Electronic Supporting Information

Anion-directed assembly of a non-interpenetrated square-grid metal–organic framework with nanoscale porosity

Atanu Mitra, Christian T. Hubley, Dillip K. Panda, Ronald J. Clark and Sourav Saha*

Department of Chemistry and Biochemistry and Integrative NanoScience Institute, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States, Email: saha@chem.fsu.edu

Experimental Section

Self-assembly of a non-interpenetrated square grid metal–organic framework [Zn(DPNDI)₂(DMAc)₂·2ClO₄]ₙ (DPNDI = N₂N'-di(4-pyridyl)-1,4,5,8-naphthalenediimide). A solution of Zn(ClO₄)₂·6H₂O (48 mg, 0.13 mmol) and DPNDI (110 mg, 0.26 mmol) in 1:2 DMAc/MeCN mixture (40 mL) was allowed to stand at room temperature for 24 h. After that MeCN was evaporated under reduced pressure at 25 °C and small portions (5 mL each) of concentrated DMAc solutions were setup for crystallization. Upon slow Et₂O vapor diffusion into DMAc solutions, pale yellow crystals were obtained, which were used for crystallographic and thermogravimetric studies.

As-synthesized crystalline MOF was suspended in fresh Et₂O and washed (centrifugation) three times with Et₂O to exchange entrapped DMAc, MeCN, and H₂O solvents that have higher boiling points. Et₂O was easily removed under reduced pressure to obtain evacuated bulk materials as a microcrystalline off-white powder (37 mg, 11%). This material was analyzed by powder X-ray diffraction (Fig. S1).

Self-assembly of a 1D linear coordination polymer [Zn(DPNDI)₂(DMAc)(NO₃)]ₙ. A solution of Zn(NO₃)₂·6H₂O (39 mg, 0.13 mmol) and DPNDI (110 mg, 0.26 mmol) in 2:1 DMAc/MeCN (40 mL) was allowed to stand at room temperature for 24 h. After that MeCN was evaporated under reduced pressure at 25 °C and small portions (5 mL each) of concentrated DMAc solutions were setup for crystallization. Upon slow Et₂O vapor diffusion into the DMAc solutions, yellowish white crystals were obtained (50 mg, 25%), which were used for crystallographic analysis.

Crystallographic data collection and refinement. Suitable single crystals of the square-grid MOF and 1D coordination polymer were mounted on a goniometer head of a Bruker SMART APEX II diffractometer using a nylon loop with a small amount of Paratone oil (Hampton Research). Crystals were cooled to 153 K in a cold stream of N₂ gas. After finding a crystal that indexed to give a satisfactory unit cell, a full low-temperature data set at 173 K was recorded using a sample-to-detector distance of 6 cm. Diffraction data of the compound was measured with Mo Kα (λ = 0.71073 Å) radiation. Reflections were found at θ = 20° (Sinθ/λ = 0.504 < 0.550 caused an A-level alert) for the square-grid MOF crystal and at ca. 28° for the 1D coordination polymer. The Bruker suite of programs on the APEX II was used to integrate the data and SADABS was used for absorption corrections. Both structures were readily solved by direct methods and refined using the SHELXTL. The non-interpenetrated square-grid MOF crystal has very large pores (ca. 20 x 20 Å) containing disordered solvent molecules, which contributed to an A-level alert. SQUEEZE routine implemented on PLATON was used to remove electron densities corresponding to disordered solvent molecules. All atoms of the complex backbones (Zn(II), DPNDI ligands, Zn(II)-coordinated DMAc and NO₃⁻ ions, and ClO₄⁻ anions were fully accounted for. Crystallographic data has been deposited at the Cambridge Crystallographic Data Center with reference numbers CCDC 929885 and 929886. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

Powder X-ray crystal diffraction (PXRD) analysis. PXRD analysis of the square-grid MOF was conducted on Siemens D500 powder diffractometer using Ni-filtered unmonochromated Cu Kα radiation with a graphite diffracted beam monochromater. One degree divergence apertures and 0.15 degree
receiving aperture. Scanning was done between 5θ and 65 θ, at 0.02 steps, 0.5 °/min. Samples were
dispersed on quartz zero-background holder. Data were processed using MDI Jade 6.5 software.

Thermogravimetric analysis (TGA). TGA of an air-dried ground sample of square-grid MOF was
conducted on a Thermogravimetric Analyzer Instrument Q50 with a heating rate of 10 °C/min under an
Ar-atmosphere. The initial 8% weight loss at 20–100 °C corresponds to loss of volatile solvents (Et₂O,
MeCN), the next 17% loss at 100–200 °C corresponds to loss of H₂O (came from Zn(ClO₄)₂·6H₂O) and
DMAc molecules. The MOF showed excellent thermal stability between 200 and 350 °C, indicating no
network collapse upon solvent evaporation. A sharp 15% weight loss from 65 to 50% occurred at 350–
400 °C. Over 45% weight was lost by 500 °C.

![Thermogravimetric analysis (TGA)](image)

Fig. S1. The PXRD pattern of solvent exchanged and evacuated non-interpenetrated square grid MOF.
Green bars represent simulated peaks obtained from single crystal analysis of the as-synthesized
crystalline MOF.

References.

S3 G. M. Sheldrick, *Shelxs97* and *Shelxl97*, Programs for Crystallographic Solution and Refinement.
Bond lengths and angles of Zn(II) coordination spheres in the square-grid MOF and 1D polymer:

<table>
<thead>
<tr>
<th>MOF: Bond angles (°)</th>
<th>1D Coordination polymer: Bond Angles (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1-Zn-O2 180</td>
<td>N1-Zn-N2 151.99</td>
</tr>
<tr>
<td>N1-Zn-N4 180</td>
<td>N1-Zn-O1 110.14</td>
</tr>
<tr>
<td>N2-Zn-N3 180</td>
<td>N1-Zn-O2 91.17</td>
</tr>
<tr>
<td>O1-Zn-N1 93.02</td>
<td>N1-Zn-O3 94.09</td>
</tr>
<tr>
<td>O1-Zn-N2 91.82</td>
<td>N1-Zn-O4 80.52</td>
</tr>
<tr>
<td>O1-Zn-N3 88.18</td>
<td>N2-Zn-O1 110.14</td>
</tr>
<tr>
<td>O1-Zn-N4 86.98</td>
<td>N2-Zn-O2 90.32</td>
</tr>
<tr>
<td>N1-Zn-N2 92.90</td>
<td>N2-Zn-O3 90.76</td>
</tr>
<tr>
<td>N2-Zn-N4 87.10</td>
<td>N2-Zn-O4 80.33</td>
</tr>
<tr>
<td>N3-Zn-N4 92.90</td>
<td>O1-Zn-O2 79.26</td>
</tr>
<tr>
<td>N1-Zn-N3 87.10</td>
<td>O1-Zn-O3 87.46</td>
</tr>
<tr>
<td>O2-Zn-N1 86.98</td>
<td>O2-Zn-O3 166.71</td>
</tr>
<tr>
<td>O2-Zn-N2 88.18</td>
<td>O2-Zn-O4 139.64</td>
</tr>
<tr>
<td>O2-Zn-N3 91.82</td>
<td>O1-Zn-O4 140.67</td>
</tr>
<tr>
<td>O2-Zn-N4 93.02</td>
<td>O3-Zn-O4 53.49</td>
</tr>
<tr>
<td>Bond Distances (Å)</td>
<td>Bond Distances (Å)</td>
</tr>
<tr>
<td>Zn-O1 2.112</td>
<td>Zn-N1 2.084</td>
</tr>
<tr>
<td>Zn-O2 2.112</td>
<td>Zn-N2 2.097</td>
</tr>
<tr>
<td>Zn-N1 2.159</td>
<td>Zn-O1 2.050</td>
</tr>
<tr>
<td>Zn-N2 2.213</td>
<td>Zn-O2 2.141</td>
</tr>
<tr>
<td>Zn-N3 2.213</td>
<td>Zn-O3 2.179</td>
</tr>
<tr>
<td>Zn-N4 2.159</td>
<td>Zn-O4 2.563</td>
</tr>
</tbody>
</table>
Bond lengths and bond angles of square-grid MOF:

Table 1. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for the square-grid MOF. U(eq) is defined as one third of the trace of the orthogonalized \(U_{ij} \) tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(41)</td>
<td>1832(4)</td>
<td>157(2)</td>
<td>12180(3)</td>
<td>68(2)</td>
</tr>
<tr>
<td>O(41)</td>
<td>964(2)</td>
<td>26(1)</td>
<td>11000(2)</td>
<td>34(1)</td>
</tr>
<tr>
<td>Zn(1)</td>
<td>0</td>
<td>0</td>
<td>10000</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>1341(3)</td>
<td>498(2)</td>
<td>9566(3)</td>
<td>45(2)</td>
</tr>
<tr>
<td>C(2)</td>
<td>1727(3)</td>
<td>828(2)</td>
<td>9219(3)</td>
<td>50(2)</td>
</tr>
<tr>
<td>C(3)</td>
<td>1304(3)</td>
<td>1178(2)</td>
<td>8711(3)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>530(3)</td>
<td>1194(2)</td>
<td>8562(3)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>192(3)</td>
<td>856(2)</td>
<td>8942(3)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>1781(3)</td>
<td>1391(2)</td>
<td>7598(3)</td>
<td>38(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>2198(3)</td>
<td>1740(2)</td>
<td>7233(3)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>2483(3)</td>
<td>2187(2)</td>
<td>7625(3)</td>
<td>31(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>2383(3)</td>
<td>2303(2)</td>
<td>8752(3)</td>
<td>48(2)</td>
</tr>
<tr>
<td>C(10)</td>
<td>2383(3)</td>
<td>2303(2)</td>
<td>8752(3)</td>
<td>48(2)</td>
</tr>
<tr>
<td>C(11)</td>
<td>2669(4)</td>
<td>2733(2)</td>
<td>8745(3)</td>
<td>62(2)</td>
</tr>
<tr>
<td>C(12)</td>
<td>3034(3)</td>
<td>3076(2)</td>
<td>8376(3)</td>
<td>55(2)</td>
</tr>
<tr>
<td>C(13)</td>
<td>3122(3)</td>
<td>2975(2)</td>
<td>7643(3)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>2859(3)</td>
<td>2527(2)</td>
<td>7261(3)</td>
<td>31(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>1516(2)</td>
<td>1004(1)</td>
<td>7291(2)</td>
<td>54(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>1863(3)</td>
<td>2027(1)</td>
<td>9385(2)</td>
<td>73(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>2621(2)</td>
<td>1954(2)</td>
<td>8752(3)</td>
<td>36(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>2383(3)</td>
<td>2303(2)</td>
<td>8752(3)</td>
<td>48(2)</td>
</tr>
<tr>
<td>C(12)</td>
<td>3034(3)</td>
<td>3076(2)</td>
<td>8376(3)</td>
<td>55(2)</td>
</tr>
<tr>
<td>C(13)</td>
<td>3122(3)</td>
<td>2975(2)</td>
<td>7643(3)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>2859(3)</td>
<td>2527(2)</td>
<td>7261(3)</td>
<td>31(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>1516(2)</td>
<td>1004(1)</td>
<td>7291(2)</td>
<td>54(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>1863(3)</td>
<td>2027(1)</td>
<td>9385(2)</td>
<td>73(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>2621(2)</td>
<td>1954(2)</td>
<td>8752(3)</td>
<td>36(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>2383(3)</td>
<td>2303(2)</td>
<td>8752(3)</td>
<td>48(2)</td>
</tr>
<tr>
<td>C(12)</td>
<td>3034(3)</td>
<td>3076(2)</td>
<td>8376(3)</td>
<td>55(2)</td>
</tr>
<tr>
<td>C(13)</td>
<td>3122(3)</td>
<td>2975(2)</td>
<td>7643(3)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>2859(3)</td>
<td>2527(2)</td>
<td>7261(3)</td>
<td>31(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>1516(2)</td>
<td>1004(1)</td>
<td>7291(2)</td>
<td>54(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>1863(3)</td>
<td>2027(1)</td>
<td>9385(2)</td>
<td>73(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>2621(2)</td>
<td>1954(2)</td>
<td>8752(3)</td>
<td>36(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>2383(3)</td>
<td>2303(2)</td>
<td>8752(3)</td>
<td>48(2)</td>
</tr>
<tr>
<td>C(12)</td>
<td>3034(3)</td>
<td>3076(2)</td>
<td>8376(3)</td>
<td>55(2)</td>
</tr>
<tr>
<td>C(13)</td>
<td>3122(3)</td>
<td>2975(2)</td>
<td>7643(3)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>2859(3)</td>
<td>2527(2)</td>
<td>7261(3)</td>
<td>31(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>1516(2)</td>
<td>1004(1)</td>
<td>7291(2)</td>
<td>54(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>1863(3)</td>
<td>2027(1)</td>
<td>9385(2)</td>
<td>73(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>2621(2)</td>
<td>1954(2)</td>
<td>8752(3)</td>
<td>36(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>2383(3)</td>
<td>2303(2)</td>
<td>8752(3)</td>
<td>48(2)</td>
</tr>
</tbody>
</table>
Table 2. Bond lengths (Å) and angles (°) of the square-grid MOF.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(41)-C(41)</td>
<td>1.258(8)</td>
</tr>
<tr>
<td>N(41)-C(43)</td>
<td>1.422(8)</td>
</tr>
<tr>
<td>N(41)-C(44)</td>
<td>1.480(11)</td>
</tr>
<tr>
<td>O(41)-C(41)</td>
<td>1.246(7)</td>
</tr>
<tr>
<td>O(41)-Zn(1)</td>
<td>2.112(3)</td>
</tr>
<tr>
<td>Zn(1)-O(41)#1</td>
<td>2.112(4)</td>
</tr>
<tr>
<td>Zn(1)-N(1)</td>
<td>2.159(3)</td>
</tr>
<tr>
<td>Zn(1)-N(1)#1</td>
<td>2.159(3)</td>
</tr>
<tr>
<td>Zn(1)-N(4)#2</td>
<td>2.213(4)</td>
</tr>
<tr>
<td>Zn(1)-N(4)#3</td>
<td>2.213(4)</td>
</tr>
<tr>
<td>C(1)-N(1)</td>
<td>1.320(6)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.383(7)</td>
</tr>
<tr>
<td>C(1)-H(1)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.377(7)</td>
</tr>
<tr>
<td>C(2)-H(2)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.370(7)</td>
</tr>
<tr>
<td>C(3)-N(2)</td>
<td>1.451(6)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.380(6)</td>
</tr>
<tr>
<td>C(4)-H(4)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(5)-N(1)</td>
<td>1.353(6)</td>
</tr>
<tr>
<td>C(5)-H(5)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(6)-O(1)</td>
<td>1.212(6)</td>
</tr>
<tr>
<td>C(6)-N(2)</td>
<td>1.388(6)</td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.473(7)</td>
</tr>
<tr>
<td>C(7)-C(17)</td>
<td>1.382(7)</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.414(6)</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.406(6)</td>
</tr>
<tr>
<td>C(8)-C(14)</td>
<td>1.407(6)</td>
</tr>
<tr>
<td>C(9)-C(11)</td>
<td>1.365(7)</td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.484(7)</td>
</tr>
<tr>
<td>C(10)-O(2)</td>
<td>1.201(6)</td>
</tr>
<tr>
<td>C(10)-N(2)</td>
<td>1.395(6)</td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.403(7)</td>
</tr>
<tr>
<td>C(11)-H(11)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>1.370(7)</td>
</tr>
<tr>
<td>C(12)-H(12)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.402(6)</td>
</tr>
<tr>
<td>C(13)-C(19)</td>
<td>1.484(7)</td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.407(6)</td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>1.375(7)</td>
</tr>
<tr>
<td>C(15)-C(18)</td>
<td>1.485(7)</td>
</tr>
<tr>
<td>C(16)-C(17)</td>
<td>1.404(7)</td>
</tr>
<tr>
<td>C(16)-H(16)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(17)-H(17)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(18)-O(4)</td>
<td>1.203(5)</td>
</tr>
<tr>
<td>C(18)-N(3)</td>
<td>1.389(6)</td>
</tr>
<tr>
<td>C(19)-O(3)</td>
<td>1.214(6)</td>
</tr>
<tr>
<td>C(19)-N(3)</td>
<td>1.402(6)</td>
</tr>
<tr>
<td>C(20)-C(21)</td>
<td>1.365(7)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>C(20)-C(22)</td>
<td>1.371(7)</td>
</tr>
<tr>
<td>C(20)-N(3)</td>
<td>1.439(6)</td>
</tr>
<tr>
<td>C(21)-C(24)</td>
<td>1.389(7)</td>
</tr>
<tr>
<td>C(21)-H(21)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(22)-C(23)</td>
<td>1.388(7)</td>
</tr>
<tr>
<td>C(22)-H(22)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(23)-N(4)</td>
<td>1.335(6)</td>
</tr>
<tr>
<td>C(23)-H(23)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(24)-N(4)</td>
<td>1.323(6)</td>
</tr>
<tr>
<td>C(24)-H(24)</td>
<td>0.9500</td>
</tr>
<tr>
<td>N(4)-Zn(1)#4</td>
<td>2.213(4)</td>
</tr>
<tr>
<td>C(41)-C(42)</td>
<td>1.561(12)</td>
</tr>
<tr>
<td>C(42)-H(42A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(42)-H(42B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(42)-H(42C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(43)-H(43A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(43)-H(43B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(43)-H(43C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(44)-H(44A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(44)-H(44B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(44)-H(44C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>Cl(31)-O(33)</td>
<td>1.342(7)</td>
</tr>
<tr>
<td>Cl(31)-O(32)</td>
<td>1.346(6)</td>
</tr>
<tr>
<td>Cl(31)-O(34)</td>
<td>1.381(5)</td>
</tr>
<tr>
<td>Cl(31)-O(31)</td>
<td>1.431(9)</td>
</tr>
<tr>
<td>C(41)-N(41)-C(43)</td>
<td>127.9(7)</td>
</tr>
<tr>
<td>C(41)-N(41)-C(44)</td>
<td>116.5(6)</td>
</tr>
<tr>
<td>C(43)-N(41)-C(44)</td>
<td>115.5(7)</td>
</tr>
<tr>
<td>C(41)-O(41)-Zn(1)</td>
<td>144.2(4)</td>
</tr>
<tr>
<td>O(41)-Zn(1)-O(41)#1</td>
<td>179.997(1)</td>
</tr>
<tr>
<td>O(41)-Zn(1)-N(1)</td>
<td>86.98(14)</td>
</tr>
<tr>
<td>O(41)#1-Zn(1)-N(1)</td>
<td>93.02(14)</td>
</tr>
<tr>
<td>O(41)-Zn(1)-N(1)#1</td>
<td>93.02(14)</td>
</tr>
<tr>
<td>O(41)#1-Zn(1)-N(1)#1</td>
<td>86.98(14)</td>
</tr>
<tr>
<td>N(1)-Zn(1)-N(1)#1</td>
<td>179.999(1)</td>
</tr>
<tr>
<td>O(41)-Zn(1)-N(4)#2</td>
<td>91.79(13)</td>
</tr>
<tr>
<td>O(41)#1-Zn(1)-N(4)#2</td>
<td>88.20(13)</td>
</tr>
<tr>
<td>N(1)-Zn(1)-N(4)#2</td>
<td>87.10(13)</td>
</tr>
<tr>
<td>N(1)#1-Zn(1)-N(4)#2</td>
<td>92.90(13)</td>
</tr>
<tr>
<td>O(41)-Zn(1)-N(4)#3</td>
<td>88.21(13)</td>
</tr>
<tr>
<td>O(41)#1-Zn(1)-N(4)#3</td>
<td>91.80(13)</td>
</tr>
<tr>
<td>N(1)-Zn(1)-N(4)#3</td>
<td>92.90(13)</td>
</tr>
<tr>
<td>N(1)#1-Zn(1)-N(4)#3</td>
<td>87.10(13)</td>
</tr>
<tr>
<td>N(4)#2-Zn(1)-N(4)#3</td>
<td>180.000(1)</td>
</tr>
<tr>
<td>N(1)-C(1)-C(2)</td>
<td>123.2(5)</td>
</tr>
<tr>
<td>N(1)-C(1)-H(1)</td>
<td>118.4</td>
</tr>
<tr>
<td>C(2)-C(1)-H(1)</td>
<td>118.4</td>
</tr>
<tr>
<td>C(3)-C(2)-C(1)</td>
<td>117.6(5)</td>
</tr>
<tr>
<td>C(3)-C(2)-H(2)</td>
<td>121.2</td>
</tr>
<tr>
<td>C(1)-C(2)-H(2)</td>
<td>121.2</td>
</tr>
<tr>
<td>C(4)-C(3)-C(2)</td>
<td>120.6(4)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>C(4)-C(3)-N(2)</td>
<td>120.0(4)</td>
</tr>
<tr>
<td>C(2)-C(3)-N(2)</td>
<td>119.4(4)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)</td>
<td>118.1(5)</td>
</tr>
<tr>
<td>C(3)-C(4)-H(4)</td>
<td>120.9</td>
</tr>
<tr>
<td>C(5)-C(4)-H(4)</td>
<td>120.9</td>
</tr>
<tr>
<td>N(1)-C(5)-C(4)</td>
<td>122.2(4)</td>
</tr>
<tr>
<td>N(1)-C(5)-H(5)</td>
<td>118.9</td>
</tr>
<tr>
<td>C(4)-C(5)-H(5)</td>
<td>118.9</td>
</tr>
<tr>
<td>O(1)-C(6)-N(2)</td>
<td>120.0(4)</td>
</tr>
<tr>
<td>O(1)-C(6)-C(7)</td>
<td>123.3(4)</td>
</tr>
<tr>
<td>N(2)-C(6)-C(7)</td>
<td>116.8(4)</td>
</tr>
<tr>
<td>C(17)-C(7)-C(8)</td>
<td>119.8(4)</td>
</tr>
<tr>
<td>C(17)-C(7)-C(6)</td>
<td>120.3(4)</td>
</tr>
<tr>
<td>C(8)-C(7)-C(6)</td>
<td>119.9(4)</td>
</tr>
<tr>
<td>C(9)-C(8)-C(14)</td>
<td>119.2(4)</td>
</tr>
<tr>
<td>C(9)-C(8)-C(7)</td>
<td>121.1(4)</td>
</tr>
<tr>
<td>C(14)-C(8)-C(7)</td>
<td>119.7(4)</td>
</tr>
<tr>
<td>C(11)-C(9)-C(8)</td>
<td>120.4(4)</td>
</tr>
<tr>
<td>C(11)-C(9)-C(10)</td>
<td>119.8(5)</td>
</tr>
<tr>
<td>C(8)-C(9)-C(10)</td>
<td>119.9(4)</td>
</tr>
<tr>
<td>O(2)-C(10)-N(2)</td>
<td>119.9(4)</td>
</tr>
<tr>
<td>O(2)-C(10)-C(9)</td>
<td>123.7(5)</td>
</tr>
<tr>
<td>N(2)-C(10)-C(9)</td>
<td>116.4(4)</td>
</tr>
<tr>
<td>C(9)-C(11)-C(12)</td>
<td>120.4(5)</td>
</tr>
<tr>
<td>C(9)-C(11)-H(11)</td>
<td>119.8</td>
</tr>
<tr>
<td>C(12)-C(11)-H(11)</td>
<td>119.8</td>
</tr>
<tr>
<td>C(13)-C(12)-C(11)</td>
<td>120.2(5)</td>
</tr>
<tr>
<td>C(13)-C(12)-H(12)</td>
<td>119.9</td>
</tr>
<tr>
<td>C(11)-C(12)-H(12)</td>
<td>119.9</td>
</tr>
<tr>
<td>C(12)-C(13)-C(19)</td>
<td>119.7(4)</td>
</tr>
<tr>
<td>C(14)-C(13)-C(19)</td>
<td>119.9(4)</td>
</tr>
<tr>
<td>C(13)-C(14)-C(15)</td>
<td>121.4(4)</td>
</tr>
<tr>
<td>C(13)-C(14)-C(8)</td>
<td>119.4(4)</td>
</tr>
<tr>
<td>C(15)-C(14)-C(8)</td>
<td>119.1(4)</td>
</tr>
<tr>
<td>C(16)-C(15)-C(14)</td>
<td>120.8(4)</td>
</tr>
<tr>
<td>C(16)-C(15)-C(18)</td>
<td>119.5(4)</td>
</tr>
<tr>
<td>C(14)-C(15)-C(18)</td>
<td>119.7(4)</td>
</tr>
<tr>
<td>C(15)-C(16)-C(17)</td>
<td>120.0(5)</td>
</tr>
<tr>
<td>C(15)-C(16)-H(16)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(17)-C(16)-H(16)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(7)-C(17)-C(16)</td>
<td>120.5(5)</td>
</tr>
<tr>
<td>C(7)-C(17)-H(17)</td>
<td>119.8</td>
</tr>
<tr>
<td>C(16)-C(17)-H(17)</td>
<td>119.8</td>
</tr>
<tr>
<td>O(4)-C(18)-N(3)</td>
<td>119.7(4)</td>
</tr>
<tr>
<td>O(4)-C(18)-C(15)</td>
<td>123.7(5)</td>
</tr>
<tr>
<td>N(3)-C(18)-C(15)</td>
<td>116.7(4)</td>
</tr>
<tr>
<td>O(3)-C(19)-N(3)</td>
<td>120.6(4)</td>
</tr>
<tr>
<td>O(3)-C(19)-C(13)</td>
<td>122.9(5)</td>
</tr>
<tr>
<td>N(3)-C(19)-C(13)</td>
<td>116.4(4)</td>
</tr>
<tr>
<td>C(21)-C(20)-C(22)</td>
<td>120.0(4)</td>
</tr>
</tbody>
</table>
C(21)-C(20)-N(3) 119.6(4)
C(22)-C(20)-N(3) 120.5(4)
C(20)-C(21)-C(24) 117.3(5)
C(20)-C(21)-H(21) 121.3
C(24)-C(21)-H(21) 121.3
C(20)-C(22)-C(23) 117.8(5)
C(20)-C(22)-H(22) 121.1
C(23)-C(22)-H(22) 121.1
N(4)-C(23)-C(22) 123.9(4)
N(4)-C(23)-H(23) 118.1
C(22)-C(23)-H(23) 118.1
N(4)-C(24)-C(21) 124.8(5)
N(4)-C(24)-H(24) 117.6
C(21)-C(24)-H(24) 117.6
C(1)-N(1)-C(5) 118.3(4)
C(1)-N(1)-Zn(1) 123.0(3)
C(5)-N(1)-Zn(1) 118.6(3)
C(6)-N(2)-C(10) 125.9(4)
C(6)-N(2)-C(3) 117.5(4)
C(10)-N(2)-C(3) 116.4(4)
C(18)-N(3)-C(19) 125.5(4)
C(18)-N(3)-C(20) 118.1(4)
C(19)-N(3)-C(20) 116.4(4)
C(24)-N(4)-C(23) 116.0(4)
C(24)-N(4)-Zn(1)#4 123.0(3)
C(23)-N(4)-Zn(1)#4 120.8(3)
O(41)-C(41)-N(41) 128.6(6)
O(41)-C(41)-C(42) 126.4(8)
N(41)-C(41)-C(42) 104.4(8)
C(41)-C(42)-H(42A) 109.5
C(41)-C(42)-H(42B) 109.5
H(42A)-C(42)-H(42B) 109.5
C(41)-C(42)-H(42C) 109.5
H(42A)-C(42)-H(42C) 109.5
H(42B)-C(42)-H(42C) 109.5
N(41)-C(43)-H(43A) 109.5
N(41)-C(43)-H(43B) 109.5
H(43A)-C(43)-H(43B) 109.5
N(41)-C(43)-H(43C) 109.5
N(41)-C(44)-H(44A) 109.5
N(41)-C(44)-H(44B) 109.5
H(44A)-C(44)-H(44B) 109.5
N(41)-C(44)-H(44C) 109.5
H(44A)-C(44)-H(44C) 109.5
H(44B)-C(44)-H(44C) 109.5
O(33)-Cl(31)-O(32) 110.6(6)
O(33)-Cl(31)-O(34) 113.1(5)
O(32)-Cl(31)-O(34) 108.9(5)
O(33)-Cl(31)-O(31) 110.7(7)
Symmetry transformations used to generate equivalent atoms:
#1 -x,-y,-z+2 #2 x-1/2,-y+1/2,z+1/2 #3 -x+1/2,y-1/2,-z+3/2
#4 -x+1/2,y+1/2,-z+3/2

Table 3. Anisotropic displacement parameters (Å² x 10³) for the square-grid MOF. The anisotropic displacement factor exponent takes the form: -2p²[h² a*²U¹¹ + ... + 2h k a* b* U¹²]

<table>
<thead>
<tr>
<th></th>
<th>U¹¹</th>
<th>U²²</th>
<th>U³³</th>
<th>U¹²</th>
<th>U¹³</th>
<th>U²³</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(32)</td>
<td>107.7(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(34)</td>
<td>105.6(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| N(41) | 72(4) | 71(4) | 53(4) | -12(3) | 6(3) | 3(3) |
| O(41) | 44(2) | 30(2) | 31(2) | -2(2) | 17(2) | 1(2) |
| Zn(1) | 38(1) | 14(1) | 36(1) | 1(1) | 28(1) | 0(1) |
| C(1) | 39(4) | 46(3) | 61(4) | 25(3) | 32(3) | 6(3) |
| C(2) | 37(3) | 56(4) | 61(4) | 25(3) | 25(3) | 1(3) |
| C(3) | 46(4) | 28(3) | 33(3) | -3(2) | 25(3) | -13(2) |
| C(4) | 50(4) | 29(3) | 32(3) | 5(2) | 17(3) | -7(2) |
| C(5) | 39(3) | 24(3) | 37(3) | 2(2) | 16(3) | -3(2) |
| C(6) | 49(3) | 31(3) | 36(3) | -6(3) | 18(3) | -14(3) |
| C(7) | 53(3) | 22(3) | 34(3) | -1(2) | 20(3) | -15(2) |
| C(8) | 40(3) | 32(3) | 25(3) | 1(2) | 16(2) | -8(2) |
| C(9) | 70(4) | 32(3) | 35(3) | -8(3) | 26(3) | -25(3) |
| C(10) | 71(4) | 43(3) | 38(4) | -2(3) | 28(3) | -22(3) |
| C(11) | 109(5) | 54(4) | 39(4) | -14(3) | 47(4) | -45(4) |
| C(12) | 96(5) | 38(3) | 44(4) | -17(3) | 40(3) | -40(3) |
| C(13) | 49(3) | 30(3) | 33(3) | -2(2) | 15(3) | -14(2) |
| C(14) | 34(3) | 25(3) | 38(3) | 0(2) | 17(2) | -9(2) |
| C(15) | 59(3) | 23(3) | 41(3) | 2(2) | 29(3) | -13(2) |
| C(16) | 98(5) | 39(3) | 40(3) | -8(3) | 45(3) | -25(3) |
| C(17) | 109(5) | 29(3) | 48(4) | -13(3) | 44(4) | -28(3) |
| C(18) | 59(4) | 36(3) | 35(3) | -1(3) | 29(3) | -8(3) |
| C(19) | 40(3) | 30(3) | 46(4) | 3(3) | 20(3) | -9(2) |
| C(20) | 41(3) | 20(3) | 43(3) | -3(2) | 29(3) | -8(2) |
| C(21) | 34(3) | 32(3) | 47(3) | 7(3) | 17(3) | -11(2) |
| C(22) | 52(4) | 29(3) | 47(3) | 19(3) | 20(3) | 2(3) |
| C(23) | 28(3) | 26(3) | 60(4) | -2(3) | 21(3) | -2(2) |
| C(24) | 49(4) | 35(3) | 38(3) | 7(3) | 18(3) | 3(3) |
| N(1) | 42(3) | 24(2) | 37(3) | 2(2) | 28(2) | -3(2) |
| N(2) | 56(3) | 28(2) | 32(3) | -2(2) | 25(2) | -18(2) |
| N(3) | 45(3) | 22(2) | 36(3) | -2(2) | 20(2) | -13(2) |
| N(4) | 34(3) | 26(2) | 35(3) | 0(2) | 21(2) | -2(2) |
| O(1) | 88(3) | 40(2) | 46(2) | -9(2) | 37(2) | -33(2) |
| O(2) | 129(4) | 61(3) | 49(3) | -22(2) | 58(3) | -51(3) |
| O(3) | 71(3) | 31(2) | 52(2) | -7(2) | 33(2) | -24(2) |
| O(4) | 104(3) | 37(2) | 55(3) | -10(2) | 56(2) | -25(2) |
| C(41) | 71(5) | 36(3) | 65(5) | 9(3) | 22(4) | 14(3) |
| C(42) | 239(14) | 98(7) | 263(16) | -45(8) | 183(14) | -33(8) |
| C(43) | 150(8) | 94(6) | 50(5) | -15(4) | -12(5) | 24(5) |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C(44)</td>
<td>95(8)</td>
<td>440(20)</td>
<td>110(9)</td>
<td>3(11)</td>
<td>17(7)</td>
<td>-118(11)</td>
</tr>
<tr>
<td>Cl(31)</td>
<td>71(2)</td>
<td>123(2)</td>
<td>200(3)</td>
<td>-54(2)</td>
<td>9(2)</td>
<td>11(1)</td>
</tr>
<tr>
<td>O(31)</td>
<td>401(18)</td>
<td>343(18)</td>
<td>458(18)</td>
<td>75(12)</td>
<td>180(14)</td>
<td>-182(14)</td>
</tr>
<tr>
<td>O(32)</td>
<td>206(8)</td>
<td>274(10)</td>
<td>202(7)</td>
<td>-165(7)</td>
<td>-79(6)</td>
<td>156(7)</td>
</tr>
<tr>
<td>O(33)</td>
<td>89(5)</td>
<td>179(8)</td>
<td>463(15)</td>
<td>-124(8)</td>
<td>-90(7)</td>
<td>68(5)</td>
</tr>
<tr>
<td>O(34)</td>
<td>67(3)</td>
<td>138(5)</td>
<td>184(6)</td>
<td>-68(4)</td>
<td>48(4)</td>
<td>-34(3)</td>
</tr>
</tbody>
</table>

Table 4. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^{-3}) for the square-grid MOF.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1)</td>
<td>1626</td>
<td>254</td>
<td>9916</td>
</tr>
<tr>
<td>H(2)</td>
<td>2264</td>
<td>814</td>
<td>9326</td>
</tr>
<tr>
<td>H(4)</td>
<td>236</td>
<td>1433</td>
<td>8208</td>
</tr>
<tr>
<td>H(5)</td>
<td>-343</td>
<td>868</td>
<td>8853</td>
</tr>
<tr>
<td>H(11)</td>
<td>2621</td>
<td>2801</td>
<td>9258</td>
</tr>
<tr>
<td>H(12)</td>
<td>3220</td>
<td>3378</td>
<td>8635</td>
</tr>
<tr>
<td>H(16)</td>
<td>2808</td>
<td>1882</td>
<td>5668</td>
</tr>
<tr>
<td>H(17)</td>
<td>2142</td>
<td>1326</td>
<td>6255</td>
</tr>
<tr>
<td>H(21)</td>
<td>2876</td>
<td>3842</td>
<td>5361</td>
</tr>
<tr>
<td>H(22)</td>
<td>4970</td>
<td>3440</td>
<td>6680</td>
</tr>
<tr>
<td>H(23)</td>
<td>5466</td>
<td>4073</td>
<td>6079</td>
</tr>
<tr>
<td>H(24)</td>
<td>3446</td>
<td>4447</td>
<td>4782</td>
</tr>
<tr>
<td>H(42A)</td>
<td>125</td>
<td>50</td>
<td>11988</td>
</tr>
<tr>
<td>H(42B)</td>
<td>738</td>
<td>387</td>
<td>12598</td>
</tr>
<tr>
<td>H(42C)</td>
<td>785</td>
<td>-204</td>
<td>12674</td>
</tr>
<tr>
<td>H(43A)</td>
<td>1635</td>
<td>132</td>
<td>13228</td>
</tr>
<tr>
<td>H(43B)</td>
<td>2304</td>
<td>503</td>
<td>13192</td>
</tr>
<tr>
<td>H(43C)</td>
<td>2448</td>
<td>-83</td>
<td>13227</td>
</tr>
<tr>
<td>H(44A)</td>
<td>2307</td>
<td>51</td>
<td>11281</td>
</tr>
<tr>
<td>H(44B)</td>
<td>2920</td>
<td>114</td>
<td>12128</td>
</tr>
<tr>
<td>H(44C)</td>
<td>2476</td>
<td>588</td>
<td>11678</td>
</tr>
</tbody>
</table>
Table 5. Torsional angles (°) in the square-grid MOF.

<table>
<thead>
<tr>
<th>Bond Sequence</th>
<th>Torsion Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(41)-O(41)-Zn(1)-O(41)#1</td>
<td>45(5)</td>
</tr>
<tr>
<td>C(41)-O(41)-Zn(1)-N(1)</td>
<td>136.1(5)</td>
</tr>
<tr>
<td>C(41)-O(41)-Zn(1)-N(1)#1</td>
<td>-43.9(5)</td>
</tr>
<tr>
<td>C(41)-O(41)-Zn(1)-N(4)#2</td>
<td>49.1(5)</td>
</tr>
<tr>
<td>C(41)-O(41)-Zn(1)-N(4)#3</td>
<td>-130.9(5)</td>
</tr>
<tr>
<td>N(1)-C(1)-C(2)-C(3)</td>
<td>-0.3(9)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)-C(4)</td>
<td>0.1(8)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)-C(5)</td>
<td>180.0(4)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)-N(1)</td>
<td>-1.4(7)</td>
</tr>
<tr>
<td>O(1)-C(6)-C(7)-C(17)</td>
<td>-1.7(8)</td>
</tr>
<tr>
<td>N(2)-C(6)-C(7)-C(8)</td>
<td>179.3(5)</td>
</tr>
<tr>
<td>O(1)-C(6)-C(7)-C(8)</td>
<td>179.3(5)</td>
</tr>
<tr>
<td>N(2)-C(6)-C(7)-C(8)</td>
<td>0.5(7)</td>
</tr>
<tr>
<td>C(7)-C(8)-C(9)</td>
<td>-178.2(5)</td>
</tr>
<tr>
<td>C(6)-C(7)-C(8)-C(9)</td>
<td>0.8(7)</td>
</tr>
<tr>
<td>C(17)-C(7)-C(8)-C(14)</td>
<td>3.1(7)</td>
</tr>
<tr>
<td>C(6)-C(7)-C(8)-C(14)</td>
<td>-177.9(4)</td>
</tr>
<tr>
<td>C(14)-C(8)-C(9)-C(11)</td>
<td>-2.1(8)</td>
</tr>
<tr>
<td>C(7)-C(8)-C(9)-C(11)</td>
<td>179.2(6)</td>
</tr>
<tr>
<td>C(14)-C(8)-C(9)-C(10)</td>
<td>178.5(5)</td>
</tr>
<tr>
<td>C(7)-C(8)-C(9)-C(10)</td>
<td>-0.1(8)</td>
</tr>
<tr>
<td>C(11)-C(9)-C(10)-O(2)</td>
<td>0.8(9)</td>
</tr>
<tr>
<td>C(8)-C(9)-C(10)-O(2)</td>
<td>-179.9(6)</td>
</tr>
<tr>
<td>C(11)-C(9)-C(10)-N(2)</td>
<td>178.9(5)</td>
</tr>
<tr>
<td>C(8)-C(9)-C(10)-N(2)</td>
<td>-1.8(8)</td>
</tr>
<tr>
<td>C(8)-C(9)-C(11)-C(12)</td>
<td>3.1(9)</td>
</tr>
<tr>
<td>C(10)-C(9)-C(11)-C(12)</td>
<td>-177.6(6)</td>
</tr>
<tr>
<td>C(9)-C(11)-C(12)-C(13)</td>
<td>-1.6(10)</td>
</tr>
<tr>
<td>C(11)-C(12)-C(13)-C(14)</td>
<td>-0.9(9)</td>
</tr>
<tr>
<td>C(11)-C(12)-C(13)-C(19)</td>
<td>176.8(5)</td>
</tr>
<tr>
<td>C(12)-C(13)-C(14)-C(15)</td>
<td>-178.2(5)</td>
</tr>
<tr>
<td>C(19)-C(13)-C(14)-C(15)</td>
<td>4.2(7)</td>
</tr>
<tr>
<td>C(12)-C(13)-C(14)-C(8)</td>
<td>1.8(8)</td>
</tr>
<tr>
<td>C(19)-C(13)-C(14)-C(8)</td>
<td>-175.8(4)</td>
</tr>
<tr>
<td>C(9)-C(8)-C(14)-C(13)</td>
<td>-0.3(7)</td>
</tr>
<tr>
<td>C(7)-C(8)-C(14)-C(13)</td>
<td>178.3(4)</td>
</tr>
<tr>
<td>C(9)-C(8)-C(14)-C(15)</td>
<td>179.7(5)</td>
</tr>
<tr>
<td>C(7)-C(8)-C(14)-C(15)</td>
<td>-1.6(7)</td>
</tr>
<tr>
<td>C(13)-C(14)-C(15)-C(16)</td>
<td>178.6(5)</td>
</tr>
<tr>
<td>C(8)-C(14)-C(15)-C(16)</td>
<td>-1.4(8)</td>
</tr>
<tr>
<td>C(13)-C(14)-C(15)-C(18)</td>
<td>-1.7(7)</td>
</tr>
<tr>
<td>C(8)-C(14)-C(15)-C(18)</td>
<td>178.3(5)</td>
</tr>
<tr>
<td>C(14)-C(15)-C(16)-C(17)</td>
<td>3.0(9)</td>
</tr>
<tr>
<td>C(18)-C(15)-C(16)-C(17)</td>
<td>-176.7(5)</td>
</tr>
<tr>
<td>C(8)-C(7)-C(17)-C(16)</td>
<td>-1.6(9)</td>
</tr>
<tr>
<td>C(6)-C(7)-C(17)-C(16)</td>
<td>179.4(5)</td>
</tr>
<tr>
<td>C(15)-C(16)-C(17)-C(7)</td>
<td>-1.5(9)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>C(16)-C(15)-C(18)-O(4)</td>
<td>-2.5(8)</td>
</tr>
<tr>
<td>C(14)-C(15)-C(18)-O(4)</td>
<td>177.8(5)</td>
</tr>
<tr>
<td>C(16)-C(15)-C(18)-N(3)</td>
<td>176.2(5)</td>
</tr>
<tr>
<td>C(14)-C(15)-C(18)-N(3)</td>
<td>-3.5(7)</td>
</tr>
<tr>
<td>C(12)-C(13)-C(19)-O(3)</td>
<td>0.5(8)</td>
</tr>
<tr>
<td>C(14)-C(13)-C(19)-O(3)</td>
<td>178.1(5)</td>
</tr>
<tr>
<td>C(12)-C(13)-C(19)-N(3)</td>
<td>-179.0(5)</td>
</tr>
<tr>
<td>C(14)-C(13)-C(19)-N(3)</td>
<td>-1.4(7)</td>
</tr>
<tr>
<td>C(22)-C(20)-C(21)-C(24)</td>
<td>-2.3(7)</td>
</tr>
<tr>
<td>N(3)-C(20)-C(21)-C(24)</td>
<td>177.0(4)</td>
</tr>
<tr>
<td>C(21)-C(20)-C(22)-C(23)</td>
<td>3.1(7)</td>
</tr>
<tr>
<td>N(3)-C(20)-C(22)-C(23)</td>
<td>-176.1(4)</td>
</tr>
<tr>
<td>C(20)-C(22)-C(23)-N(4)</td>
<td>0.1(7)</td>
</tr>
<tr>
<td>C(20)-C(21)-C(24)-N(4)</td>
<td>-2.0(7)</td>
</tr>
<tr>
<td>C(2)-C(1)-N(1)-C(5)</td>
<td>-0.4(8)</td>
</tr>
<tr>
<td>C(2)-C(1)-N(1)-Zn(1)</td>
<td>-178.7(4)</td>
</tr>
<tr>
<td>C(4)-C(5)-N(1)-C(1)</td>
<td>1.3(7)</td>
</tr>
<tr>
<td>C(4)-C(5)-N(1)-Zn(1)</td>
<td>179.6(3)</td>
</tr>
<tr>
<td>O(41)-Zn(1)-N(1)-C(1)</td>
<td>33.7(4)</td>
</tr>
<tr>
<td>O(41)#1-Zn(1)-N(1)-C(1)</td>
<td>-146.3(4)</td>
</tr>
<tr>
<td>N(1)#1-Zn(1)-N(1)-C(1)</td>
<td>104(32)</td>
</tr>
<tr>
<td>N(4)#2-Zn(1)-N(1)-C(1)</td>
<td>125.7(4)</td>
</tr>
<tr>
<td>N(4)#3-Zn(1)-N(1)-C(1)</td>
<td>-54.3(4)</td>
</tr>
<tr>
<td>O(41)-Zn(1)-N(1)-C(5)</td>
<td>-144.5(3)</td>
</tr>
<tr>
<td>O(41)#1-Zn(1)-N(1)-C(5)</td>
<td>35.5(3)</td>
</tr>
<tr>
<td>N(1)#1-Zn(1)-N(1)-C(5)</td>
<td>-74(32)</td>
</tr>
<tr>
<td>N(4)#2-Zn(1)-N(1)-C(5)</td>
<td>-52.6(3)</td>
</tr>
<tr>
<td>N(4)#3-Zn(1)-N(1)-C(5)</td>
<td>127.4(3)</td>
</tr>
<tr>
<td>O(1)-C(6)-N(2)-C(10)</td>
<td>178.5(5)</td>
</tr>
<tr>
<td>C(7)-C(6)-N(2)-C(10)</td>
<td>-2.6(7)</td>
</tr>
<tr>
<td>O(1)-C(6)-N(2)-C(3)</td>
<td>3.8(7)</td>
</tr>
<tr>
<td>C(7)-C(6)-N(2)-C(3)</td>
<td>-177.4(4)</td>
</tr>
<tr>
<td>O(2)-C(10)-N(2)-C(6)</td>
<td>-178.6(5)</td>
</tr>
<tr>
<td>C(9)-C(10)-N(2)-C(6)</td>
<td>3.2(8)</td>
</tr>
<tr>
<td>O(2)-C(10)-N(2)-C(3)</td>
<td>-3.8(8)</td>
</tr>
<tr>
<td>C(9)-C(10)-N(2)-C(3)</td>
<td>178.0(5)</td>
</tr>
<tr>
<td>C(4)-C(3)-N(2)-C(6)</td>
<td>-89.8(6)</td>
</tr>
<tr>
<td>C(2)-C(3)-N(2)-C(6)</td>
<td>89.5(6)</td>
</tr>
<tr>
<td>C(4)-C(3)-N(2)-C(10)</td>
<td>94.9(6)</td>
</tr>
<tr>
<td>C(2)-C(3)-N(2)-C(10)</td>
<td>-85.8(6)</td>
</tr>
<tr>
<td>O(4)-C(18)-N(3)-C(19)</td>
<td>-174.6(5)</td>
</tr>
<tr>
<td>C(15)-C(18)-N(3)-C(19)</td>
<td>6.6(7)</td>
</tr>
<tr>
<td>O(4)-C(18)-N(3)-C(20)</td>
<td>1.3(7)</td>
</tr>
<tr>
<td>C(15)-C(18)-N(3)-C(20)</td>
<td>-177.4(4)</td>
</tr>
<tr>
<td>O(3)-C(19)-N(3)-C(18)</td>
<td>176.2(5)</td>
</tr>
<tr>
<td>C(13)-C(19)-N(3)-C(18)</td>
<td>-4.2(7)</td>
</tr>
<tr>
<td>O(3)-C(19)-N(3)-C(20)</td>
<td>0.2(7)</td>
</tr>
<tr>
<td>C(13)-C(19)-N(3)-C(20)</td>
<td>179.7(4)</td>
</tr>
<tr>
<td>C(21)-C(20)-N(3)-C(18)</td>
<td>83.4(6)</td>
</tr>
<tr>
<td>C(22)-C(20)-N(3)-C(18)</td>
<td>-97.4(5)</td>
</tr>
<tr>
<td>C(21)-C(20)-N(3)-C(19)</td>
<td>-100.3(5)</td>
</tr>
</tbody>
</table>
C(22)-C(20)-N(3)-C(19) 78.9(5)
C(21)-C(24)-N(4)-C(23) 5.0(7)
C(21)-C(24)-N(4)-Zn(1)#4 -169.5(4)
C(22)-C(23)-N(4)-C(24) -4.0(7)
C(22)-C(23)-N(4)-Zn(1)#4 170.6(4)
Zn(1)-O(41)-C(41)-N(41) -165.4(4)
Zn(1)-O(41)-C(41)-C(42) 4.0(10)
C(43)-N(41)-C(41)-O(41) -177.7(6)
C(43)-N(41)-C(41)-C(42) 11.1(9)
C(44)-N(41)-C(41)-C(42) -172.3(9)

Symmetry transformations used to generate equivalent atoms:
#1 -x,-y,-z+2 #2 x-1/2,-y+1/2,z+1/2 #3 -x+1/2,y-1/2,-z+3/2
#4 -x+1/2,y+1/2,-z+3/2
Bond Length and Bond angle table of 1D coordination polymer

Table 6. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for the 1D coordination polymer. U(eq) is defined as one third of the trace of the orthogonalized U_ij tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(1)</td>
<td>5240(1)</td>
<td>1802(1)</td>
<td>4311(1)</td>
<td>20(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>3495(2)</td>
<td>1277(1)</td>
<td>4904(1)</td>
<td>26(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>3902(2)</td>
<td>1891(1)</td>
<td>5269(1)</td>
<td>29(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>2668(2)</td>
<td>980(1)</td>
<td>5045(1)</td>
<td>36(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>3973(1)</td>
<td>972(1)</td>
<td>4384(1)</td>
<td>28(1)</td>
</tr>
<tr>
<td>N(4)</td>
<td>6621(2)</td>
<td>3087(1)</td>
<td>4410(1)</td>
<td>26(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>6519(1)</td>
<td>2457(1)</td>
<td>3992(1)</td>
<td>26(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>6018(2)</td>
<td>3197(1)</td>
<td>4908(1)</td>
<td>31(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>7305(2)</td>
<td>3562(1)</td>
<td>4308(1)</td>
<td>39(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>7036(2)</td>
<td>908(1)</td>
<td>5577(1)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>7742(2)</td>
<td>650(1)</td>
<td>6368(1)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>7709(2)</td>
<td>1018(1)</td>
<td>7132(1)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>7013(2)</td>
<td>1641(1)</td>
<td>7089(1)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>6340(2)</td>
<td>1861(1)</td>
<td>6266(1)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>9208(2)</td>
<td>1204(1)</td>
<td>8485(1)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>8132(2)</td>
<td>-13(1)</td>
<td>8190(1)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>10685(2)</td>
<td>1338(1)</td>
<td>9898(1)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>9871(2)</td>
<td>894(1)</td>
<td>9347(1)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>9672(2)</td>
<td>148(1)</td>
<td>9593(1)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>8832(2)</td>
<td>-314(1)</td>
<td>9044(1)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>8662(2)</td>
<td>-1046(1)</td>
<td>9291(1)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>4033(2)</td>
<td>2567(2)</td>
<td>2687(2)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>3278(2)</td>
<td>2993(2)</td>
<td>2057(2)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>2460(2)</td>
<td>3381(1)</td>
<td>2300(1)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>2405(2)</td>
<td>3334(2)</td>
<td>3149(2)</td>
<td>38(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>3200(2)</td>
<td>2896(2)</td>
<td>3737(2)</td>
<td>39(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>867(2)</td>
<td>3484(1)</td>
<td>1005(1)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>135(2)</td>
<td>3978(1)</td>
<td>322(1)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>342(2)</td>
<td>4769(1)</td>
<td>334(1)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(21)</td>
<td>1220(2)</td>
<td>5110(1)</td>
<td>991(1)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(22)</td>
<td>1944(2)</td>
<td>4633(1)</td>
<td>1694(1)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(23)</td>
<td>1418(2)</td>
<td>5882(1)</td>
<td>985(1)</td>
<td>23(1)</td>
</tr>
<tr>
<td>N(11)</td>
<td>6334(2)</td>
<td>1496(1)</td>
<td>5519(1)</td>
<td>20(1)</td>
</tr>
<tr>
<td>N(12)</td>
<td>8362(1)</td>
<td>734(1)</td>
<td>7974(1)</td>
<td>19(1)</td>
</tr>
<tr>
<td>N(13)</td>
<td>4007(2)</td>
<td>2510(1)</td>
<td>3517(1)</td>
<td>23(1)</td>
</tr>
<tr>
<td>N(14)</td>
<td>1690(2)</td>
<td>3853(1)</td>
<td>1662(1)</td>
<td>22(1)</td>
</tr>
<tr>
<td>O(11)</td>
<td>9378(2)</td>
<td>1827(1)</td>
<td>8223(1)</td>
<td>33(1)</td>
</tr>
<tr>
<td>O(12)</td>
<td>7387(1)</td>
<td>-379(1)</td>
<td>7703(1)</td>
<td>25(1)</td>
</tr>
<tr>
<td>O(13)</td>
<td>777(2)</td>
<td>2797(1)</td>
<td>1012(1)</td>
<td>35(1)</td>
</tr>
<tr>
<td>O(14)</td>
<td>2731(1)</td>
<td>4880(1)</td>
<td>2264(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(41)</td>
<td>5228(2)</td>
<td>522(1)</td>
<td>2967(1)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(42)</td>
<td>5117(2)</td>
<td>-156(1)</td>
<td>3503(2)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(43)</td>
<td>4668(2)</td>
<td>-261(2)</td>
<td>1628(2)</td>
<td>36(1)</td>
</tr>
</tbody>
</table>
Table 7. Bond lengths [Å] and angles [°] for the 1D coordination polymer.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(1)-O(41)</td>
<td>2.0496(16)</td>
</tr>
<tr>
<td>Zn(1)-N(11)</td>
<td>2.0839(17)</td>
</tr>
<tr>
<td>Zn(1)-N(13)</td>
<td>2.0973(18)</td>
</tr>
<tr>
<td>Zn(1)-O(4)</td>
<td>2.1409(17)</td>
</tr>
<tr>
<td>N(1)-O(2)</td>
<td>2.1791(17)</td>
</tr>
<tr>
<td>N(1)-O(1)</td>
<td>1.232(3)</td>
</tr>
<tr>
<td>N(1)-O(3)</td>
<td>1.263(3)</td>
</tr>
<tr>
<td>N(4)-O(6)</td>
<td>1.267(3)</td>
</tr>
<tr>
<td>N(4)-O(5)</td>
<td>1.267(3)</td>
</tr>
<tr>
<td>N(4)-O(4)</td>
<td>1.279(3)</td>
</tr>
<tr>
<td>C(1)-N(11)</td>
<td>1.341(3)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.388(3)</td>
</tr>
<tr>
<td>C(1)-H(1)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.386(3)</td>
</tr>
<tr>
<td>C(2)-H(2)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.387(3)</td>
</tr>
<tr>
<td>C(3)-N(12)</td>
<td>1.443(2)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.391(3)</td>
</tr>
<tr>
<td>C(4)-H(4)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(5)-N(11)</td>
<td>1.349(3)</td>
</tr>
<tr>
<td>C(5)-H(5)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(6)-O(11)</td>
<td>1.213(3)</td>
</tr>
<tr>
<td>C(6)-N(12)</td>
<td>1.402(3)</td>
</tr>
<tr>
<td>C(6)-C(9)</td>
<td>1.487(3)</td>
</tr>
<tr>
<td>C(7)-O(12)</td>
<td>1.211(3)</td>
</tr>
<tr>
<td>C(7)-N(12)</td>
<td>1.408(3)</td>
</tr>
<tr>
<td>C(7)-C(11)</td>
<td>1.486(3)</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.378(3)</td>
</tr>
<tr>
<td>C(8)-C(12)#1</td>
<td>1.410(3)</td>
</tr>
<tr>
<td>C(8)-H(8)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.412(3)</td>
</tr>
<tr>
<td>C(10)-C(11)</td>
<td>1.413(3)</td>
</tr>
<tr>
<td>C(10)-C(10)#1</td>
<td>1.418(4)</td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.380(3)</td>
</tr>
<tr>
<td>C(12)-C(8)#1</td>
<td>1.410(3)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>C(12)-H(12)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(13)-N(13)</td>
<td>1.331(3)</td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.383(3)</td>
</tr>
<tr>
<td>C(13)-H(13)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.371(3)</td>
</tr>
<tr>
<td>C(14)-H(14)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>1.371(3)</td>
</tr>
<tr>
<td>C(15)-N(14)</td>
<td>1.443(3)</td>
</tr>
<tr>
<td>C(16)-C(17)</td>
<td>1.387(3)</td>
</tr>
<tr>
<td>C(16)-H(16)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(17)-N(13)</td>
<td>1.339(3)</td>
</tr>
<tr>
<td>C(17)-H(17)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(18)-O(13)</td>
<td>1.213(3)</td>
</tr>
<tr>
<td>C(18)-N(14)</td>
<td>1.399(3)</td>
</tr>
<tr>
<td>C(18)-C(19)</td>
<td>1.484(3)</td>
</tr>
<tr>
<td>C(19)-C(45)#2</td>
<td>1.380(3)</td>
</tr>
<tr>
<td>C(19)-C(20)</td>
<td>1.415(3)</td>
</tr>
<tr>
<td>C(20)-C(21)</td>
<td>1.413(3)</td>
</tr>
<tr>
<td>C(20)-C(20)#2</td>
<td>1.414(4)</td>
</tr>
<tr>
<td>C(21)-C(23)</td>
<td>1.381(3)</td>
</tr>
<tr>
<td>C(21)-C(22)</td>
<td>1.480(3)</td>
</tr>
<tr>
<td>C(22)-O(14)</td>
<td>1.211(3)</td>
</tr>
<tr>
<td>C(22)-N(14)</td>
<td>1.406(3)</td>
</tr>
<tr>
<td>C(23)-C(45)</td>
<td>1.407(3)</td>
</tr>
<tr>
<td>C(23)-H(23)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(41)-O(41)</td>
<td>1.258(3)</td>
</tr>
<tr>
<td>C(41)-N(41)</td>
<td>1.330(3)</td>
</tr>
<tr>
<td>C(41)-C(42)</td>
<td>1.495(3)</td>
</tr>
<tr>
<td>C(42)-H(42A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(42)-H(42B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(42)-H(42C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(43)-N(41)</td>
<td>1.462(3)</td>
</tr>
<tr>
<td>C(43)-H(43A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(43)-H(43B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(43)-H(43C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(44)-N(41)</td>
<td>1.455(3)</td>
</tr>
<tr>
<td>C(44)-H(44A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(44)-H(44B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(44)-H(44C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(45)-C(19)#2</td>
<td>1.380(3)</td>
</tr>
<tr>
<td>C(45)-H(45)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(46)-N(46)</td>
<td>1.069(7)</td>
</tr>
<tr>
<td>C(46)-O(46)</td>
<td>1.214(4)</td>
</tr>
<tr>
<td>C(46)-C(47)</td>
<td>1.690(9)</td>
</tr>
<tr>
<td>C(47)-H(47A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(47)-H(47B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(47)-H(47C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(48)-N(46)</td>
<td>1.447(4)</td>
</tr>
<tr>
<td>C(48)-H(48A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(48)-H(48B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(48)-H(48C)</td>
<td>0.9800</td>
</tr>
</tbody>
</table>
C(49)-N(46) 1.77(5)
C(49)-H(49A) 0.9800
C(49)-H(49B) 0.9800
C(49)-H(49C) 0.9800
O(41)-Zn(1)-N(11) 110.14(7)
O(41)-Zn(1)-N(13) 97.61(7)
N(11)-Zn(1)-N(13) 151.99(7)
O(41)-Zn(1)-O(4) 79.26(6)
N(11)-Zn(1)-O(4) 91.17(7)
N(13)-Zn(1)-O(4) 90.32(7)
N(11)-Zn(1)-O(3) 103.47(14)
O(41)-Zn(1)-O(3) 123.2(2)
N(13)-Zn(1)-O(3) 119.50(19)
N(11)-C(1)-C(2) 123.2(2)
N(11)-C(1)-H(1) 118.4
C(2)-C(1)-H(1) 118.4
C(1)-C(2)-C(3) 118.1(2)
C(1)-C(2)-H(2) 121.0
C(3)-C(2)-H(2) 121.0
C(2)-C(3)-C(4) 119.96(18)
C(2)-C(3)-N(12) 120.01(19)
C(4)-C(3)-N(12) 119.97(19)
C(3)-C(4)-C(5) 117.9(2)
C(3)-C(4)-H(4) 121.0
C(5)-C(4)-H(4) 121.0
N(11)-C(5)-C(4) 123.0(2)
N(11)-C(5)-H(5) 118.5
C(4)-C(5)-H(5) 118.5
O(11)-C(6)-N(12) 120.78(19)
O(11)-C(6)-C(9) 122.8(2)
N(12)-C(6)-C(9) 116.43(18)
O(12)-C(7)-N(12) 120.92(18)
O(12)-C(7)-C(11) 122.50(19)
N(12)-C(7)-C(11) 116.57(18)
C(9)-C(8)-C(12)#1 120.1(2)
C(9)-C(8)-H(8) 119.9
C(12)#1-C(8)-H(8) 119.9
C(8)-C(9)-C(10) 120.46(18)
C(8)-C(9)-C(6) 119.50(19)
C(10)-C(9)-C(6) 120.04(18)
C(9)-C(10)-C(11) 121.45(17)
C(9)-C(10)-C(10)#1 119.5(2)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(11)-C(10)-C(10)#1</td>
<td>119.0(2)</td>
</tr>
<tr>
<td>C(12)-C(11)-C(10)</td>
<td>120.50(18)</td>
</tr>
<tr>
<td>C(12)-C(11)-C(7)</td>
<td>119.66(19)</td>
</tr>
<tr>
<td>C(10)-C(11)-C(7)</td>
<td>119.84(18)</td>
</tr>
<tr>
<td>C(11)-C(12)-C(8)#1</td>
<td>120.33(19)</td>
</tr>
<tr>
<td>C(11)-C(12)-H(12)</td>
<td>119.8</td>
</tr>
<tr>
<td>C(8)#1-C(12)-H(12)</td>
<td>119.8</td>
</tr>
<tr>
<td>N(13)-C(13)-C(14)</td>
<td>123.6(2)</td>
</tr>
<tr>
<td>N(13)-C(13)-H(13)</td>
<td>118.2</td>
</tr>
<tr>
<td>C(14)-C(13)-H(13)</td>
<td>118.2</td>
</tr>
<tr>
<td>C(15)-C(14)-C(13)</td>
<td>118.3(2)</td>
</tr>
<tr>
<td>C(15)-C(14)-H(14)</td>
<td>120.8</td>
</tr>
<tr>
<td>C(13)-C(14)-H(14)</td>
<td>120.8</td>
</tr>
<tr>
<td>C(16)-C(15)-C(14)</td>
<td>119.7(2)</td>
</tr>
<tr>
<td>C(16)-C(15)-N(14)</td>
<td>121.0(2)</td>
</tr>
<tr>
<td>C(14)-C(15)-N(14)</td>
<td>119.3(2)</td>
</tr>
<tr>
<td>C(15)-C(16)-C(17)</td>
<td>118.0(2)</td>
</tr>
<tr>
<td>C(15)-C(16)-H(16)</td>
<td>121.0</td>
</tr>
<tr>
<td>C(17)-C(16)-H(16)</td>
<td>121.0</td>
</tr>
<tr>
<td>N(13)-C(17)-C(16)</td>
<td>123.4(2)</td>
</tr>
<tr>
<td>N(13)-C(17)-H(17)</td>
<td>118.3</td>
</tr>
<tr>
<td>C(16)-C(17)-H(17)</td>
<td>118.3</td>
</tr>
<tr>
<td>O(13)-C(18)-N(14)</td>
<td>120.4(2)</td>
</tr>
<tr>
<td>O(13)-C(18)-C(19)</td>
<td>123.4(2)</td>
</tr>
<tr>
<td>N(14)-C(18)-C(19)</td>
<td>116.18(19)</td>
</tr>
<tr>
<td>C(45)#2-C(19)-C(20)</td>
<td>120.84(19)</td>
</tr>
<tr>
<td>C(45)#2-C(19)-C(18)</td>
<td>119.5(2)</td>
</tr>
<tr>
<td>C(20)-C(19)-C(18)</td>
<td>119.64(19)</td>
</tr>
<tr>
<td>C(21)-C(20)-C(19)</td>
<td>121.91(18)</td>
</tr>
<tr>
<td>C(21)-C(20)-C(20)#2</td>
<td>118.9(2)</td>
</tr>
<tr>
<td>C(19)-C(20)-C(20)#2</td>
<td>119.2(2)</td>
</tr>
<tr>
<td>C(23)-C(21)-C(20)</td>
<td>121.08(19)</td>
</tr>
<tr>
<td>C(23)-C(21)-C(22)</td>
<td>119.36(19)</td>
</tr>
<tr>
<td>C(20)-C(21)-C(22)</td>
<td>119.56(19)</td>
</tr>
<tr>
<td>O(14)-C(22)-N(14)</td>
<td>120.19(19)</td>
</tr>
<tr>
<td>O(14)-C(22)-C(21)</td>
<td>123.4(2)</td>
</tr>
<tr>
<td>N(14)-C(22)-C(21)</td>
<td>116.37(19)</td>
</tr>
<tr>
<td>C(21)-C(23)-C(45)</td>
<td>120.0(2)</td>
</tr>
<tr>
<td>C(21)-C(23)-H(23)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(45)-C(23)-H(23)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(1)-N(11)-C(5)</td>
<td>117.84(17)</td>
</tr>
<tr>
<td>C(1)-N(11)-Zn(1)</td>
<td>120.45(14)</td>
</tr>
<tr>
<td>C(5)-N(11)-Zn(1)</td>
<td>121.68(14)</td>
</tr>
<tr>
<td>C(6)-N(12)-C(7)</td>
<td>125.59(17)</td>
</tr>
<tr>
<td>C(6)-N(12)-C(3)</td>
<td>117.64(17)</td>
</tr>
<tr>
<td>C(7)-N(12)-C(3)</td>
<td>116.67(17)</td>
</tr>
<tr>
<td>C(13)-N(13)-C(17)</td>
<td>116.9(2)</td>
</tr>
<tr>
<td>C(13)-N(13)-Zn(1)</td>
<td>114.79(15)</td>
</tr>
<tr>
<td>C(17)-N(13)-Zn(1)</td>
<td>128.28(15)</td>
</tr>
<tr>
<td>C(18)-N(14)-C(22)</td>
<td>126.15(18)</td>
</tr>
<tr>
<td>C(18)-N(14)-C(15)</td>
<td>117.07(18)</td>
</tr>
</tbody>
</table>
C(22)-N(14)-C(15) 116.12(18)
O(41)-C(41)-N(41) 120.0(2)
O(41)-C(41)-C(42) 120.7(2)
N(41)-C(41)-C(42) 119.3(2)
C(41)-C(42)-H(42A) 109.5
C(41)-C(42)-H(42B) 109.5
C(41)-C(42)-H(42C) 109.5
H(42A)-C(42)-H(42B) 109.5
H(42A)-C(42)-H(42C) 109.5
H(42B)-C(42)-H(42C) 109.5
C(19)#2-C(45)-C(23) 120.0(2)
C(19)#2-C(45)-H(45) 120.0
C(23)-C(45)-H(45) 120.0
N(46)-C(46)-O(46) 143.7(10)
N(46)-C(46)-C(47) 98.4(5)
O(46)-C(46)-C(47) 118.0(7)
C(46)-C(47)-H(47A) 109.5
C(46)-C(47)-H(47B) 109.5
H(47A)-C(47)-H(47B) 109.5
C(46)-C(47)-H(47C) 109.5
H(47A)-C(47)-H(47C) 109.5
H(47B)-C(47)-H(47C) 109.5
N(46)-C(48)-H(48A) 109.5
N(46)-C(48)-H(48B) 109.5
H(48A)-C(48)-H(48B) 109.5
N(46)-C(48)-H(48C) 109.5
H(48A)-C(48)-H(48C) 109.5
H(48B)-C(48)-H(48C) 109.5
N(46)-C(49)-H(49A) 109.5
N(46)-C(49)-H(49B) 109.5
H(49A)-C(49)-H(49B) 109.5
N(46)-C(49)-H(49C) 109.5
H(49A)-C(49)-H(49C) 109.5
H(49B)-C(49)-H(49C) 109.5
C(46)-N(46)-C(48) 148.3(7)
C(46)-N(46)-C(49) 102.8(6)
C(48)-N(46)-C(49) 108.5(3)

Symmetry transformations used to generate equivalent atoms:
#1 -x+2,-y,-z+2 #2 -x,-y+1,-z

Table 8. Anisotropic displacement parameters (Å² x 10⁶) for the 1D coordination polymer. The anisotropic displacement factor exponent takes the form: -2π² [h² a*² U¹¹ + . . . + 2 h k a* b* U¹²]

<table>
<thead>
<tr>
<th></th>
<th>U¹¹</th>
<th>U²²</th>
<th>U³³</th>
<th>U²³</th>
<th>U¹³</th>
<th>U¹²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(1)</td>
<td>22(1)</td>
<td>21(1)</td>
<td>14(1)</td>
<td>5(1)</td>
<td>1(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>25(1)</td>
<td>33(1)</td>
<td>19(1)</td>
<td>6(1)</td>
<td>5(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>34(1)</td>
<td>32(1)</td>
<td>20(1)</td>
<td>3(1)</td>
<td>6(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>27(1)</td>
<td>50(1)</td>
<td>35(1)</td>
<td>5(1)</td>
<td>12(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>29(1)</td>
<td>34(1)</td>
<td>22(1)</td>
<td>1(1)</td>
<td>9(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>N(4)</td>
<td>31(1)</td>
<td>26(1)</td>
<td>17(1)</td>
<td>5(1)</td>
<td>2(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>32(1)</td>
<td>25(1)</td>
<td>21(1)</td>
<td>0(1)</td>
<td>6(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>39(1)</td>
<td>31(1)</td>
<td>23(1)</td>
<td>0(1)</td>
<td>10(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>47(1)</td>
<td>36(1)</td>
<td>32(1)</td>
<td>2(1)</td>
<td>10(1)</td>
<td>-17(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>23(1)</td>
<td>26(1)</td>
<td>15(1)</td>
<td>2(1)</td>
<td>5(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>20(1)</td>
<td>27(1)</td>
<td>18(1)</td>
<td>4(1)</td>
<td>4(1)</td>
<td>6(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>18(1)</td>
<td>23(1)</td>
<td>14(1)</td>
<td>6(1)</td>
<td>0(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>24(1)</td>
<td>21(1)</td>
<td>15(1)</td>
<td>2(1)</td>
<td>2(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>23(1)</td>
<td>19(1)</td>
<td>18(1)</td>
<td>3(1)</td>
<td>2(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>23(1)</td>
<td>24(1)</td>
<td>17(1)</td>
<td>4(1)</td>
<td>1(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>19(1)</td>
<td>22(1)</td>
<td>15(1)</td>
<td>3(1)</td>
<td>3(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>26(1)</td>
<td>20(1)</td>
<td>19(1)</td>
<td>4(1)</td>
<td>1(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>20(1)</td>
<td>21(1)</td>
<td>15(1)</td>
<td>4(1)</td>
<td>2(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>18(1)</td>
<td>20(1)</td>
<td>14(1)</td>
<td>3(1)</td>
<td>2(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>18(1)</td>
<td>22(1)</td>
<td>14(1)</td>
<td>2(1)</td>
<td>1(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>23(1)</td>
<td>22(1)</td>
<td>17(1)</td>
<td>1(1)</td>
<td>0(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>39(1)</td>
<td>40(1)</td>
<td>23(1)</td>
<td>9(1)</td>
<td>11(1)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>46(2)</td>
<td>43(2)</td>
<td>18(1)</td>
<td>9(1)</td>
<td>10(1)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>24(1)</td>
<td>22(1)</td>
<td>19(1)</td>
<td>6(1)</td>
<td>2(1)</td>
<td>6(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>43(2)</td>
<td>48(2)</td>
<td>27(1)</td>
<td>14(1)</td>
<td>16(1)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>50(2)</td>
<td>48(2)</td>
<td>21(1)</td>
<td>12(1)</td>
<td>14(1)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>28(1)</td>
<td>22(1)</td>
<td>20(1)</td>
<td>4(1)</td>
<td>3(1)</td>
<td>6(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>23(1)</td>
<td>20(1)</td>
<td>20(1)</td>
<td>3(1)</td>
<td>4(1)</td>
<td>5(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>19(1)</td>
<td>21(1)</td>
<td>18(1)</td>
<td>3(1)</td>
<td>5(1)</td>
<td>5(1)</td>
</tr>
<tr>
<td>C(21)</td>
<td>19(1)</td>
<td>22(1)</td>
<td>18(1)</td>
<td>4(1)</td>
<td>4(1)</td>
<td>5(1)</td>
</tr>
<tr>
<td>C(22)</td>
<td>20(1)</td>
<td>24(1)</td>
<td>20(1)</td>
<td>5(1)</td>
<td>5(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>C(23)</td>
<td>22(1)</td>
<td>24(1)</td>
<td>21(1)</td>
<td>1(1)</td>
<td>3(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>N(11)</td>
<td>21(1)</td>
<td>21(1)</td>
<td>15(1)</td>
<td>5(1)</td>
<td>2(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>N(12)</td>
<td>19(1)</td>
<td>22(1)</td>
<td>13(1)</td>
<td>4(1)</td>
<td>0(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>N(13)</td>
<td>26(1)</td>
<td>23(1)</td>
<td>16(1)</td>
<td>4(1)</td>
<td>3(1)</td>
<td>6(1)</td>
</tr>
<tr>
<td>N(14)</td>
<td>24(1)</td>
<td>22(1)</td>
<td>18(1)</td>
<td>5(1)</td>
<td>2(1)</td>
<td>6(1)</td>
</tr>
<tr>
<td>O(11)</td>
<td>35(1)</td>
<td>29(1)</td>
<td>25(1)</td>
<td>12(1)</td>
<td>-6(1)</td>
<td>-7(1)</td>
</tr>
<tr>
<td>O(12)</td>
<td>23(1)</td>
<td>26(1)</td>
<td>20(1)</td>
<td>3(1)</td>
<td>-3(1)</td>
<td>-1(1)</td>
</tr>
</tbody>
</table>
Table 9. Hydrogen coordinates ($x \times 10^4$) and isotropic displacement parameters ($\AA^2 \times 10^3$) for the 1D coordination polymer

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1)</td>
<td>7051</td>
<td>655</td>
<td>5052</td>
<td>26</td>
</tr>
<tr>
<td>H(2)</td>
<td>8233</td>
<td>234</td>
<td>6385</td>
<td>26</td>
</tr>
<tr>
<td>H(4)</td>
<td>6997</td>
<td>1909</td>
<td>7604</td>
<td>25</td>
</tr>
<tr>
<td>H(5)</td>
<td>5863</td>
<td>2288</td>
<td>6230</td>
<td>25</td>
</tr>
<tr>
<td>H(8)</td>
<td>10806</td>
<td>1842</td>
<td>9731</td>
<td>27</td>
</tr>
<tr>
<td>H(12)</td>
<td>8102</td>
<td>-1354</td>
<td>8914</td>
<td>26</td>
</tr>
<tr>
<td>H(13)</td>
<td>4601</td>
<td>2299</td>
<td>2518</td>
<td>41</td>
</tr>
<tr>
<td>H(14)</td>
<td>3326</td>
<td>3017</td>
<td>1471</td>
<td>43</td>
</tr>
<tr>
<td>H(16)</td>
<td>1840</td>
<td>3595</td>
<td>3328</td>
<td>46</td>
</tr>
<tr>
<td>H(17)</td>
<td>3171</td>
<td>2867</td>
<td>4327</td>
<td>47</td>
</tr>
<tr>
<td>H(23)</td>
<td>2019</td>
<td>6101</td>
<td>1427</td>
<td>28</td>
</tr>
<tr>
<td>H(42A)</td>
<td>5448</td>
<td>-43</td>
<td>4127</td>
<td>39</td>
</tr>
<tr>
<td>H(42B)</td>
<td>5508</td>
<td>-589</td>
<td>3336</td>
<td>39</td>
</tr>
<tr>
<td>H(42C)</td>
<td>4324</td>
<td>-282</td>
<td>3396</td>
<td>39</td>
</tr>
<tr>
<td>H(43A)</td>
<td>5320</td>
<td>-509</td>
<td>1519</td>
<td>55</td>
</tr>
<tr>
<td>H(43B)</td>
<td>4111</td>
<td>-154</td>
<td>1066</td>
<td>55</td>
</tr>
<tr>
<td>H(43C)</td>
<td>4341</td>
<td>-597</td>
<td>1981</td>
<td>55</td>
</tr>
<tr>
<td>H(44A)</td>
<td>4507</td>
<td>1356</td>
<td>1320</td>
<td>53</td>
</tr>
<tr>
<td>H(44B)</td>
<td>5499</td>
<td>892</td>
<td>1101</td>
<td>53</td>
</tr>
<tr>
<td>H(44C)</td>
<td>5759</td>
<td>1432</td>
<td>1946</td>
<td>53</td>
</tr>
<tr>
<td>H(45)</td>
<td>862</td>
<td>6874</td>
<td>325</td>
<td>30</td>
</tr>
<tr>
<td>H(47A)</td>
<td>1852</td>
<td>9310</td>
<td>9359</td>
<td>67</td>
</tr>
<tr>
<td>H(47B)</td>
<td>1941</td>
<td>10144</td>
<td>8984</td>
<td>67</td>
</tr>
<tr>
<td>H(47C)</td>
<td>2566</td>
<td>9447</td>
<td>8680</td>
<td>67</td>
</tr>
<tr>
<td>H(48A)</td>
<td>2081</td>
<td>8197</td>
<td>8661</td>
<td>70</td>
</tr>
<tr>
<td>H(48B)</td>
<td>1065</td>
<td>7706</td>
<td>8066</td>
<td>70</td>
</tr>
</tbody>
</table>
Table 10. Torsion angles [°] for the 1D coordination polymer.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O(2)-N(1)-O(3)-Zn(1)</td>
<td>174.61(17)</td>
</tr>
<tr>
<td></td>
<td>O(1)-N(1)-O(3)-Zn(1)</td>
<td>-5.6(2)</td>
</tr>
<tr>
<td></td>
<td>O(41)-Zn(1)-O(3)-N(1)</td>
<td>-171.88(13)</td>
</tr>
<tr>
<td></td>
<td>N(11)-Zn(1)-O(3)-N(1)</td>
<td>78.10(13)</td>
</tr>
<tr>
<td></td>
<td>N(13)-Zn(1)-O(3)-N(1)</td>
<td>-74.29(13)</td>
</tr>
<tr>
<td></td>
<td>O(4)-Zn(1)-O(3)-N(1)</td>
<td>-168.9(2)</td>
</tr>
<tr>
<td></td>
<td>N(6)-N(4)-O(4)-Zn(1)</td>
<td>-178.64(16)</td>
</tr>
<tr>
<td></td>
<td>(5)-N(4)-O(4)-Zn(1)</td>
<td>1.3(2)</td>
</tr>
<tr>
<td></td>
<td>O(41)-Zn(1)-O(4)-N(4)</td>
<td>171.99(14)</td>
</tr>
<tr>
<td></td>
<td>N(11)-Zn(1)-O(4)-N(4)</td>
<td>-77.72(14)</td>
</tr>
<tr>
<td></td>
<td>N(13)-Zn(1)-O(4)-N(4)</td>
<td>74.30(14)</td>
</tr>
<tr>
<td></td>
<td>O(3)-Zn(1)-O(4)-N(4)</td>
<td>168.9(2)</td>
</tr>
<tr>
<td></td>
<td>N(11)-C(1)-C(2)-C(3)</td>
<td>0.5(3)</td>
</tr>
<tr>
<td></td>
<td>C(1)-C(2)-C(3)-C(4)</td>
<td>-2.2(3)</td>
</tr>
<tr>
<td></td>
<td>C(1)-C(2)-C(3)-N(12)</td>
<td>175.12(19)</td>
</tr>
<tr>
<td></td>
<td>C(2)-C(3)-C(4)-C(5)</td>
<td>1.9(3)</td>
</tr>
<tr>
<td></td>
<td>N(12)-C(3)-C(4)-C(5)</td>
<td>-175.46(19)</td>
</tr>
<tr>
<td></td>
<td>C(3)-C(4)-C(5)-N(11)</td>
<td>0.2(3)</td>
</tr>
<tr>
<td></td>
<td>C(12)#1-C(8)-C(9)-C(10)</td>
<td>0.8(3)</td>
</tr>
<tr>
<td></td>
<td>C(12)#1-C(8)-C(9)-C(6)</td>
<td>-178.6(2)</td>
</tr>
<tr>
<td></td>
<td>O(11)-C(6)-C(9)-C(8)</td>
<td>3.0(4)</td>
</tr>
<tr>
<td></td>
<td>N(12)-C(6)-C(9)-C(8)</td>
<td>-177.4(2)</td>
</tr>
<tr>
<td></td>
<td>O(11)-C(6)-C(9)-C(10)</td>
<td>-176.4(2)</td>
</tr>
<tr>
<td></td>
<td>N(12)-C(6)-C(9)-C(10)</td>
<td>3.2(3)</td>
</tr>
<tr>
<td></td>
<td>C(8)-C(9)-C(10)-C(11)</td>
<td>179.1(2)</td>
</tr>
<tr>
<td></td>
<td>C(6)-C(9)-C(10)-C(11)</td>
<td>-1.5(3)</td>
</tr>
<tr>
<td></td>
<td>C(8)-C(9)-C(10)-C(10)#1</td>
<td>-0.8(4)</td>
</tr>
<tr>
<td></td>
<td>C(6)-C(9)-C(10)-C(10)#1</td>
<td>178.6(2)</td>
</tr>
<tr>
<td></td>
<td>C(9)-C(10)-C(11)-C(12)</td>
<td>179.1(2)</td>
</tr>
<tr>
<td></td>
<td>C(10)#1-C(10)-C(11)-C(12)</td>
<td>-0.9(4)</td>
</tr>
<tr>
<td></td>
<td>C(9)-C(10)-C(11)-C(7)</td>
<td>-0.3(3)</td>
</tr>
<tr>
<td></td>
<td>C(10)#1-C(10)-C(11)-C(7)</td>
<td>179.6(2)</td>
</tr>
<tr>
<td></td>
<td>O(12)-C(7)-C(11)-C(12)</td>
<td>2.0(3)</td>
</tr>
<tr>
<td></td>
<td>N(12)-C(7)-C(11)-C(12)</td>
<td>-179.14(19)</td>
</tr>
<tr>
<td></td>
<td>O(12)-C(7)-C(11)-C(10)</td>
<td>-178.5(2)</td>
</tr>
<tr>
<td></td>
<td>N(12)-C(7)-C(11)-C(10)</td>
<td>0.3(3)</td>
</tr>
<tr>
<td></td>
<td>C(10)-C(11)-C(12)-C(8)#1</td>
<td>0.9(3)</td>
</tr>
<tr>
<td></td>
<td>C(7)-C(11)-C(12)-C(8)#1</td>
<td>-179.6(2)</td>
</tr>
<tr>
<td></td>
<td>N(13)-C(13)-C(14)-C(15)</td>
<td>0.1(5)</td>
</tr>
<tr>
<td></td>
<td>C(13)-C(14)-C(15)-C(16)</td>
<td>-0.3(4)</td>
</tr>
<tr>
<td></td>
<td>C(13)-C(14)-C(15)-N(14)</td>
<td>177.6(2)</td>
</tr>
<tr>
<td></td>
<td>C(14)-C(15)-C(16)-C(17)</td>
<td>0.6(4)</td>
</tr>
<tr>
<td>Bond/Distance</td>
<td>Angle (°)</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>O(3)-Zn(1)-N(13)-C(13)</td>
<td>-110.61(19)</td>
<td></td>
</tr>
<tr>
<td>O(41)-Zn(1)-N(13)-C(17)</td>
<td>155.7(2)</td>
<td></td>
</tr>
<tr>
<td>N(11)-Zn(1)-N(13)-C(17)</td>
<td>-32.0(3)</td>
<td></td>
</tr>
<tr>
<td>O(4)-Zn(1)-N(13)-C(17)</td>
<td>-125.1(2)</td>
<td></td>
</tr>
<tr>
<td>O(3)-Zn(1)-N(13)-C(17)</td>
<td>68.2(2)</td>
<td></td>
</tr>
<tr>
<td>O(13)-C(18)-N(14)-C(22)</td>
<td>174.4(2)</td>
<td></td>
</tr>
<tr>
<td>C(19)-C(18)-N(14)-C(22)</td>
<td>-5.6(3)</td>
<td></td>
</tr>
<tr>
<td>O(13)-C(18)-N(14)-C(15)</td>
<td>4.1(3)</td>
<td></td>
</tr>
<tr>
<td>C(19)-C(18)-N(14)-C(15)</td>
<td>-175.9(19)</td>
<td></td>
</tr>
<tr>
<td>O(14)-C(22)-N(14)-C(18)</td>
<td>-174.5(2)</td>
<td></td>
</tr>
<tr>
<td>C(21)-C(22)-N(14)-C(18)</td>
<td>4.1(3)</td>
<td></td>
</tr>
<tr>
<td>O(14)-C(22)-N(14)-C(15)</td>
<td>-4.1(3)</td>
<td></td>
</tr>
<tr>
<td>C(21)-C(22)-N(14)-C(15)</td>
<td>174.49(18)</td>
<td></td>
</tr>
<tr>
<td>C(16)-C(15)-N(14)-C(18)</td>
<td>-108.4(3)</td>
<td></td>
</tr>
<tr>
<td>C(14)-C(15)-N(14)-C(18)</td>
<td>73.8(3)</td>
<td></td>
</tr>
<tr>
<td>C(16)-C(15)-N(14)-C(22)</td>
<td>80.3(3)</td>
<td></td>
</tr>
<tr>
<td>C(14)-C(15)-N(14)-C(22)</td>
<td>-97.5(3)</td>
<td></td>
</tr>
<tr>
<td>O(41)-C(41)-N(41)-C(44)</td>
<td>4.4(3)</td>
<td></td>
</tr>
<tr>
<td>C(42)-C(41)-N(41)-C(44)</td>
<td>-174.6(2)</td>
<td></td>
</tr>
<tr>
<td>O(41)-C(41)-N(41)-C(43)</td>
<td>179.4(2)</td>
<td></td>
</tr>
<tr>
<td>C(42)-C(41)-N(41)-C(43)</td>
<td>0.4(3)</td>
<td></td>
</tr>
<tr>
<td>N(41)-C(41)-O(41)-Zn(1)</td>
<td>139.75(19)</td>
<td></td>
</tr>
<tr>
<td>C(42)-C(41)-O(41)-Zn(1)</td>
<td>-41.3(3)</td>
<td></td>
</tr>
<tr>
<td>N(11)-Zn(1)-O(41)-C(41)</td>
<td>87.2(2)</td>
<td></td>
</tr>
<tr>
<td>N(13)-Zn(1)-O(41)-C(41)</td>
<td>-96.7(2)</td>
<td></td>
</tr>
<tr>
<td>O(4)-Zn(1)-O(41)-C(41)</td>
<td>174.4(2)</td>
<td></td>
</tr>
<tr>
<td>O(3)-Zn(1)-O(41)-C(41)</td>
<td>-6.3(2)</td>
<td></td>
</tr>
<tr>
<td>C(21)-C(23)-C(45)-C(19)#2</td>
<td>-0.7(3)</td>
<td></td>
</tr>
<tr>
<td>O(46)-C(46)-N(46)-C(48)</td>
<td>-175.5(5)</td>
<td></td>
</tr>
<tr>
<td>C(47)-C(46)-N(46)-C(48)</td>
<td>5.6(8)</td>
<td></td>
</tr>
<tr>
<td>O(46)-C(46)-N(46)-C(49)</td>
<td>-4.7(7)</td>
<td></td>
</tr>
<tr>
<td>C(47)-C(46)-N(46)-C(49)</td>
<td>176.4(2)</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#1 -x+2,-y,-z+2
#2 -x,-y+1,-z