Supporting Information

Palladium-Catalysed Aerobic Oxidative Heck-type Alkenylation of Csp³-H for Pyrrole Synthesis

Lingkui Meng, Kun Wu, Chao Liu, and Aiwen Lei

a College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
b Laboratory of Chemical Genomics of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P.R. China

E-mail: aiwenlei@whu.edu.cn

1. General information .. S2

2. General procedure for the Pd-catalyzed aerobic oxidative intramolecular sp³ C-H Heck reaction .. S2

3. Procedure for in-situ IR experiments S3

4. Detail descriptions of products ... S5

5. Copies of product ¹H NMR and ¹³C NMR S8

6. References .. S21
General information

The reactions were conducted under oxygen atmosphere with a balloon fitted on a Schlenk tube,. All glassware was oven dried at 110 °C for hours and cooled down under vacuum. Toluene was purified by distillation with sodium and DMSO was purified by distillation with calcium hydride. Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. Imines were prepared following literature procedures. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 100-200 mesh silica gel in petroleum (bp. 60-90 °C). GC-MS spectra were recorded on a Varian GC-MS 3900-2100T. NMR spectra were recorded on a Bruker Advance III spectrometers at 400 MHz (1H NMR), 100 MHz (13C NMR). Tetramethylsilane was used as an internal standard. All 1H NMR spectra were reported in delta (δ) units, parts per million (ppm) downfield from the internal standard. Coupling constants (J) are reported in Hertz (Hz). High resolution mass spectra (HRMS) were measured with a Waters Micromass GCT instrument, accurate masses were reported for the molecular ion ([M+H]+).

General procedure for the Pd-catalyzed aerobic oxidative intramolecular sp3 C-H Heck reaction

Method A: Firstly Pd(OAc)₂ (11.2 mg, 0.05 mmol) with Bu₄NBr (161 mg, 0.5 mmol) was added in a Schlenk tube. Then the Schlenk tube was then sealed with septa and fitted with an oxygen balloon to make it filled with oxygen. After that Toluene (2 mL), DMSO (0.2 mL) and imine were injected in the tube via a syringe. At last the reaction was heated up to 35 °C. After stirring for 17 hours, it was quenched by water and extracted with ethyl ether (3 * 10 mL). The organic layers were combined and pure product was obtained by flash column chromatography on silica gel (petroleum: ethyl acetate = 40:1).

Method B: Firstly Pd(OAc)₂ (11.2 mg, 0.05 mmol) with Bu₄NBr (161 mg, 0.5 mmol) was added in a Schlenk tube. Then the Schlenk tube was then sealed with septa and fitted with an oxygen balloon to make it filled with oxygen. After that Toluene (2 mL), DMSO (0.2 mL) and imine were injected in the tube via a syringe. At last the reaction was heated up to 35 °C. After stirring for 6 hours, it was quenched by water and extracted with ethyl ether (3 * 10 mL). The organic layers were combined and pure product was obtained by flash column chromatography on silica gel (petroleum: ethyl acetate = 40:1).
Method C: Firstly Pd(OAc)$_2$ (11.2 mg, 0.05 mmol) with Bu$_4$NBr (161 mg, 0.5 mmol) was added in a Schlenk tube. Then the Schlenk tube was then sealed with septa and fitted with an oxygen balloon to make it filled with oxygen. After that Toluene (2 mL), DMSO (0.2 mL) and imine were injected in the tube via a syringe. At last the reaction was heated up to 90 °C. After stirring for 17 hours, it was quenched by water and extracted with ethyl ether (3 * 10 mL). The organic layers were combined and pure product was obtained by flash column chromatography on silica gel (petroleum: ethyl acetate = 40:1).

In-situ IR experiments

Procedure for the effect of stirring speed

Firstly Pd(OAc)$_2$ (11.2 mg, 0.05 mmol) with Bu$_4$NBr (161 mg, 0.5 mmol) was added in a Schlenk tube. Then the Schlenk tube was put onto in-situ IR, sealed with septa and fitted with an oxygen balloon to make it filled with oxygen. After that Toluene (2.5 mL), DMSO (0.25 mL) and imine 1b (0.5 mmol) were injected in the tube via syringe. At last the reaction was heated up to 35 °C. The yield was determined by GC with biphenyl as internal standard.

Procedure for the effect of concentration of catalyst

Firstly Pd(OAc)$_2$ (m mg, n mmol) with Bu$_4$NBr (161 mg, 0.5 mmol) was added in a Schlenk tube. Then the Schlenk tube was put onto in-situ IR, sealed with septa and fitted with an oxygen balloon to make it filled with oxygen. After that Toluene (2.5 mL), DMSO (0.25 mL) and imine 1b (0.5
mmol) were injected in the tube via syringe. At last the reaction was heated up to 35 °C. The yield was determined by GC with biphenyl as internal standard.

![Chemical structure](image)

Procedure for the effect of concentration of substrate

Firstly Pd(OAc)$_2$ (11.2 mg, 0.05 mmol) with Bu$_4$NBr (161 mg, 0.5 mmol) was added in a Schlenk tube. Then the Schlenk tube was put onto in-situ IR, sealed with septa and fitted with an oxygen balloon to make it filled with oxygen. After that Toluene (2.5 mL), DMSO (0.25 mL) and imine 1b (n mmol) were injected in the tube via syringe. At last the reaction was heated up to 35 °C. The yield was detected by GC with biphenyl as internal standard.
Detail descriptions for products

4-Methyl-2-phenyl-1H-pyrrole (2a): 1H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.49-7.47 (m, 2H), 7.39 (t, J = 8 Hz, 2H), 7.24 (t, J = 7.2 Hz, 1H), 6.65 (s, 1H), 6.43 (s, 1H), 2.21 (s, 3H). 13C NMR (100 MHz, CDCl₃) δ 132.9, 132.0, 128.8, 126.0, 123.7, 120.7, 116.8, 107.5, 12.0.

4-Methyl-2-(4-(trifluoromethyl)phenyl)-1H-pyrrole (2b): 1H NMR (400 MHz, D-acetone) δ 10.43 (s, 1H), 7.78 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 8 Hz, 2H), 6.74 (s, 1H), 6.55 (s, 1H), 2.12 (s, 3H). 13C NMR (100 MHz, D-acetone) δ 137.1, 129.9, 125.6 (q, J = 3.9 Hz), 123.2, 120.1, 118.8, 118.6, 109.1, 109.0, 11.1. HRMS (ESI) calcd for C₁₂H₁₁F₃N [M+H]+: 226.0844; found: 226.0843.

Methyl 4-(4-methyl-1H-pyrrol-2-yl)benzoate (2c): 1H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 8.02 (d, J = 7.1 Hz, 2H), 7.50 (d, J = 7.2 Hz, 2H), 6.70 (s, 1H), 6.52 (s, 1H), 3.94 (s, 3H), 2.18 (s, 3H). 13C NMR (100 MHz, CDCl₃) δ 167.0, 136.9, 130.8, 130.3, 127.0, 122.9, 121.2, 118.3, 109.4, 52.0, 11.9. HRMS (ESI) calcd for C₁₃H₁₄NO₂ [M+H]+: 216.1028; found: 216.1025.

4-(4-Methyl-1H-pyrrol-2-yl)benzonitrile (2d): 1H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.64-7.61 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 6.74 (s, 1H), 6.53 (s, 1H), 2.18 (s, 3H). 13C NMR (100 MHz, CDCl₃) δ 136.8, 132.8, 129.9, 123.4, 121.6, 119.3, 119.1, 110.1, 108.4, 11.8. HRMS (ESI) calcd for C₁₂H₁₁N₂ [M+H]+: 183.0920; found: 183.0922.

4-Methyl-2-(4-nitrophenyl)-1H-pyrrole (2e): 1H NMR (400 MHz, D-acetone) δ 10.62 (s, 1H), 8.20-8.16 (m, 2H), 7.80-7.77 (m, 2H), 6.82 (s, 1H), 6.66 (s, 1H), 2.11 (s, 3H). 13C NMR (100 MHz, D-acetone) δ 144.7, 139.5, 129.5, 124.2, 123.0, 120.8, 120.5, 110.9, 11.1. HRMS (ESI) calcd for C₁₁H₁₁N₂O₂ [M+H]+: 203.0821; found: 203.0819.

2-(4-Methoxyphenyl)-4-methyl-1H-pyrrole (2f): 1H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.39 (d, J = 8.8 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 6.61 (s, 1H), 6.29 (s, 1H), 3.85 (s, 3H), 2.19 (s,
3H). 13C NMR (100 MHz, CDCl$_3$) δ 158.1, 132.1, 126.1, 125.1, 120.5, 116.0, 114.5, 106.5, 55.3, 12.0. HRMS (ESI) calcd for C$_{12}$H$_{14}$NO $[\text{M}+\text{H}]^+$: 188.1075; found: 188.1072.

2-(4-Chlorophenyl)-4-methyl-1H-pyrrole (2g): 1H NMR (400 MHz, CDCl$_3$) δ 8.15 (s, 1H), 7.39-7.32 (m, 4H), 6.65 (s, 1H), 6.38 (s, 1H), 2.18 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 131.5, 131.4, 130.9, 129.0, 124.8, 120.9, 117.2, 107.9, 11.9. HRMS (ESI) calcd for C$_{11}$H$_{11}$ClN $[\text{M}+\text{H}]^+$: 192.0580; found: 192.0579.

2-(4-Bromophenyl)-4-methyl-1H-pyrrole (2h): 1H NMR (400 MHz, CDCl$_3$) δ 8.14 (s, 1H), 7.50-7.47 (m, 2H), 7.33-7.30 (m, 2H), 6.66 (s, 1H), 6.39 (s, 1H), 2.18 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 131.9, 131.8, 130.9, 125.0, 120.9, 119.4, 117.2, 108.0, 11.9.

4-Methyl-2-(naphthalen-2-yl)-1H-pyrrole (2i): 1H NMR (400 MHz, CDCl$_3$) δ 8.33 (s, 1H), 7.86-7.82 (m, 4H), 7.67-7.65 (m, 1H), 7.52-7.43 (m, 2H), 6.70 (s, 1H), 6.55 (s, 1H), 2.23 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 133.8, 132.0(3), 132.0(2), 130.3, 128.5, 127.7(4), 127.6(6), 126.4, 125.3, 123.1, 120.9, 120.8, 117.2, 108.2, 12.0. HRMS (ESI) calcd for C$_{15}$H$_{14}$N $[\text{M}+\text{H}]^+$: 208.1126; found: 208.1124.

4-Methyl-2-(3-(trifluoromethyl)phenyl)-1H-pyrrole (2j): 1H NMR (400 MHz, CDCl$_3$) δ 8.24 (s, 1H), 7.68 (s, 1H), 7.62 (d, J = 7.4 Hz, 1H), 7.52 - 7.40 (m, 2H), 6.69 (s, 1H), 6.47 (s, 1H), 2.18 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 133.6 , 131.4 , 131.1 , 130.5 , 129.3 , 126.6, 122.4 (q, J = 3.7 Hz), 121.1, 120.2 (q, J = 3.8 Hz), 117.7, 108.7, 11.8. HRMS (ESI) calcd for C$_{12}$H$_{11}$F$_3$N $[\text{M}+\text{H}]^+$: 226.0845; found: 226.0844.

2-(2,4-Difluorophenyl)-4-methyl-1H-pyrrole (2k): 1H NMR (400 MHz, CDCl$_3$) δ 8.67 (s, 1H), 7.58-7.52 (m, 1H), 6.94-6.87 (m, 2H), 6.69 (s, 1H), 6.47 (s, 1H), 2.20 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 161.9 (d, J = 12.6), 159.5 (dd, J_1 = 4.2 Hz, J_2 = 11.4 Hz), 157.1 (d, J = 11.3 Hz), 127.3 (q, J = 6.3 Hz), 125.8, 120.0, 117.1-116.9 (m), 112.0 (q, J = 3.3 Hz), 108.9, 104.5 (q, J = 25.4 Hz), 11.8. HRMS (ESI) calcd for C$_{13}$H$_{10}$F$_3$N $[\text{M}+\text{H}]^+$: 194.0781; found: 194.0779.
3-(4-Methyl-1H-pyrrol-2-yl)pyridine (2l): 1H NMR (400 MHz, CDCl$_3$) δ 8.78 (d, J = 1.8 Hz, 1H), 8.70 (s, 1H), 8.42 (m, 1H), 7.74 (m, 1H), 7.28 (s, 1H), 6.71 (s, 1H), 6.45 (s, 1H), 2.18 (s, 3H).
13C NMR (100 MHz, CDCl$_3$) δ 146.8, 145.1, 130.7, 128.9, 128.6, 123.7, 121.0, 118.0, 108.7, 11.8.
HRMS (ESI) calcd for C$_{10}$H$_{11}$N$_2$ [M+H]$^+$: 159.0922; found: 159.0916.

Ethyl 4-methyl-2-phenyl-1H-pyrrole-3-carboxylate (4): 1H NMR (400 MHz, CDCl$_3$) δ 8.33 (s, 1H), 7.51-7.49 (m, 2H), 7.40-7.37 (m, 3H), 6.57 (s, 1H), 4.18 (q, J = 6.8 Hz, 2H), 2.33 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 165.8, 137.6, 133.0, 129.0, 128.0, 127.9, 122.6, 116.6, 111.4, 59.4, 14.1, 12.6.
1H NMR spectrum of 4-methyl-2-phenyl-1H-pyrrole 2a

13C NMR spectrum of 4-methyl-2-phenyl-1H-pyrrole 2a
1H NMR spectrum of 4-methyl-2-(4-(trifluoromethyl)phenyl)-1H-pyrrole 2b

13C NMR spectrum of 4-methyl-2-(4-(trifluoromethyl)phenyl)-1H-pyrrole 2b
Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013

1H NMR spectrum of methyl 4-(4-methyl-1H-pyrrol-2-yl)benzoate 2c

13C NMR spectrum of methyl 4-(4-methyl-1H-pyrrol-2-yl)benzoate 2c
1H NMR spectrum of 4-(4-methyl-1H-pyrrol-2-yl)benzonitrile 2d

13C NMR spectrum of 4-(4-methyl-1H-pyrrol-2-yl)benzonitrile 2d
1H NMR spectrum of 4-methyl-2-(4-nitrophenyl)-1H-pyrrole 2e

![1H NMR spectrum of 4-methyl-2-(4-nitrophenyl)-1H-pyrrole 2e](image)

13C NMR spectrum of 4-methyl-2-(4-nitrophenyl)-1H-pyrrole 2e

![13C NMR spectrum of 4-methyl-2-(4-nitrophenyl)-1H-pyrrole 2e](image)
1H NMR spectrum of 2-(4-methoxyphenyl)-4-methyl-1H-pyrrole 2f

13C NMR spectrum of 2-(4-methoxyphenyl)-4-methyl-1H-pyrrole 2f
^{1}H NMR spectrum of 2-(4-chlorophenyl)-4-methyl-1H-pyrrole 2g

^{13}C NMR spectrum of 2-(4-chlorophenyl)-4-methyl-1H-pyrrole 2g
^{1}H NMR spectrum of 2-(4-bromophenyl)-4-methyl-^{1}H-pyrrole 2h

^{13}C NMR spectrum of 2-(4-bromophenyl)-4-methyl-^{1}H-pyrrole 2h
\(^1\)H NMR spectrum of 4-methyl-2-(naphthalen-2-yl)-1H-pyrrole 2i

\(^{13}\)C NMR spectrum of 4-methyl-2-(naphthalen-2-yl)-1H-pyrrole 2i
1H NMR spectrum of 4-methyl-2-(3-(trifluoromethyl)phenyl)-1H-pyrrole 2j

13C NMR spectrum of 4-methyl-2-(3-(trifluoromethyl)phenyl)-1H-pyrrole 2j
1H NMR spectrum of 2-(2,4-difluorophenyl)-4-methyl-1H-pyrrole 2k

13C NMR spectrum of 2-(2,4-difluorophenyl)-4-methyl-1H-pyrrole 2k
1H NMR spectrum of 3-(4-methyl-1H-pyrrol-2-yl)pyridine 2I

13C NMR spectrum of 3-(4-methyl-1H-pyrrol-2-yl)pyridine 2I
1H NMR spectrum of ethyl 4-methyl-2-phenyl-1H-pyrrole-3-carboxylate 4

13C NMR spectrum of ethyl 4-methyl-2-phenyl-1H-pyrrole-3-carboxylate 4
References
