Urea Postmodified in Metal-Organic Framework as Catalytically Active Hydrogen-Bond Heterogeneous Catalyst

Xiao-Wu Donga, Tao Liua, Yong-Zhou Hu*a, Xin-Yuan Liu*b, Chi-Ming Chec

a ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
b Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, P. R. China
c Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (P. R. China)

Supporting Information

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Section</td>
<td>S2</td>
</tr>
<tr>
<td>Fig. S1</td>
<td>S5</td>
</tr>
<tr>
<td>Fig. S2</td>
<td>S6</td>
</tr>
<tr>
<td>Fig. S3</td>
<td>S9</td>
</tr>
<tr>
<td>Fig. S4</td>
<td>S10</td>
</tr>
<tr>
<td>Fig. S5</td>
<td>S11</td>
</tr>
<tr>
<td>Fig. S6</td>
<td>S12</td>
</tr>
<tr>
<td>Fig. S7</td>
<td>S13</td>
</tr>
<tr>
<td>References</td>
<td>S19</td>
</tr>
<tr>
<td>Spectra</td>
<td>S20</td>
</tr>
</tbody>
</table>
Experimental Section

General Methods

NMR spectra were recorded on a Brüker DPX-300/400 spectrometer at 300/400 MHz for 1H NMR and 75/100 MHz for 13C NMR in CDCl$_3$ with tetramethysilane (TMS) as internal standard. Data for 1H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quarter; m, multiplet), coupling constant (Hz), integration. Data for 13C NMR are reported in terms of chemical shift (δ, ppm). Mass spectra were determined on a Esquire-LC-00075 mass spectrometer. HRMS were recorded by using Agilent 6224 accurate-mass TOF LC/MS spectrometers. Starting materials and solvents were purchased and used without further purification from commercial suppliers (Sigma-Aldrich, Alfa Aesar, TCI, and others).

The synthesis of Cr-MIL-101-NH$_2$

Cr-MIL-101 was synthesized starting from Cr(NO$_3$)$_3$•9H$_2$O and terephthalic acid via hydrothermal reaction according to the literature.$^{[S1]}$ According to reported method,$^{[S2]}$ Cr-MIL-101–NO$_2$ was obtained by nitration of Cr-MIL-101 using a mixture solution of conc. HNO$_3$ and conc. H$_2$SO$_4$. Subsequently, the nitro groups were reduced to amino groups using anhydrous tin chloride. The physical properties of prepared MOFs match the literature.$^{[S2]}$

Typical Experimental Procedures for the Synthesis of Cr-MIL-101-UR1–3:

The Cr-MIL-101-NH$_2$ (200 mg) was soaked in CH$_3$CN (10 mL) and reacted with an appropriate isocynate (~5 eq.). After the sample was allowed to stand for 12 h at 120 °C in sealed tube, the resulting solid was isolated by filtration. The suspension of the obtained solid in acetone (50 mL) was heated at 60 °C for 1 h, and then filtered to collect the solid (repeating three times). Finally, the green solid was dried under vacuum at 40 °C for 12 hours to give title postmodified MOFs.

Cr-MIL-101-UR1:
Elemental analysis calcd for [Cr$_3$(H$_2$O)$_2$F(L$_1$)$_3$]•(H$_2$O)$_5$ (%): C: 40.67, 4.90, 7.30; found: C: 41.07; H: 4.77; N: 7.21. IR (KBr pellet): ν 3327, 2960, 2870, 1618, 1551, 1427, 1387, 1302, 1269, 1157, 768, 661, 585 cm$^{-1}$. 1H NMR (400 MHz, MeOD) δ 8.63 (s, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 3.21 (t, J = 7.0 Hz, 2H), 1.60 – 1.48 (m, 2H), 1.45 – 1.35 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H). ESI-MS: m/z [M-H] $^-$ 279.

Cr-MIL-101-UR2:

Elemental analysis calcd for [Cr$_3$(H$_2$O)$_2$F(L$_2$)$_3$]•(H$_2$O)$_5$ (%): C: 44.60; H: 3.66; N: 6.93; found: C: 45.02; H: 3.64; N: 6.65. IR (KBr pellet): ν 3314, 1690, 1597, 1544, 1427, 1387, 1312, 1267, 1267, 1224, 1037, 973, 907, 761, 693, 589 cm$^{-1}$. 1H NMR (400 MHz, MeOD) δ 8.66 (s, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.31 (t, J = 7.7 Hz, 2H), 7.04 (t, J = 7.2 Hz, 1H). ESI-MS: m/z [M-H] $^-$ 299.

Cr-MIL-101-UR3:

Elemental analysis calcd for [Cr$_3$(H$_2$O)$_2$F(L$_3$)$_3$]•(H$_2$O)$_4$ (%): C 38.24, H 2.27, N 5.25; found: C: 38.46; H: 2.48; N: 5.06. IR (KBr pellet): ν 3394, 1698, 1623, 1566, 1428, 1388, 1281, 1182, 1136, 1046, 943, 888, 854, 806, 768, 677, 595, 532 cm$^{-1}$. 1H NMR (400 MHz, MeOD) δ 8.74 (s, 1H), 8.06 (s, 2H), 7.95 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.38 (s, 1H). ESI-MS: m/z [M-H] $^-$ 435.

Typical Experimental Procedures for the Characterization of Cr-MIL-101-UR1–3:

All elemental analyses were performed on a Flash EA 1112 elemental analyzer using 20 mg of the solid sample. ESI-MS analyses were performed on an Esquire-LC-00075 spectrometer using the digested solution of 0.5 mg of the sample in 0.24 mL of methanol and 0.1 mL of sodium hydroxide (40 wt% aqueous solution) and followed by acidification. 1H NMR analyses were performed on Brüker DPX-400...
spectrometer using the digested solution of 10 mg of the sample in 0.48 mL of methanol-d_4 and 0.2 mL of sodium deuteroxide (40 wt% solution in D$_2$O). All infrared experiments were performed on a Bruker Alpha FT-IR spectrometer using 1mg of the solid sample at 20 °C at a 4 cm$^{-1}$ resolution.

PXRD Analysis

Powder X-ray diffraction (PXRD) data were collected at ambient temperature on a Bruker D8 Advance diffractometer at 40 kV, 40 mA for Cu Kα ($\lambda = 1.5418 \text{ Å}$), with a scan speed of 3 sec/step, a step size of 0.02° and a 2θ range of 5-45°. The experimental background was corrected using the Bruker EVA 2 software.

Emission scanning electron microscope (SEM) analysis

A Hitachi S-4800 field emission scanning electron microscope (SEM) was used to determine particle size and morphology. Each SEM sample was prepared by suspending the sample in ethanol. A drop of the suspension was then placed on a glass slide and the solvent was allowed to evaporate.

Thermogravimetric Analysis

Approximately 20 mg of modified MIL-101 samples was used for thermogravimetric analysis (TGA) measurements using a Perkin Elmer TGA 7 running from 30 °C to 600 °C with a scan rate of 3 °C/min.

Brunauer–Emmer–Teller (BET) Surface Areas Analysis

The Brunauer–Emmer–Teller (BET) surface areas and porosity were measured by Micromeritics ASAP 2020 analyzer at 77 K. Each time, approximately 60 mg sample was evacuated in a vacuum oven at 70 °C overnight. The sample was then transferred to preweighed quarz tube and degassed at 70 °C until the system pressure < 5 μmHg. Afterwards, the tube was reweighed to obtain an accurate mass for BET surface area determination.
Fig. S1. IR spectra of Cr-MIL-101 (black), Cr-MIL-101–NH$_2$ (green), Cr-MIL-101–UR1 (blue), Cr-MIL-101–UR2 (purple) and Cr-MIL-101–UR3 (red).
Fig. S2a. ESI-MS (negative mode) of Cr-MIL-101-UR1.
Fig. S2b. ESI-MS (negative mode) of Cr-MIL-101-UR2.
Fig. S2c. ESI-MS (negative mode) of Cr-MIL-101-UR3.
Fig. S3. PXRD measurements of Cr-MIL-101–UR1 (black), Cr-MIL-101–UR2 (blue), Cr-MIL-101–UR3 (red) and Cr-MIL-101 (purple).
Fig. S4. SEM image of (a) Cr-MIL-101, (b) Cr-MIL-101-UR1, (c) Cr-MIL-101-UR2 and (d) Cr-MIL-101-UR3.
Fig. S5. Thermogravimetric analyses of Cr-MIL-101-UR1 (Red), Cr-MIL-101-UR2 (Blue) and Cr-MIL-101-UR3 (Brown).
Fig. S6. The recyclable results of Cr-MIL-101-UR3-catalyzed Friedel-Crafts alkylation of 1A (0.5 mmol) with 2d (0.6 mmol) in the presence of Cr-MIL-101-UR3 (0.075 mmol) at 60 °C for 30 h and yield was determined by ^1^H NMR spectrum.
Fig. S7. PXRD measurements of unreacted Cr-MIL-101–UR3 (red), and recyclable Cr-MIL-101–UR3 (black).
Typical Experimental Procedures for the Syntheses of nitrovinyl substrates 1B-H and 1J-K

Different aldehydes (1 mmol) and nitromethane (3 mL) was introduced into a flask; a catalytic amount of ammonium acetate (0.3 mmol) was added and then refluxed for 5 hours. The reaction mixture was cooled and treated with ethyl acetate (10 mL) and water (20 mL) and then extracted by ethyl acetate (20 mL × 3). The combined extraction was washed by brine, dried over anhydrous Na₂SO₄ and concentrated in vacuum. The residue was purified by silica-gel column chromatography using n-hexane: ethyl acetate as eluant to give title compounds. 1B-C[S³], 1D[S⁴], 1E-F[S³], 1H[S⁵], and 1J[S⁷] were prepared and the physical properties match those reported in the literature.

{(E)}-1,5-di-tert-butyl-2-methoxy-3-(2-nitrovinyl)benzene (1K)

1H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 13.7 Hz, 1H), 7.66 (d, J = 13.7 Hz, 1H), 7.50 (d, J = 2.3 Hz, 1H), 7.32 (d, J = 2.3 Hz, 1H), 3.79 (s, 3H), 1.41 (s, 9H), 1.32 (s, 9H). 13C NMR (100 MHz, CDCl₃) δ 158.3, 146.6, 143.2, 137.3, 136.3, 128.8, 124.0, 123.5, 63.8, 35.4, 34.6, 31.3, 30.8. ESI-MS: m/z [M+H]^+ 292. HR-MS (ESI): Calcd. for [M+H]^+: 292.1913, found: 292.1918.

{(E)}-1-nitropent-1-ene (1I)[S⁶]

NO₂ To a mixture of butyraldehyde (3.27 g, 45.3 mmol) and nitromethane (2.77 g, 45.3 mmol) in methanol (10 mL) was added a solution of NaOH in H₂O (2.18 g, 54.4 mmol in 2 mL) dropwise at 0 °C. Further methanol (2 mL) was added and the resulting yellow slurry was stirred at that temperature for 1 h. Water (30 mL) was added and the clear yellow solution was poured into 3N hydrochloric acid and stirred for 15 min. The aqueous mixture was extracted with DCM (20 mL x 3), the combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuum. The residue was purified by column chromatography using n-hexane: ethyl acetate as eluant (20/1, v/v) to obtain a yellow liquid. The physical properties match those reported in the literature[S⁶].
Typical Experimental Procedure for Cr-MIL-101-UR3-catalyzed Friedel-Crafts Reaction

A solution of nitro vinyl substrate (0.1 mmol) and electron-rich nucleophiles (0.12 mmol) in CH$_3$CN (0.15 mL) was added Cr-MIL-101-UR3 (0.015 mmol). The suspension was heated at 60 °C for 18~36 hours. The reaction mixture was then cooled and filtered. The filtration was concentrated in vacuum and then purified by silica-gel column chromatography using n-hexane: ethyl acetate as eluant to give title products.

1-Methyl-2-(2-nitro-1-phenylethyl)-1H-pyrrole (3Aa)$^{[S8]}$

1H NMR (400 MHz, CDCl$_3$) δ 7.36 – 7.20 (m, 4H), 7.20 – 7.10 (m, 2H), 6.62 – 6.54 (m, 1H), 6.18 – 6.06 (m, 2H), 4.94 (dd, J = 12.0, 7.9 Hz, 1H), 4.90 – 4.82 (m, 1H), 4.74 (dd, J = 12.0, 7.3 Hz, 1H), 3.35 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 138.2, 129.2, 128.9, 128.0, 128.0, 123.1, 107.0, 106.0, 79.6, 41.9, 33.9. ESI-MS: m/z [M+H]$^+$ 231.

N,N-dimethyl-4-(2-nitro-1-phenylethyl)aniline (3Ab)$^{[S9]}$

1H NMR (400 MHz, CDCl$_3$) δ 7.37 – 7.26 (m, 2H), 7.26 – 7.17 (m, 3H), 7.08 (d, J = 8.6 Hz, 2H), 6.66 (d, J = 8.6 Hz, 2H), 5.07 – 4.85 (m, 2H), 4.80 (t, J = 8.1 Hz, 1H), 2.91 (s, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 149.9, 140.1, 129.0, 128.4, 127.7, 127.4, 126.7, 112.8, 79.72, 48.3, 40.5. ESI-MS: m/z [M+H]$^+$ 271.

3-(2-nitro-1-phenylethyl)-1H-indole (3Ac)$^{[S8]}$

1H NMR (400 MHz, CDCl$_3$) δ 8.08 (s, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.40 – 7.24 (m, 6H), 7.24 – 7.13 (m, 1H), 7.08 (t, J = 7.2 Hz, 1H), 7.01 (d, J = 1.7 Hz, 1H), 5.19 (t, J = 7.8 Hz, 1H), 5.06 (dd, J = 12.5, 7.6 Hz, 1H), 4.94 (dd, J = 12.5, 8.3 Hz, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 139.3, 136.6, 129.0, 127.9, 127.7, 126.2, 122.8, 121.7, 120.0, 119.0, 114.5, 111.5, 79.6, 41.6. ESI-MS: m/z [M+H]$^+$ 267.

1-methyl-3-(2-nitro-1-phenylethyl)-1H-indole (3Ad)$^{[S8]}$
1H NMR (400 MHz, CDCl$_3$) δ 7.45 (d, $J = 8.0$ Hz, 1H), 7.38 – 7.18 (m, 7H), 7.07 (t, $J = 7.4$ Hz, 1H), 6.85 (s, 1H), 5.18 (t, $J = 8.0$ Hz, 1H), 5.04 (dd, $J = 12.5$, 7.5 Hz, 1H), 4.93 (dd, $J = 12.5$, 8.5 Hz, 1H), 3.73 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 139.5, 137.4, 129.0, 127.8, 127.6, 126.6, 126.5, 122.3, 119.6, 119.1, 112.9, 109.6, 79.6, 41.6, 32.9. ESI-MS: m/z [M+H]$^+$ 281.

3-(1-(4-methoxyphenyl)-2-nitroethyl)-1-methyl-1H-indole (3Bd)$^{[S10]}$

1H NMR (400 MHz, CDCl$_3$) δ 7.43 (d, $J = 7.9$ Hz, 1H), 7.34 – 7.13 (m, 5H), 7.06 (t, $J = 7.3$ Hz, 1H), 6.84 (d, $J = 7.4$ Hz, 3H), 5.12 (t, $J = 7.9$ Hz, 1H), 5.01 (dd, $J = 12.2$, 7.5 Hz, 1H), 4.87 (dd, $J = 12.1$, 8.7 Hz, 1H), 3.76 (s, 3H), 3.72 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 158.9, 137.4, 131.4, 128.9, 126.6, 126.3, 122.3, 119.5, 119.1, 114.3, 113.2, 109.6, 79.9, 55.3, 40.9, 32.9. ESI-MS: m/z [M+H]$^+$ 311.

3-(1-(2-nitroethyl)-2-methyl-1H-indole (3Cd)

1H NMR (400 MHz, CDCl$_3$) δ 7.49 (d, $J = 8.0$ Hz, 1H), 7.33 – 7.18 (m, 4H), 7.13 (dd, $J = 7.5$, 1.2 Hz, 1H), 7.07 (t, $J = 7.4$ Hz, 1H), 6.97 (s, 1H), 6.93 (d, $J = 8.2$ Hz, 1H), 6.85 (t, $J = 7.5$ Hz, 1H), 5.70 – 5.50 (m, 1H), 5.01 (qd, $J = 12.5$, 7.9 Hz, 2H), 3.92 (s, 3H), 3.76 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 156.9, 137.3, 129.0, 128.7, 127.5, 127.1, 126.8, 122.1, 120.9, 119.3, 119.3, 112.4, 110.9, 110.1, 109.5, 78.3, 55.6, 35.5, 32.9. ESI-MS: m/z [M+H]$^+$ 311. HR-MS(ESI): Calcd. for [M+H]$^+$: 311.1396, found: 311.1402.

1-methyl-3-(2-nitro-1-(4-(trifluoromethyl)phenyl)ethyl)-1H-indole (3Dd)$^{[S11]}$

1H NMR (400 MHz, CDCl$_3$) δ 7.58 (d, $J = 8.0$ Hz, 2H), 7.46 (d, $J = 8.0$ Hz, 2H), 7.41 (d, $J = 8.0$ Hz, 1H), 7.31 (d, $J = 8.2$ Hz, 1H), 7.28 – 7.16 (m, 2H), 7.09 (t, $J = 7.4$ Hz, 1H), 6.85 (s, 1H), 5.24 (t, $J = 7.9$ Hz, 1H), 5.06 (dd, $J = 12.7$, 7.2 Hz, 1H), 4.95 (dd, $J = 12.7$, 8.8 Hz, 1H), 3.75 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 143.6, 137.4, 128.3, 126.5, 126.4, 126.1, 126.0, 126.0, 122.6, 119.8, 118.8, 109.8, 79.1, 41.4, 33.0. ESI-MS: m/z [M+H]$^+$ 349.

3-(1-(4-chlorophenyl)-2-nitroethyl)-1-methyl-1H-indole (3Ed)$^{[S12]}$
1H NMR (400 MHz, CDCl$_3$) δ 7.44 (d, J = 8.3 Hz, 2H), 7.40 (d, J = 8.0 Hz, 1H), 7.29 (d, J = 8.2 Hz, 1H), 7.22 (dd, J = 13.2, 6.4 Hz, 4H), 7.07 (t, J = 7.4 Hz, 1H), 6.83 (s, 1H), 5.13 (t, J = 7.9 Hz, 1H), 5.02 (dd, J = 12.5, 7.3 Hz, 1H), 4.88 (dd, J = 12.5, 8.7 Hz, 1H), 3.74 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 138.4, 137.2, 132.8, 129.4, 128.7, 126.2, 122.3, 119.5, 118.8, 114.2, 112.1, 109.5, 79.1, 40.9, 32.8. ESI-MS: m/z [M+H]$^+$ 315, 317.

1-methyl-3-(1-(naphthalen-2-yl)-2-nitroethyl)-1H-indole (3Fd)

1H NMR (300 MHz, CDCl$_3$) δ 7.78 (d, J = 7.8 Hz, 4H), 7.53–7.36 (m, 4H), 7.04 (t, J = 7.4 Hz, 1H), 6.86 (s, 1H), 5.34 (t, J = 8.0 Hz, 1H), 5.07 (qd, J = 12.6, 8.0 Hz, 2H), 3.71 (s, 3H).

13C NMR (75 MHz, CDCl$_3$) δ 137.4, 136.9, 133.5, 132.8, 128.8, 128.0, 127.7, 126.6, 126.4, 126.1, 125.9, 122.3, 119.6, 119.1, 112.8, 109.6, 79.5, 41.7, 32.9. ESI-MS: m/z [M+H]$^+$ 331. HR-MS (ESI): Calcd. for [M+H]$^+$: 311.1447, found: 311.1452.

3-(1-(furan-2-yl)-2-nitroethyl)-1-methyl-1H-indole (3Gd)$^{[S10]}$

1H NMR (400 MHz, CDCl$_3$) δ 7.56 (d, J = 8.0 Hz, 1H), 7.40 (d, J = 1.1 Hz, 1H), 7.32 (d, J = 8.2 Hz, 1H), 7.30 – 7.22 (m, 1H), 7.23 – 7.08 (m, 1H), 6.99 (s, 1H), 6.32 (dd, J = 3.1, 1.9 Hz, 1H), 6.18 (d, J = 3.2 Hz, 1H), 5.25 (t, J = 7.8 Hz, 1H), 5.05 (dd, J = 12.5, 8.2 Hz, 1H), 4.91 (dd, J = 12.5, 7.3 Hz, 1H), 3.76 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 152.4, 142.3, 137.3, 137.2, 127.4, 126.2, 122.3, 119.7, 118.9, 110.5, 110.0, 109.7, 107.4, 78.1, 35.7, 32.9. ESI-MS: m/z [M+H]$^+$ 271.

1-methyl-3-(2-nitro-1-(thiophen-2-yl)ethyl)-1H-indole (3Hd)$^{[S10]}$

1H NMR (400 MHz, CDCl$_3$) δ 7.53 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.2 Hz, 1H), 7.29 – 7.24 (m, 1H), 7.21 (d, J = 5.0 Hz, 1H), 7.12 (t, J = 7.4 Hz, 1H), 7.03 – 6.93 (m, 3H), 5.47 (t, J = 7.9 Hz, 1H), 5.08 – 4.94 (m, 2H), 3.76 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 143.2, 137.3, 127.0, 126.7, 126.3, 125.2, 124.9, 122.4, 119.7, 119.0, 112.5, 109.7, 80.2, 37.0, 33.0. ESI-MS: m/z [M+H]$^+$ 287.

1-methyl-3-(1-nitropentan-2-yl)-1H-indole (3Id)
1H NMR (300 MHz, CDCl$_3$) δ 7.61 (d, $J = 7.9$ Hz, 1H), 7.31 (d, $J = 8.1$ Hz, 1H), 7.24 (t, $J = 7.4$ Hz, 1H), 7.12 (t, $J = 7.3$ Hz, 1H), 6.89 (s, 1H), 4.74 – 4.54 (m, 2H), 3.84 – 3.75 (m, 1H), 3.75 (s, 3H), 1.98 – 1.62 (m, 2H), 1.40 – 1.20 (m, 2H), 0.89 (t, $J = 7.3$ Hz, 3H).

13C NMR (75 MHz, CDCl$_3$) δ 137.3, 126.8, 126.7, 122.0, 119.3, 118.9, 112.6, 109.7, 80.8, 36.1, 34.8, 32.9, 20.5, 14.0. ESI-MS: m/z [M+H]$^+$ 247. HR-MS (ESI): Calcd. for [M+H]$^+$: 247.1447, found: 247.1455.

(E)-3-(1-(4-methoxyphenyl)-4-nitrobut-3-en-1-yl)-1-methyl-1H-indole (3Jd)

1H NMR (400 MHz, CDCl$_3$) δ 7.65 (d, $J = 8.0$ Hz, 1H), 7.35 – 7.21 (m, 5H), 7.14 (t, $J = 7.4$ Hz, 1H), 6.95 (s, 1H), 6.82 (d, $J = 8.7$ Hz, 2H), 6.54 (d, $J = 15.8$ Hz, 1H), 6.27 (dd, $J = 15.8$, 7.6 Hz, 1H), 4.83 (dd, $J = 11.8$, 6.7 Hz, 1H), 4.75 (dd, $J = 11.8$, 8.6 Hz, 1H), 4.66 (dd, $J = 15.2$, 7.6 Hz, 1H), 3.79 (s, 3H), 3.76 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 159.5, 137.4, 132.0, 129.4, 127.8, 126.5, 124.9, 122.3, 119.6, 119.1, 114.1, 111.8, 109.8, 79.7, 55.4, 39.6, 32.9. ESI-MS: m/z [M+H]$^+$ 337. HR-MS (ESI): Calcd. for [M+H]$^+$: 337.1552, found: 337.1559.

3-(1-(3,5-di-tert-butyl-2-methoxyphenyl)-2-nitroethyl)-1-methyl-1H-indole (3Kd)

1H NMR (400 MHz, CDCl$_3$) δ 7.63 (d, $J = 7.9$ Hz, 1H), 7.33 – 7.21 (m, 4H), 7.18 (d, $J = 2.3$ Hz, 1H), 7.12 (t, $J = 7.4$ Hz, 1H), 6.82 (s, 1H), 5.61 (t, $J = 8.0$ Hz, 1H), 5.01 (dd, $J = 12.6$, 7.9 Hz, 1H), 4.92 (dd, $J = 12.5$, 8.1 Hz, 1H), 3.76 (s, 3H), 3.73 (s, 3H), 1.40 (s, 9H), 1.26 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 155.5, 145.9, 142.7, 137.5, 131.8, 127.3, 126.9, 123.6, 123.3, 122.3, 119.6, 119.1, 113.3, 109.6, 79.5, 62.7, 35.6, 35.1, 34.7, 33.0, 31.6, 31.3. ESI-MS: m/z [M+H]$^+$ 423. HR-MS (ESI): Calcd. for [M+H]$^+$: 423.2648, found: 423.2656.
References:

Spectra: