Supporting Information

Environment-friendly Synthesis of Highly Hydrophobic and Stable MIL-53 MOF Nanomaterials

Jia Liu,† Feng Zhang,† Xiaoqin Zou,* Guangli Yu, Nian Zhao, Songjie Fan and Guangshan Zhu*

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China (130012).

Experimental Section

1. Chemicals

AlCl₃•6H₂O and Al(NO₃)₃•9H₂O (aladdin reagent, Co., Ltd, Shanghai, China, 99%), terephthalic acid (H₂BDC, Sigma Aldrich, 98%), ionic liquid of 1-ethyl-3-methyl-imidazolium bromine (Shanghai Cheng Jie Chemical Co. Ltd, 99%), ethanol and deionized water were used as received.

2. Synthesis of MIL-53(Al)

The typical preparation procedure involves firstly dissolving 0.0432 g H₂BDC into 1 g melted 1-ethyl-3-methyl-imidazolium bromine at 100 °C under stirring until a clear solution was obtained; subsequently adding 0.126 g AlCl₃•6H₂O into the solution above. The resulted clear precursor in a 10 mL closed glass vessel was heated at 150 °C for 7 days in a preheated oven. After cooling down, the product was cleaned with repeated centrifugations for 5 times using ethanol as solvent. The collected powder was dried at 85 °C, and this sample is designated as MIL-53(Al)_{it}. The decanted ionic liquid was collected *via* rotary evaporation at 50 °C for next uses. The reference sample (designated as MIL-53(Al)_{ht}) was hydrothermally synthesized according to the previous report with half-reduced concentration of the precursor.^{9b}

3. Characterizations

The crystalline structures of MIL-53(Al) crystals were determined by X-ray Diffraction (XRD) measurements using Riguku D/MAX2550 diffractometer with Cu-K α radiation ($\lambda = 1.5418$ Å) running at a voltage of 50 kV and a current of 200

mA. Both samples were also characterized on field emission scanning electron microscope (FE-SEM: JEOS JSM6700F). Water vapor adsorption-desorption measurements on the MIL-53(Al)_{it} and MIL-53(Al)_{ht} powders were carried out using an Autosorb iQ2 adsorptometer, Quantachrome Instruments. Prior to the tests, as-synthesized MIL-53(Al) samples were calcined at 330 °C for 3 days with a heating rate of 1 °C min⁻¹. And then, the MIL-53(Al) powders were degassed under vacuum overnight at 150 °C. The measurements were carried out at 298 K. Nitrogen adsorption-desorption measurements were carried out at 77 K. Specific surface areas were determined using the Brunauer-Emmett-Teller (BET) equation; and the pore size distribution and pore volume were calculated by applying the nonlocal density functional theory (NLDFT) method. Fourier transform infrared spectra (FTIR) were collected on a Nicolet Impact 410 FTIR spectrometer at room temperature in the range of 400-4000 cm⁻¹, with potassium bromide pellets. Solid-state ²⁷Al CP/MAS NMR measurement was carried out on a Bruker Avance III model 400 MHz NMR spectrometer at a MAS rate of 5 kHz. Thermal gravimetric analysis (TGA) was performed on MIL-53(Al) samples in air (5 °C min⁻¹) (Netzch Sta 449c thermal analyzer). Elemental analysis was performed using a Perkin-Elmer 240 analyzer.

Fig. S1 XRD patterns of (a) large-pore form of MIL-53(Al), (b) calcined MIL-53(Al)_{it} after 30 days and (c) calcined MIL-53(Al)_{ht}.

Fig. S2 SEM pictures of (a) MIL-53(Al)_{it} and (b) MIL-53(Al)_{ht} samples.

Fig. S3 N_2 adsorption isotherms of MIL-53(Al)_{it} and MIL-53(Al)_{ht} samples.

Fig. S4 IR spectra of MIL-53(Al)_{it} and MIL-53(Al)_{ht} samples.

Fig. S5 TG curves of MIL-53(Al)_{it} and MIL-53(Al)_{ht} samples.

Fig. S6 SEM image (a) and XRD patterns (b) of as-synthesized (3) and calcined $MIL-53(Al)_{it}$ (4) using recycled ionic liquid (the corresponding XRD patterns of initially prepared sample in fresh ionic liquid are shown in (1) and (2)).

	\mathbf{S}_{BET}	Pore size	Micropore volume	Total pore volume
Sample	$(m^2 g^{-1})$	(nm)	$(\mathrm{cm}^3 \mathrm{g}^{-1})$	$(cm^3 g^{-1})$
$MIL-53(Al)_{ht}$	1489	0.85	0.49	0.56
$MIL-53(Al)_{it}$	1031	0.83, 3.4	0.36	0.72

Table S2 Elemental analysis of as-synthesized MIL-53(Al)_{it} (designated asMIL-53 $_{as}(Al)_{it}$), calcined MIL-53(Al)_{it} and MIL-53(Al)_{ht} samples.

Sample	N (wt.%)	C (wt.%)	H (wt.%)	S (wt.%)	C/N molar ratio	C/H molar ratio
$MIL-53_{as}(Al)_{it}$	4.39	34.50	4.065	0.142	9.169	0.707
$MIL-53(Al)_{it}$	0.05	33.38	2.807	0.028	778.9	0.991
$MIL-53(Al)_{ht}$	0.04	42.92	3.147	0.053	1251.8	1.137