SUPPORTING INFORMATION FOR

Selective and sensitive turn-on Fluorescent sensing of Arsenite based on Cysteine fused Tetraphenylethene with AIE characteristics in aqueous media

Melek Baglan, Serdar Atılgan*

*Department of Chemistry, Suleyman Demirel University, Isparta, 32000, Turkey

TABLE OF CONTENTS

S1. Experimental
 S1.1 General
 S1.2 Synthesis
 S1.3 References
S2. Additional Data
 S2.1 Spectrophotometric data
 S2.2 1H and 13C NMR spectra and HRMS spectra
S1. EXPERIMENTAL

S1.1 GENERAL

All chemicals and solvents purchased from Aldrich were used without further purification. 1H NMR and 13C NMR spectra were recorded using a Bruker DPX-400 in DMSO with TMS as internal reference. The THF was further refluxed over metallic sodium in the presence of benzophenone until a persistent blue color was obtained and then it was distilled under an argon atmosphere. Absorption spectrometry was performed using a Shimadzu spectrophotometer. Steady state fluorescence measurements were conducted using a Shimadzu RF-5301PC spectrofluorometer. Column chromatography of all products was performed using Merck Silica Gel 60 (particle size: 0.040–0.063 mm, 230–400 mesh ASTM). Reactions were monitored by thin layer chromatography using fluorescent coated aluminum sheets. Solvents were purchased from Sigma and solvents used for spectroscopy experiments were spectrophotometric grade. HRMS (high-resolution MS) was recorded on an Agilent 6210 time-of-flight LC/MS system. N-(1-methanesulfonyl)benzotriazole 4 was prepared according to literature procedures. For NMR and Mass analysis, three equivalent of As$^{3+}$ was added to aqueous solution of 7 in water and after evaporation of solvent under ambient conditions at room temperature, the residue was used for both 1H-NMR and mass spectroscopy analysis. It was dissolved in DMSO for 1H-NMR analysis.

S1.2 SYNTHESIS

Synthesis of TPECOOH, 3

To a solution of diphenylmethane, 1 (2.02 g, 12 mmol) in dry tetrahydrofuran (20 ml) was added 4 ml of a 2.5 M solution of n-butyllithium in hexane (10 mmol) at 0ºC under an argon atmosphere. The resulting orange-red solution was stirred for 30 min at that temperature. Then, the mixture was cooled to -78 ºC. After stirring for one hour at that temperature benzylbenzoicacid, 2, was added and the mixture was stirred for 6 h allowing the temperature to rise gradually to room temperature. The reaction was quenched with addition of an aqueous solution of ammonium chloride and the organic layer was extracted with EtOAc (3 X 250 mL) and the combined organic layers were washed with saturated brine solution and dried over anhydrous MgSO$_4$. The solvent was evaporated and the resulting
crude alcohol was subjected to acid catalyzed dehydration reaction in toluene with a catalyst, p-toluenesulfonic acid. The mixture was refluxed overnight and cooled to room temperature. The resulting brown residue was extracted with EtOAc (3 X 250 mL) and the crude product was purified by silica gel column chromatography using EtOAc as eluent to yield a light green powder. 3. (4.15 g, 45%)

\[
\begin{align*}
\text{H NMR (400 MHz, CDCl}_3) \delta: & \quad 7.85-7.80 (d, 2H), 7.16-7.09 (m, 11H), 7.07-7.01 (m, 6H) \\
\text{C NMR (100 MHz, CDCl}_3) \delta: & \quad 170.7, 149.6, 143.2, 143.1, 143.0, 142.7, 139.9, 131.4, 131.3, 131.2, 129.7, 127.9, 127.8, 127.7, 126.9, 126.8, 126.7 \text{ (overlapping has been observed for some aromatic carbon atoms)}
\end{align*}
\]

MALDI (TOF) m/z: 376.14802 (calculated 376.14633, Δ=1.69 ppm)

Synthesis of 1H-1,2,3-Benzotriazol-1-yl(TPE)methanone, 5

A mixture of TPE-COOH, 3 (10.0 mmol) and 1-(methylsulfonyl)benzotriazole 4 (1.97 g, 10.0 mmol) and triethylamine (2.0 mL, 14.0 mmol) were refluxed in THF (50 mL) overnight. The solvent was evaporated and the residue was dissolved in chloroform (100 mL). The organic layer was washed with water, dried over anhydrous MgSO₄, and evaporated to give a crude product. The crude product was used in the next step without any further purification.

Synthesis of TPE-CYS, 7

To a solution of L-cysteine 6 (2 mmol) and triethylamine (2 mmol) in CH₃CN-H₂O (3:1, 8 mL) was added the corresponding 5 (2 mmol). The mixture was stirred at room temperature for 2 h. Solvent was removed under reduced pressure and ethyl acetate (10 mL) was added. The organic layer was washed with 2 N HCl and brine. After filtration and solvent
evaporation, the crude product was purified by silica gel column chromatography using n-CH$_3$OH/CH$_2$Cl$_2$ (v/v, 1:9) as eluent. Light brown powder of TPE-Cys was obtained in 92% yield (2.18 g).

1H-NMR (400 MHz,CDCl$_3$) δ (ppm) 7.61 (s, 1H), 7.59 (s, 1H), 7.20-7.10 (m, 11H), 7.10-7.00 (m, 6H), 5.00(q, 1H), 3.30-3.00 (m, 2H).

13C NMR (100 MHz, DMSO) δ: 172.5, 166.5, 147.0, 143.4, 143.3, 143.2, 142.0, 140.2, 132.0, 131.2, 131.1, 131.0, 128.5, 128.4, 128.3, 127.4, 127.3, 127.2, 55.0, 52.2 (overlapping has been observed for some aromatic carbon atoms)

MALDI (TOF) m/z: 479.15614 (calculated 479.1551, ∆=1.04 ppm)

References

S2 . ADDITIONAL DATA

S2.1 Spectrophotometric studies

Fig.S1. UV/Vis absorption spectra of 7 (10 µM) in both THF and aqueous media and 7+As$^{3+}$ in aqueous media
Fig. S2. Fluorescence emission change upon addition of a) 10 ppb b) 100 ppb of selected metal ions to the solution of 10µM 7 in 1:99 THF/H$_2$O (Excitation wavelength was 330 nm)

Fig. S3. a) Fluorescence intensity of 7 in 1%THF-H$_2$O in the presence of different concentration of As$^{3+}$ b) Plot of the fluorescence intensity (470 nm) of 7 in 1%THF-H$_2$O in the presence of different concentration of both As$^{3+}$ and As$^{5+}$ vs ppb level of analytes
Fig. S4 1H NMR spectra of TPE-COOH, 3

Fig. S5 13C NMR spectra of TPE-COOH, 3
Fig. S6 1H NMR spectra of N-(1-methanesulfonyl)benzotriazole, 4

Fig. S7 13C NMR spectra of N-(1-methanesulfonyl)benzotriazole 4
Fig. S8 1H NMR spectra of TPE-Cys 7 in CDCl$_3$

Fig. S9 1H NMR spectra of TPE-Cys 7 in DMSO
Fig. S10 13C NMR spectra of TPE-Cys 7 in DMSO

Fig. S11 1H NMR spectra of As(TPE-Cys)$_3$ in DMSO
Fig. S12. 1H-NMR spectra (400 MHz, DMSO, rt) of 7 and As(TPE-Cys)$_3$

Figure S13 MALDI-TOF Analysis of the compound 3 (calculated mass: 376.14633, measured mass: 376.14802, Formula: C$_{27}$H$_{20}$O$_2$)
Figure S14 MALDI-TOF Analysis of the compound 7 (calculated mass: 479.1551, measured mass: 479.15614, Formula: C$_{30}$H$_{25}$NO$_3$S)

Figure S15 MALDI-TOF Analysis of the As(TPE-Cys)$_3$ complex

Figure S16 MALDI-TOF Analysis of the TPE-Cys-Cys-TPE