CuII-Catalyzed Decarboxylative Acylation of Acyl C–H of Formamides with α-Oxocarboxylic Acids Leading to α-Ketoamides

Dengke Li,a Min Wang,*a Jie Liu,a Qiong Zhao,a and Lei Wang*a,b

a Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China
Tel: + 86-561-3802-069 Fax: + 86-561-3090-518
E-mail: leiwang@chnu.edu.cn, wangmin204@chnu.edu.cn

b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Table of Contents for Supporting Information

1. General considerations..2

2. Starting materials ..2

3. Optimization of oxidant, additive, solvent and temperature......................................3

4. General procedure..4

5. Characterization data for all products...5

6. References ..12

7. 1H and 13C NMR spectra of the products..13
1. General considerations

All the reactions of α-oxocarboxylic acids and formamides were carried out under an air atmosphere. 1H NMR and 13C NMR spectra were measured on a Bruker Avance NMR spectrometer (400 MHz or 100 MHz, respectively) with CDCl$_3$ as solvent and recorded in ppm relative to internal tetramethylsilane standard. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet. The coupling constants, J, are reported in Hertz (Hz). High resolution mass spectroscopy data of the product were collected on a Waters Micromass GCT instrument. Solvents and general chemicals were purchased from commercial suppliers and used without further purification.

2. Starting materials

For this study, all formamides (2a–2h) and α-oxocarboxylic acid (1a) were purchased from commercial sources. Other α-oxocarboxylic acids (1b–1n) can be prepared from oxidation of corresponding methyl ketones with SeO$_2$ according to the reported procedure.$^{[1]}$
3. Optimization of oxidant, additive, solvent and temperature (TS1)

![Chemical structure diagram](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Oxidant</th>
<th>Additive</th>
<th>Solvent</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H₂O₂</td>
<td>PivOH</td>
<td>toluene</td>
<td><10</td>
</tr>
<tr>
<td>2</td>
<td>TBHP</td>
<td>PivOH</td>
<td>toluene</td>
<td><5</td>
</tr>
<tr>
<td>3</td>
<td>TBPB</td>
<td>PivOH</td>
<td>toluene</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>BQ</td>
<td>PivOH</td>
<td>toluene</td>
<td><10</td>
</tr>
<tr>
<td>5</td>
<td>K₂S₂O₆</td>
<td>PivOH</td>
<td>toluene</td>
<td>trace</td>
</tr>
<tr>
<td>6</td>
<td>–</td>
<td>PivOH</td>
<td>toluene</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>O₂</td>
<td>PivOH</td>
<td>toluene</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>DTBP</td>
<td>TFA</td>
<td>toluene</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>DTBP</td>
<td>HOAc</td>
<td>toluene</td>
<td><5</td>
</tr>
<tr>
<td>10</td>
<td>DTBP</td>
<td>PhCO₂H</td>
<td>toluene</td>
<td><10</td>
</tr>
<tr>
<td>11</td>
<td>DTBP</td>
<td>CF₃SO₂H</td>
<td>toluene</td>
<td>NR</td>
</tr>
<tr>
<td>12</td>
<td>DTBP</td>
<td>pyridine</td>
<td>toluene</td>
<td>24</td>
</tr>
<tr>
<td>13</td>
<td>DTBP</td>
<td>NEt₃</td>
<td>toluene</td>
<td>trace</td>
</tr>
<tr>
<td>14</td>
<td>DTBP</td>
<td>K₂CO₃</td>
<td>toluene</td>
<td>NR</td>
</tr>
<tr>
<td>15</td>
<td>DTBP</td>
<td>K₃PO₄</td>
<td>toluene</td>
<td>NR</td>
</tr>
<tr>
<td>16</td>
<td>DTBP</td>
<td>–</td>
<td>toluene</td>
<td>43</td>
</tr>
<tr>
<td>17</td>
<td>DTBP</td>
<td>PivOH</td>
<td>toluene</td>
<td>81</td>
</tr>
<tr>
<td>18</td>
<td>DTBP</td>
<td>PivOH</td>
<td>–</td>
<td>61</td>
</tr>
<tr>
<td>19</td>
<td>DTBP</td>
<td>PivOH</td>
<td>t-AmOH</td>
<td>37</td>
</tr>
<tr>
<td>20</td>
<td>DTBP</td>
<td>PivOH</td>
<td>dioxane</td>
<td>41</td>
</tr>
<tr>
<td>21</td>
<td>DTBP</td>
<td>PivOH</td>
<td>CH₂ClCH₂Cl</td>
<td>35</td>
</tr>
<tr>
<td>22</td>
<td>DTBP</td>
<td>PivOH</td>
<td>CH₃OCH₂CH₂OCH₃</td>
<td>35</td>
</tr>
<tr>
<td>23</td>
<td>DTBP</td>
<td>PivOH</td>
<td>CH₂Cl₂</td>
<td>42</td>
</tr>
<tr>
<td>24</td>
<td>DTBP</td>
<td>PivOH</td>
<td>DMA</td>
<td>39</td>
</tr>
<tr>
<td>25</td>
<td>DTBP</td>
<td>PivOH</td>
<td>benzene</td>
<td>30</td>
</tr>
<tr>
<td>26</td>
<td>DTBP</td>
<td>PivOH</td>
<td>CH₃CN</td>
<td>27</td>
</tr>
<tr>
<td>27</td>
<td>DTBP</td>
<td>PivOH</td>
<td>CH₃COOEt</td>
<td>25</td>
</tr>
<tr>
<td>28</td>
<td>DTBP</td>
<td>PivOH</td>
<td>THF</td>
<td>24</td>
</tr>
<tr>
<td>29</td>
<td>DTBP</td>
<td>PivOH</td>
<td>EtOH</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>DTBP</td>
<td>PivOH</td>
<td>NMP</td>
<td>trace</td>
</tr>
<tr>
<td>31</td>
<td>DTBP</td>
<td>PivOH</td>
<td>CH₃NO₂</td>
<td>trace</td>
</tr>
<tr>
<td>32</td>
<td>DTBP</td>
<td>PivOH</td>
<td>DMSO</td>
<td>NR</td>
</tr>
<tr>
<td>33</td>
<td>DTBP</td>
<td>PivOH</td>
<td>HOAc</td>
<td>NR</td>
</tr>
<tr>
<td>34</td>
<td>DTBP</td>
<td>PivOH</td>
<td>H₂O</td>
<td>NR</td>
</tr>
<tr>
<td>35</td>
<td>DTBP</td>
<td>PivOH</td>
<td>toluene</td>
<td>72</td>
</tr>
<tr>
<td>36</td>
<td>DTBP</td>
<td>PivOH</td>
<td>toluene</td>
<td>77</td>
</tr>
</tbody>
</table>

* Reaction conditions: 1a (0.50 mmol), 2a (5.0 equiv), CuBr₂ (10 mol %), oxidant (2.0 equiv), additive (2.0 equiv), solvent (1.5 mL), air atmosphere, 110 °C, 18 h. † Isolated yields. ‡ H₂O₂ (30% in water). ‡ ‡ TBHP (tert-butyl hydroperoxide, 70% in water). † † 100 °C. † † † 120 °C.
4. General procedure

Under air atmosphere, a sealable reaction tube with a Teflon-coated screw cap equipped with a magnetic stir bar was charged with 2-oxo-2-phenylacetic acid (1a, 0.50 mmol), N,N-dimethylformamide (2a, DMF, 2.5 mmol), CuBr$_2$ (0.05 mmol), di-tert-butyl peroxide (DTBP, 1.0 mmol), pivalic acid (PivOH, 1.0 mmol), and toluene (1.5 mL). The rubber septum was then replaced by a Teflon-coated screw cap, and the reaction vessel placed in an oil bath at 110 °C for 18 h. After the reaction was completed, it was cooled to room temperature and quenched with water and extracted with ethyl acetate and then dried with Na$_2$SO$_4$. The resulting solution was directly filtered through a pad of silica gel using a sintered glass funnel, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluant: petroleum ether/ethyl acetate) to give the desired product N,N-dimethyl-2-oxo-2-phenylacetamide (3aa).
5. Characterization data for all products

\textbf{N,N-Dimethyl-2-oxo-2-phenylacetamide}

\begin{center}
\includegraphics[width=0.2\textwidth]{chemical_structure}
\end{center}

3aa:\[^{[2]}]\text{Yellow oil.}

1H NMR (400 MHz, CDCl$_3$): δ = 7.96–7.94 (m, 2H), 7.66–7.62 (m, 1H), 7.53–7.49 (m, 2H), 3.12 (s, 3H), 2.96 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): δ = 191.74, 167.04, 134.65, 133.13, 129.63, 128.98, 37.01, 33.99.

\textbf{N,N-Diethyl-2-oxo-2-phenylacetanamide}

\begin{center}
\includegraphics[width=0.2\textwidth]{chemical_structure}
\end{center}

3ab:\[^{[3]}]\text{Yellow oil.}

1H NMR (400 MHz, CDCl$_3$): δ = 7.95–7.93 (m, 2H), 7.65–7.61 (m, 1H), 7.52–7.49 (m, 2H), 3.56 (q, $J = 7.2$ Hz, 2H), 3.24 (q, $J = 7.2$ Hz, 2H), 1.29 (t, $J = 7.2$ Hz, 3H), 1.15 (t, $J = 7.2$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ = 191.55, 166.74, 134.50, 133.32, 129.59, 128.92, 42.10, 38.81, 14.07, 12.80.

\textbf{N,N-Dibutyl-2-oxo-2-phenylacetamide}

\begin{center}
\includegraphics[width=0.2\textwidth]{chemical_structure}
\end{center}

3ac:\[^{[4]}]\text{Yellow oil.}

1H NMR (400 MHz, CDCl$_3$): δ = 7.94–7.92 (m, 2H), 7.64–7.60 (m, 1H), 7.51–7.48 (m, 2H), 3.49 (t, $J = 8.0$ Hz, 2H), 3.14 (t, $J = 8.0$ Hz, 2H), 1.71–1.63 (m, 2H), 1.57–1.49 (m, 2H), 1.46–1.37 (m, 2H), 1.25–1.14 (m, 2H), 0.99 (t, $J = 8.0$ Hz, 3H), 0.81 (t, $J = 8.0$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ = 191.55, 167.07, 134.44, 133.38, 129.57, 128.89,
47.42, 44.03, 30.61, 29.43, 20.21, 19.73, 13.80, 13.49.

1-Phenyl-2-(piperidin-1-yl)ethane-1,2-dione

![Chemical structure](image)

3ad: Yellow oil.

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.96$–7.94 (m, 2H), 7.65–7.62 (m, 1H), 7.53–7.49 (m, 2H), 3.71 (s, 2H), 3.29 (t, $J = 5.6$ Hz, 2H), 1.70 (s, 4H), 1.55 (s, 2H); 13C NMR (100 MHz, CDCl$_3$): $\delta = 191.91$, 165.45, 134.59, 133.31, 129.54, 128.97, 47.02, 42.15, 26.19, 25.43, 24.37.

1-Morpholino-2-phenylethane-1,2-dione

![Chemical structure](image)

3ae: Yellow oil.

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.96$–7.94 (m, 2H), 7.66–7.63 (m, 1H), 7.53–7.49 (m, 2H), 3.78 (s, 4H), 3.65–3.63 (m, 2H), 3.38–3.36 (m, 2H); 13C NMR (100 MHz, CDCl$_3$): $\delta = 191.13$, 165.45, 134.89, 133.09, 129.64, 129.07, 66.71, 66.63, 46.25, 41.62.

N-Methyl-2-oxo-2-phenylacetamide

![Chemical structure](image)

3af: Yellow oil.

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.36$–8.35 (m, 2H), 7.65–7.61 (m, 1H), 7.51–7.47 (m, 2H), 7.11 (s, 1H), 2.98 (d, $J = 4.8$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): $\delta = 187.65$, 162.42, 134.34, 133.36, 131.20, 128.46, 25.98. IR (KBr, cm$^{-1}$): ($\nu_{C=O}$) 1665, 1595. HRMS (EI) ([M]$^+$) Calcd. for C$_9$H$_9$NO$_2$: 163.0633, Found: 163.0636.
N-Ethyl-2-oxo-2-phenylacetamide

![Chemical Structure](image)

3ag
Yellow oil.

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.35$–8.33 (m, 2H), 7.64–7.61 (m, 1H), 7.50–7.46 (m, 2H), 7.11 (s, 1H), 3.48–3.41 (m, 2H), 1.26 (t, $J = 7.2$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): $\delta = 187.92$, 161.69, 134.30, 133.41, 131.18, 128.44, 34.36, 14.45. IR (KBr, cm$^{-1}$): (ν$_{\text{C=O}}$) 1663, 1595. HRMS (EI) ([M]$^+$) Calcd. for C$_{10}$H$_{11}$NO$_2$: 177.0790, Found: 177.0786.

N-tert-Butyl-2-oxo-2-phenylacetamide

![Chemical Structure](image)

3ah
Yellow oil.

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.32$–8.30 (m, 2H), 7.63–7.59 (m, 1H), 7.49–7.45 (m, 2H), 6.93 (s, 1H), 1.47 (s, 9H); 13C NMR (100 MHz, CDCl$_3$): $\delta = 188.57$, 161.14, 134.10, 133.43, 131.19, 128.35, 51.65, 28.38. IR (KBr, cm$^{-1}$): (ν$_{\text{C=O}}$) 1667, 1597. HRMS (EI) ([M]$^+$) Calcd. for C$_{12}$H$_{15}$NO$_2$: 205.1103, Found: 205.1099.

N,N-Dimethyl-2-oxo-2-p-tolylacetaminde

![Chemical Structure](image)

3ba
Yellow oil.

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.85$–7.83 (m, 2H), 7.31–7.29 (m, 2H), 3.11 (s, 3H), 2.95 (s, 3H), 2.43 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): $\delta = 191.50$, 167.28, 145.94, 130.69, 129.76, 129.71, 37.03, 33.96, 21.85.
2-(4-tert-Butylphenyl)-N,N-dimethyl-2-oxoacetamide

3ca: Yellow oil.

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.88\) (d, \(J = 8.4\) Hz, 2H), 7.53–7.51 (m, 2H), 3.12 (s, 3H), 2.96 (s, 3H), 1.34 (s, 9H); \(^1\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 191.49, 167.29, 158.79, 130.57, 129.63, 126.00, 37.06, 35.34, 33.97, 30.97\). IR (KBr, cm\(^{-1}\)): \((\nu_{\text{C=O}}) 1678, 1650\).

HRMS (ESI) [M+H]\(^+\) Calcd. for C\(_{14}\)H\(_{20}\)NO\(_2\): 234.1494 Found: 234.1491.

2-(4-Methoxyphenyl)-N,N-dimethyl-2-oxoacetamide

3da: Yellow oil.

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.90\) (d, \(J = 8.8\) Hz, 2H), 6.98–6.95 (m, 2H), 3.86 (s, 3H), 3.09 (s, 3H), 2.94 (s, 3H); \(^1\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 190.46, 167.38, 164.84, 132.08, 127.01, 114.31, 55.60, 37.05, 33.94\).

2-(4-Fluorophenyl)-N,N-dimethyl-2-oxoacetamide

3ea: White solid.

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.00–7.97\) (m, 2H), 7.20–7.16 (m, 2H), 3.11 (s, 3H), 2.97 (s, 3H); \(^1\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 189.97, 166.66\) (d, \(J = 256.0\) Hz), 166.60, 132.47 (d, \(J = 10.0\) Hz), 129.67 (d, \(J = 3.0\) Hz), 116.29 (d, \(J = 22.0\) Hz), 37.02, 34.05.

2-(4-Chlorophenyl)-N,N-dimethyl-2-oxoacetamide
3fa:[7] Yellow oil.

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.91$–7.89 (m, 2H), 7.50–7.48 (m, 2H), 3.12 (s, 3H), 2.97 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): $\delta = 190.26$, 166.47, 141.31, 131.53, 131.01, 129.37, 37.02, 34.08.

2-(4-Bromophenyl)-N,N-dimethyl-2-oxoacetamide

3ga: Yellow oil.

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.82$–7.80 (m, 2H), 7.66–7.64 (m, 2H), 3.11 (s, 3H), 2.96 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): $\delta = 190.48$, 166.43, 132.37, 131.92, 131.04, 130.16, 37.02, 34.09. IR (KBr, cm$^{-1}$): (νC=O) 1679, 1646. HRMS (ESI) [M+H]$^+$ Calcd. for C$_{10}$H$_{11}$BrNO$_2$: 255.9973, Found: 255.9970.

2-(2-Chlorophenyl)-N,N-dimethyl-2-oxoacetamide

3ha: Yellow oil.

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.89$–7.87 (m, 1H), 7.52–7.48 (m, 1H), 7.44–7.37 (m, 2H), 3.07 (s, 3H), 3.07 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): $\delta = 190.14$, 166.93, 134.27, 133.72, 133.45, 132.22, 130.76, 127.27, 37.04, 34.50. IR (KBr, cm$^{-1}$): (νC=O) 1679, 1650. HRMS (ESI) [M+H]$^+$ Calcd. for C$_{10}$H$_{11}$ClNO$_2$: 212.0478, Found: 212.0475.

2-(2,5-Dichlorophenyl)-N,N-dimethyl-2-oxoacetamide

3ia: Yellow solid.

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.84$–7.83 (m, 1H), 7.47–7.44 (m, 1H), 7.38–7.36 (m, 1H), 3.08 (s, 6H); 13C NMR (100 MHz, CDCl$_3$): $\delta = 188.67$, 166.18, 134.91, 133.99, 133.67, 131.85, 131.74, 131.69, 37.04, 34.60. IR (KBr, cm$^{-1}$): (νC=O) 1675, 1648. HRMS (ESI) [M+H]$^+$ Calcd. for C$_{10}$H$_{10}$Cl$_2$NO$_2$: 246.0089, Found: 246.0087.

2-(3-Bromophenyl)-N,N-dimethyl-2-oxoacetamide

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.09$ (s, 1H), 7.88 (d, $J = 8.0$ Hz, 1H), 7.77 (d, $J = 8.0$ Hz, 1H), 7.41–7.37 (m, 1H), 3.13 (s, 3H), 2.97 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): $\delta = 190.05$, 166.20, 137.48, 134.92, 132.38, 130.54, 128.27, 123.25, 37.03, 34.12. IR (KBr, cm$^{-1}$): (νC=O) 1683, 1650. HRMS (ESI) [M+H]$^+$ Calcd. for C$_{10}$H$_{11}$BrNO$_2$: 255.9973, Found: 255.9971.

3ja: Yellow solid.

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.83$–7.81 (m, 1H), 7.64–7.62 (m, 1H), 7.45–7.37 (m, 2H), 3.09 (s, 3H), 3.07 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): $\delta = 190.79$, 166.27, 135.37, 134.06, 134.03, 132.57, 127.69, 121.48, 37.18, 34.61. IR (KBr, cm$^{-1}$): (νC=O) 1675, 1646. HRMS (ESI) [M+H]$^+$ Calcd. for C$_{10}$H$_{11}$BrNO$_2$: 255.9973, Found: 255.9975.

3ka: Yellow oil.

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.83$–7.81 (m, 1H), 7.64–7.62 (m, 1H), 7.45–7.37 (m, 2H), 3.09 (s, 3H), 3.07 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): $\delta = 190.79$, 166.27, 135.37, 134.06, 134.03, 132.57, 127.69, 121.48, 37.18, 34.61. IR (KBr, cm$^{-1}$): (νC=O) 1675, 1646. HRMS (ESI) [M+H]$^+$ Calcd. for C$_{10}$H$_{11}$BrNO$_2$: 255.9973, Found: 255.9975.
N,N-Dimethyl-2-(naphthalen-1-yl)-2-oxoacetamide

![N,N-Dimethyl-2-(naphthalen-1-yl)-2-oxoacetamide](image)

3la: Yellow oil.

1H NMR (400 MHz, CDCl$_3$): $\delta = 9.27$–9.25 (m, 1H), 8.12–8.10 (m, 1H), 8.01–7.99 (m, 1H), 7.93–7.91 (m, 1H), 7.72–7.68 (m, 1H), 7.61–7.52 (m, 2H), 3.16 (s, 3H), 3.02 (s, 3H);

13C NMR (100 MHz, CDCl$_3$): $\delta =$ 194.20, 167.68, 135.84, 134.29, 134.08, 130.98, 129.29, 128.72, 128.51, 126.97, 125.80, 124.54, 37.17, 34.15.

2-(Furan-2-yl)-N,N-dimethyl-2-oxoacetamide

![2-(Furan-2-yl)-N,N-dimethyl-2-oxoacetamide](image)

3ma: Yellow oil.

1H NMR (400 MHz, CDCl$_3$): $\delta =$ 7.69 (s, 1H), 7.34 (br, s, 1H), 6.59–6.58 (m, 1H), 3.05 (s, 3H), 3.01 (s, 3H);

13C NMR (100 MHz, CDCl$_3$): $\delta =$ 178.50, 165.41, 150.17, 148.69, 122.28, 112.82, 37.14, 34.45.

N,N-Dimethyl-2-(4-nitrophenyl)-2-oxoacetamide

![N,N-Dimethyl-2-(4-nitrophenyl)-2-oxoacetamide](image)

3na: Yellow solid.

1H NMR (400 MHz, CDCl$_3$): $\delta =$ 8.34–8.32 (m, 2H), 8.14–8.13 (m, 2H), 3.14 (s, 3H), 3.00 (s, 3H);

13C NMR (100 MHz, CDCl$_3$): $\delta =$ 189.24, 165.60, 151.08, 137.57, 130.76, 124.05, 37.05, 34.28.
6. References

7. 1H and 13C NMR spectra of the products
Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013