is rejected. 
4. If step three is successful, accept the move using the Metropolis acceptance 

probability in equation (S6). 
2) Then, phase change of solvent is considered, the following steps are repeated N2 – 9n times: 

1. Randomly select a solvent cell in the lattice. 
2. If the solvent cell is liquid, determine ΔHevap as in equation (S4), if the solvent cell is 

gas, determine ΔHcond = –ΔHevap. 
3. Change the state of matter of the solvent lattice cell using the Metropolis acceptance 

probability in equation (S6). 

Depending on the type of simulation – which is a direct result of the choice of the interaction 
parameters, the effective chemical potential and the temperature – 500 to 20,000 MC steps are 
required for most solvent cells to turn into vapour. The model is capable of simulating self-
assembly processes driven by nucleated and spinodal dewetting [1-4,7-10]. Furthermore, the two-
dimensional Monte Carlo model can be transformed in a pseudo three-dimensional model by 
expressing the effective chemical potential as a function of the vapour fraction [6,7,3]. In this 
work, simulations are performed in the early spinodal regime. In the early spinodal regime, we 
choose the effective chemical potential such that when we map the system onto an Ising lattice, 
there is no external magnetic field, i.e. 2 2 ( )ll nl ll        , and the temperature is near the 

critical temperature 0.57c llkT kT    [4]. 

 

Experimental 

The poly(methyl methacrylate) (PMMA) polymer has a number averaged molecular weight Mn = 
67900 g/mol and a polydispersity index of 1.43 as measured using gel permeation 
chromatography (GPC, CHCl3/polystyrene standards). On average, the polymer has 47 ureido-
pyrimidinone (UPy) groups per chain. Details of the synthesis and physical characterization of the 
folding of this polymer using GPC and dynamic light scattering (DLS) are discussed elsewhere 
[13]. In short, detailed DLS measurements confirm that the polymer has a globular shape after 
deprotection of the protected UPy groups. Solvents used during measurements were of AR quality 
or better and obtained from Biosolve. Atomic force micrographs were recorded under ambient 
conditions with silicon cantilever tips (PPP-NCH, 300-330 kHz, 42 N/m from Nanosensors) using 
an Asylum Research MFP-3D-Bio in non-contact mode. Samples were prepared in two different 
ways. For the sample with ~60% coverage (figure S5), a drop of a 0.01 mg/mL solution of 
polymer in dioxane was spincoated on a freshly cleaved mica surface (grade V1, Ted Pella Inc.) at 
2500 rpm for 60 seconds. The samples with ~0.17% (figure S4) coverage and ~90% (figure S6) 
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coverage were obtained by dropcasting 5 μL of a 0.0025 mg/mL solution of polymer in dioxane 
(~0.17% coverage) and 10 μL of 0.05 mg/mL solution of polymer in dioxane (~90% coverage) on 
a freshly cleaved mica surface (grade V1, Ted Pella Inc.) after which the sample was allowed to 
equilibrate for 3 days in a solvent chamber filled with dioxane. All samples were measured at 
different positions on the surface of each sample and in all cases comparable topologies were 
observed on each position. Images were processed using Scanning Probe Image Processor 
software (Image Metrology A/S). 

 

Image analysis 

The AFM height images were subjected to image preprocessing steps. The images were converted 
to binary images using a threshold determined using Otsu’s method [14,15], so that the percentage 
of coverage of nanoparticles could be estimated. When necessary, noise was reduced in the binary 
images using median filtering [14]. This noise reduction was sometimes necessary in order for 
germs used in the Minkowski functional grain growth analysis [8,16] (vide infra) to be placed 
automatically on particles or in holes, i.e. at their centroids. Figure S7 (a), (b) and (c) display the 
binary images of an AFM height image and figure S7 (d), (e) and (f) display the original grey-
scale images with the germs derived from the binary image, each at increasing coverage 
respectively (0.17%-60%-90%). 

For simulated images, binary images were obtained by multiplying all components of the matrix L 
by 0.5 and thresholding the resulting matrix at 0.5. All components in the matrix 0.5L that are 
larger than 0.5 represent nanoparticles in the simulation, and hence the thresholded matrix 
represents the final simulation morphology. Median filtering was required for the images 
corresponding to 60% and 90% coverage, in order to remove artifacts (i.e. small holes) from the 
simulations.  

Computational morphologies were obtained using the nanoparticle coverage found from analysis 
of the experimental AFM images. Different simulated morphologies were obtained by varying the 
mobility ratio (MR), the temperature and the chemical potential. The simulated morphologies 
were subjected to a Minkowski functional grain growth analysis [16] and the computed 
morphologies showing the best correspondence to the experimental images are presented in the 
main text. 

 

Minkowski functional grain growth analysis 

The Minkowski functionals – i.e. the total area of white pixels A, the total perimeter of white 
pixels U and the Euler characteristic χ – can be calculated for all images as a function of r, where 
2r + 1 is the square grain side length. The principle is outlined in figure 3 of the main text. As the 
number of pixels in the images is likely to differ, these functionals are made independent of the 
image size by normalization and plotting them against the normalized distance. The normalized 
Minkowski functionals are defined as (S7) [16] 

 * * *,  ,  
A U

A U
M M M

      (S7) 
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where M represents the number of germs in the image and 2

M

N
   is the germ density in the 

image having N2 pixels. The deviation from the expected normalized Minkowski functionals 
constructed for a random point set gives an indication whether the germ distribution on the image 
is the result of a physical mechanism, or the result of chance alone [16, 17]. The expected 
normalized Minkowski functionals for growing square grains from random germs are defined as 
(S8) 

 

2

2

2

*

*

* 2

1

4

(1 )

a

a

a

A e

U a e

a e









 







 



 

 (S8) 

with a = 2r + 1 [16]. To compare the calculated normalized Minkowski measures with their 
matching expectation for a random point set, we need to express the functionals as a function of 
the normalized distance x between germs, again to account difference in image sizes. The 

normalized distance is defined as 
mean

r
x

s
 ,  where means  is the mean separation distance, defined 

as (S9) 

 mean
1

1
min( )

M

ij
i j

i

s D
M 



   (S9) 

where D is an M × M matrix containing all distances between all germs and M is the number of 
germs in the image. For every germ i taken as a reference, we need the distance to its closest 
germ, which is why we take the minimum of all distances to all other germs, j. The mean 
separation distance is calculated by taking the mean of these closest distances. All of the resulting 
Minkowski grain growth analyses are depicted in figures S8-S10. As can be observed, there is a 
strong resemblance in all Minkowski functionals between the experimental and computed 
morphologies for all three images. 
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Nanoparticle

Solvent liquid
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Colour scheme

Fig. S1 A colour scheme representation of a lattice (11×11) containing solvent, gas and 
nanoparticle cells. In this configuration, the nanoparticle is unable to move to the left, as one of 
the neighbouring cells is in a gaseous state. 
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Fig. S2 A solvent cell under consideration (turquoise) with its nearest neighbouring lattice cells 
(red) and next-nearest neighbouring lattice cells (purple) relevant for the evaluation of the 
Hamiltonian difference upon solvent evaporation/condensation. 
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Affected nearest neighbours

Affected next-nearest neighbours
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Fig. S3 Diffusion of a nanoparticle in the upward direction on a sublattice S: Diffusion results 
in the loss of the interactions with the next-nearest neighbour lattice sites indicated in purple, 
and new interactions are formed with the next-nearest neighbour lattice sites indicated in 
turquoise. Conversely, the liquid lattice cells lose next-nearest neighbour interactions with the 
lattice cells indicated in turquoise. and forms new interactions with the next-nearest 
neighbouring lattice cells in purple. The diagonal arrows indicate the next-nearest neighbour 
interactions, and show why some lattice cells appear twice in equation (S5) (dark purple and 
dark turquoise). 

Colour scheme
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Fig. S4 AFM images of single particles of the polymer depicted in figure 1 (b) of the main text 
0.17% coverage: (top) height image; (bottom) phase image. Images have been measured after 
dropcasting 5 μL of a 0.0025 mg/mL solution of polymer in dioxane on mica. 
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Fig. S5 AFM images of a network formed by aggregation of particles of the polymer depicted in 
figure 1 (b) of the main text at ~60% coverage: (top) height image; (bottom) phase image. 
Images have been measured after spin-coating a 0.01 mg/mL solution of polymer in dioxane on 
mica. 
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Fig. S6 AFM images of a continuous film with holes formed through close aggregation of 
particles of the polymer depicted in figure 1 (b) of the main text at ~90% coverage: (top) height 
image; (bottom) phase image. Images have been measured after dropcasting 10 μL of a 0.05 
mg/mL solution of polymer in dioxane on mica. 
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Fig. S7 Binary images obtained by thresholding of the height AFM images: (a) 0.17% coverage; 
(b) 60% coverage; (c) 90% coverage. Visualisation of the initial germs used in the Minkowski 
functional square grain growth analysis of the AFM images: (d) 0.17% coverage; e) 60% 
coverage; (f) 90% coverage. 
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Fig. S8 Minkowski grain growth analysis for the single particle morphologies. (a) Minkowski 
grain growth analysis performed on AFM image of single particle morphology along with the 
theoretical expectation for a random point set with the same germ density; (b) Difference of the 
analysis in (a); (c) Minkowski grain growth analysis performed on simulated image of the single 
particle morphology along with the theoretical expectation for a random point set with the same 
germ density; (d) Difference of the analysis in (c). 
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Fig. S9 Minkowski grain growth analysis for the network morphologies at 60% coverage. (a) 
Minkowski grain growth analysis performed on AFM image of the network morphology along 
with the theoretical expectation for a random point set with the same germ density; (b) 
Difference of the analysis in (a); (c) Minkowski grain growth analysis performed on simulated 
image of the network morphology along with the theoretical expectation for a random point set 
with the same germ density; (d) Difference of the analysis in (c). 
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Fig. S10 Minkowski grain growth analysis for the continuous film morphologies at 90% 
coverage. (a) Minkowski grain growth analysis performed on AFM image of the film 
morphology along with the theoretical expectation for a random point set with the same germ 
density; (b) Difference of the analysis in (a); (c) Minkowski grain growth analysis performed on 
simulated image of the film morphology along with the theoretical expectation for a random 
point set with the same germ density; (d) Difference of the analysis in (c). 
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