Supporting Information for the manuscript

Low-energy regeneration and high productivity in a lanthanide-hexacarboxylate framework for high-pressure CO₂/CH₄/H₂ separation

Yabing He,¹ Hiroyasu Furukawa,² Chuande Wu,³ Michael O'Keeffe,⁴ Rajamani Krishna,*⁵ Banglin Chen*⁶

¹ College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
² Department of Chemistry, University of California and Molecular Foundry, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
³ Department of Chemistry, Zhejiang University, Hangzhou 310027, China
⁴ Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA
⁵ Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; E-mail: r.krishna@nva.nl
⁶ Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA. Fax: (+1)-210-458-7428; E-mail: banglin.chen@utsa.edu
General remarks

All starting materials and reagents for synthesis were commercially available and used as received. 1H NMR and 13C NMR spectra were recorded on a Varian Mercury 300 MHz spectrometer. Tetramethylsilane (TMS) and deuterated solvents were used as internal standards in 1H NMR and 13C NMR experiments, respectively. Fourier transform infrared (FTIR) spectra were recorded using a Bruke Vector 22 spectrometer between 650 cm$^{-1}$ and 4000 cm$^{-1}$. Thermogravimetric analyses (TGA) were carried out using a Shimadzu TGA-50 thermal analyzer with a heating rate of 5 °C min$^{-1}$ in a flowing nitrogen atmosphere. Powder X-ray diffraction (PXRD) patterns were recorded on a Rigaku Ultima IV X-ray diffractometer operating at 40 kV and 44 mA with a scan rate of 1.0 deg min$^{-1}$, using Cu-K$_\alpha$ radiation. Low-pressure gas adsorption experiments were carried out on a Quantachrome AUTOSORB-1 automatic volumetric gas adsorption analyzer. High-pressure gas adsorption isotherms were measured using the static volumetric method in an HPA-100 from the VTI Corporation (currently Particulate Systems). To obtain the excess adsorption isotherms, all data points were corrected for buoyancy and the thermal gradient that arises between the balance and the sample bucket. Ultra-high-purity grade CH$_4$, H$_2$ (99.999% purity) and CO$_2$ (99.995% purity) gases were used throughout the high-pressure adsorption experiments. Before the gas sorption measurements were performed, the as-synthesized samples were guest-exchanged with dry acetone, and then activated using supercritical CO$_2$ drying method to remove all solvent molecules. Briefly, the acetone-containing sample was placed in the chamber in a Tousimis Samdri PVT-3D critical point dryer, and acetone was completely exchanged with liquid CO$_2$. The CO$_2$ was slowly vented from the chamber, yielding the activated material UTSA-62a.

Single-crystal X-ray crystallography

The crystal data were collected on an Oxford Xcalibur Gemini Ultra diffractometer with an Atlas detector. The data were collected using graphite-monochromatic enhanced ultra Cu radiation ($\lambda = 1.54178$ Å) at 293 K. The datasets were corrected by empirical absorption correction using spherical harmonics, implemented in the SCALE3 ABSPACK scaling algorithm. The structure was solved by direct methods and refined by full matrix least-squares methods with the SHELX-97 program package. The solvent molecules in the compound are highly disordered. The SQUEEZE subroutine of the PLATON software suit was used to remove the scattering from the highly disordered guest molecules.
The resulting new files were used to further refine the structures. The H atoms on C atoms were generated geometrically.

Fitting of pure-component isotherms

The pure component isotherm data for CO\(_2\), CH\(_4\) and H\(_2\) in **UTSA-62a** do not demonstrate any inflection characteristics and the single-site Langmuir model

\[
q = \frac{q_{A,ad}b_A p}{1 + b_A p}
\]

with \(T\)-dependent parameters \(b_A\)

\[
b_A = b_{A0} \exp\left(\frac{E_A}{RT}\right)
\]

provides an adequately good representation of the absolute component loadings. The isotherm parameters are provided in Table S1. The pure component isotherm data for H\(_2\) in **UTSA-62a** is determined at 298 K, and the single-site Langmuir parameters are provided in Table S2.

Calculations of adsorption selectivity

The selectivity of preferential adsorption of component 1 over component 2 in a mixture containing 1 and 2, perhaps in the presence of other components too, can be formally defined as

\[
S_{\text{ads}} = \frac{q_1/\bar{q}_1}{q_2/\bar{q}_2}
\]

In equation (2), \(q_1\) and \(q_2\) are the *absolute* component loadings of the adsorbed phase in the mixture. In all the calculations to be presented below, the calculations of \(S_{\text{ads}}\) are based on the use of the Ideal Adsorbed Solution Theory (IAST) of Myers and Prausnitz. These calculations are carried out using the pure component isotherm fits of absolute component loadings.

For H\(_2\) purification, two selectivity metrics are important: CO\(_2\)/H\(_2\), and CH\(_4\)/H\(_2\) because both impurities CO\(_2\), and CH\(_4\) need to be preferentially adsorbed to obtain H\(_2\) with the desired purity levels. *Figure S10a* presents the IAST calculations of the CO\(_2\)/H\(_2\) adsorption selectivity in the ternary mixture, defined by equation (2). The calculations are for a 30/20/50 CO\(_2\)/CH\(_4\)/H\(_2\) ternary gas mixture that is typically encountered in H\(_2\) purification processes. The highest selectivities are obtained with MgMOF-74, LTA-5A and NaX. The impurity with the lowest adsorption strength is CH\(_4\), and for H\(_2\) purification, the CH\(_4\)/H\(_2\) selectivity is also of importance. The CH\(_4\)/H\(_2\) selectivities are compared in *Figure S10b*. For pressures exceeding 1 MPa, the CH\(_4\)/H\(_2\) selectivities are highest for CuBTC, MgMOF-74, UTSA-40a, and UTSA-62a.
The performance of a PSA unit is dictated not only by the adsorption selectivity but also by the capacity to adsorb both CO₂ and CH₄. Generally speaking, higher capacities are desirable because the adsorber bed can be run for longer lengths of time before the need for regeneration arises. The sum of the component loadings of CO₂ and CH₄ in the mixture, is an appropriate measure of the capacity. Figure S1 presents data on the IAST calculations of the (CO₂ + CH₄) uptake capacities per kg of adsorbent. For pressures exceeding 1 MPa, the highest uptake capacities are for MgMOF-74, CuBTC, CuTDPAT. At the highest pressure of 6 MPa, which is likely to be encountered in H₂ purification, we note that UTSA-62a has the highest uptake capacity. The lowest uptake capacities are for the traditionally used zeolites LTA-5A and NaX; this is due to the fact that LTA-5A and NaX have pore volumes of 0.25 cm³/g and 0.28 cm³/g, respectively, significantly lower than those of the MOFs considered here. We will see later that the capacity of LTA-5A and NaX for (CO₂ + CH₄) uptake becomes limiting for high-pressure operations in fixed bed adsorbers. Put another way, MOFs with “open” structures are especially attractive for high pressure separations. MgMOF-74 is the most unusual MOF because it has a combination of both high selectivities and high capacities.

Packed bed adsorber breakthrough simulation methodology

It is now well recognized that the separation characteristics of a PSA unit is dictated by a combination of adsorption selectivity and capacity. For a rational choice of adsorbents for mixture separation at high pressures, we need to have a proper method of evaluation that combines the *selectivity* and *capacity* metrics in a manner that is a true reflection of the separation performance of a fixed bed adsorber, shown schematically in Figure S9. In order to obtain a realistic appraisal of the separation characteristics of various MOFs for H₂ purification, we perform transient breakthrough calculations. The methodology followed is identical to the ones described in detail in earlier works.²⁻¹³ Experimental validation of the breakthrough simulation methodology is also available in the published literature.³,⁹,¹⁴

The following parameter values were used in the simulations to be reported below: length of packed bed $L = 0.1 \text{ m}$; bed voidage $\varepsilon = 0.4$; interstitial gas velocity $v = 0.1 \text{ m/s}$ (at inlet). When comparing different materials, the fractional voidage is held constant at $\varepsilon = 0.4$. This implies the volumes of adsorbents used in the fixed bed are the same for all adsorbent materials. The total mass of the adsorbents used is governed by the framework density.

Ternary 30/20/50 CO₂/CH₄/H₂ breakthrough simulations
For industrial production of H₂, impurities such as CO₂, and CH₄ need to be reduced to extremely low levels, typically lower than 500 ppm. A comparison of the breakthrough characteristics of different adsorbents is presented in Figure S12. When the composition in the exit gas reaches a certain desired purity level, the adsorption cycle needs to be terminated and the contents of the bed regenerated. Longer breakthrough times are desirable because this reduces the frequency of regeneration. We choose the purity level to be 500 ppm (CO₂ + CH₄) in outlet gas, which is typical of industrial requirements. When this purity level is reached, the corresponding dimensionless breakthrough time, \(\tau_{\text{break}} \), can be determined.

To demonstrate how the choice of the best material alters with operating pressures, we carried out a series of breakthrough calculations for all seven MOFs for pressures ranging from 0.1 MPa to 6.0 MPa. Figure S13 shows the influence of the total operating pressure on dimensionless breakthrough times, \(\tau_{\text{break}} \). Generally speaking, the value of \(\tau_{\text{break}} \) decreases for most materials with increasing pressure. This is due to limitations in the capacities with increasing pressure. For MOFs such as UTSA-62a, UTSA-40a, and MIL-101, there is no capacity limitation for this pressure range, and there is hardly any decrease in \(\tau_{\text{break}} \).

Figure 3b in the paper presents data on the number of moles of H₂ produced, containing less than 500 ppm impurities (CO₂ + CH₄), produced per kg of adsorbent material during the time interval 0 – \(\tau_{\text{break}} \); this quantity is obtained from a material balance across the fixed bed adsorber. The productivities of CuTDPAT and CuBTC are remarkably similar; this is not really surprising because these two MOFs have similar pore topologies, selectivities, and capacities. The productivities of NaX and LTA-5A tend to reach plateau values for pressures exceeding 2 MPa; this is a direct consequence of the capacity limitations of these zeolites. At the other end of the spectrum, the two MOFs with the high pore volumes UTSA-62a and UTSA-40a show a steep increase in productivity with increasing pressure. Their performance is poor at low pressures but improves significantly at high pressures. For pressures exceeding 4 MPa, typical of hydrogen purification, the hierarchy of productivities is MgMOF-74 \(\approx \) CuTDPAT \(\approx \) CuBTC > UTSA-40a > UTSA-62a > NaX > MIL-101 > LTA-5A. Remarkably, at the highest pressure of 6 MPa, the H₂ productivity of UTSA-62a is only about 20% lower than that of MgMOF-74, CuBTC, and CuTDPAT. Since the isosteric heat of adsorption of CO₂ is the lowest for UTSA-62a, as compared to all other adsorbents (see Figure 4 in the paper), the regeneration costs can be expected to be less than that of MgMOF-74, CuBTC, and CuTDPAT. This reduced regeneration costs could more than off-set the lower H₂ productivity of UTSA-62a.
Synthesis and characterization of the organic building block

Scheme S1. Synthetic route to the organic building block H₆L.

To a mixture of 1,3,5-tri(3,5-dibromophenyl)benzene (2.00 g, 2.56 mmol), 4-(methoxycarbonyl)phenylboronic acid (3.23 g, 17.95 mmol, Alfa), anhydrous Na₂CO₃ (6.52 g, 61.56 mmol, Alfa) and Pd(PPh₃)₄ (0.89 g, 0.77 mmol, Aldrich) were added degassed toluene-methanol-water mixed solvents (120/60/60 mL). The resulting reaction mixture was stirred for 72 h under reflux under a nitrogen atmosphere. After removal of the solvents, the residue was extracted with CHCl₃ (100 mL × 4), washed with brine (100 mL), dried over anhydrous MgSO₄, filtered, and concentrated in vacuum. The residue was washed with ethyl acetate to give hexamethyl ester intermediate as a pure white solid (2.19 g, 1.97 mmol) in 77% yield, which was hydrolyzed with 6 M NaOH to afford the title compound in quantitative yield. ¹H NMR (DMSO-d₆, 300.0 MHz) δ (ppm): 13.031 (s, br, 6H), 8.334 (s, 3H), 8.209 (d, J = 1.5 Hz, 6H), 8.018-8.089 (m, 27H); ¹³C NMR (DMSO-d₆, 75.4 MHz) δ (ppm): 166.968, 143.964, 142.032, 141.632, 140.455, 129.764, 127.418, 126.164, 124.937; FTIR (neat, cm⁻¹): 1681, 1606, 1587, 1552, 1504, 1392, 1306, 1261, 1184, 1012, 860, 787, 708.

Synthesis and characterization of UTSA-62

A mixture of the organic building block H₆L (10.0 mg, 9.7 μmol) and Yb(NO₃)₃·5H₂O (25.0 mg, 55.7 μmol, Aldrich) was dispersed in a mixed solvent (N,N-dimethylacetamide (DMA)/H₂O: 1.5 mL/0.1 mL) in a disposable scintillation vial (20 mL) under sonication. The vial was capped and heated at 100 °C for 72 h. The block shaped crystals were collected in 56% yield. FTIR (neat, cm⁻¹): 1624, 1597, 1585, 1552, 1504, 1392, 1306, 1261, 1184, 1012, 860, 787, 708.
Figure S1. PXRD patterns of as-synthesized UTSA-62 (b) and activated UTSA-62a (c) along with the simulated XRD pattern from the single-crystal X-ray structure (a).

Figure S2. TGA curve of as-synthesized UTSA-62a in a flowing N₂ atmosphere.
Figure S3. N$_2$ sorption isotherm of UTSA-62a at 77 K. Filled and open symbols represent adsorption and desorption data, respectively.

\[N_2 \text{ uptake (cm}^3/g, \text{STP)} \]

\[P/P^0 \]

Figure S4. BET plot of UTSA-62a. Only the range below \(P/P^0 = 0.05 \) satisfies the first consistency criterion for applying the BET theory.

\[S_{BET} = 1/(0.00199+1.68087 \times 10^{-6})/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2186 \text{ m}^2/g \]
Figure S5. H₂ sorption isotherms of UTSA-62a at 77 K (black) and 87 K (red). Filled and open symbols represent adsorption and desorption data, respectively.

Figure S6. The isosteric heat of H₂ adsorption in UTSA-62a.
Figure S7. CO₂ (a) and CH₄ (b) sorption isotherms of UTSA-62a at 273 K (black), 283 K (red) and 298 K (green). Filled and open symbols represent adsorption and desorption data, respectively.
Figure S8. Excess high-pressure H\textsubscript{2} sorption isotherm of UTSA-62\textit{a} at 77 K. Filled and open symbols represent adsorption and desorption data, respectively.

Figure S9. Schematic of a packed bed adsorber.

\[L/(u/\varepsilon) = \text{Characteristic time} \]

\[L = \text{length of packed bed} \]

Step input CO\textsubscript{2}/CH\textsubscript{4}/H\textsubscript{2} mixture; \[p_{10}/p_{20}/p_{30} = 30/20/50 \]

\[u = \text{gas velocity} \]

\[\varepsilon = \text{bed voidage} \]

Crystallites of MOF
Figure S10. Calculations using IAST for (a) CO\textsubscript{2}/H\textsubscript{2} and (b) CH\textsubscript{4}/H\textsubscript{2} adsorption selectivities for a 30/20/50 CO\textsubscript{2}/CH\textsubscript{4}/H\textsubscript{2} ternary gas mixture maintained at isothermal conditions at 298 K.
Figure S11. Calculations using IAST for (CO\(_2\) + CH\(_4\)) uptake capacity, expressed as moles per kg of adsorbent, in equilibrium with a 30/20/50 CO\(_2\)/CH\(_4\)/H\(_2\) ternary gas mixture maintained at isothermal conditions at 298 K.

Figure S12. Ppm (CO\(_2\)+CH\(_4\)) in outlet gas as a function of the dimensionless time, \(\tau\), for various adsorbent materials. The total operating pressure for the data corresponds to 5.0 MPa.
Figure S13. Influence of the total operating pressure, p_t, on dimensionless breakthrough time, τ_{break}.

Figure S14. FTIR spectra of the organic linker H$_4$L (a), and as-synthesized UTSA-62 (b).
Figure S15. 1H NMR (DMSO-d_6, 300.0 MHz) and 13C NMR (DMSO-d_6, 75.4 MHz) spectra of the organic building block H$_6$L.
Table S1. Single-site Langmuir fitting parameters for adsorption of CO\textsubscript{2} and CH\textsubscript{4} in UTSA-62a. The fits are based on low-pressure isotherm data measured at 273 K, 283 K, and 298 K, and high-pressure isotherm data at 298 K.

<table>
<thead>
<tr>
<th></th>
<th>(q_{\text{A,sat}}) (mol kg(^{-1}))</th>
<th>(b_{\text{A0}}) (Pa(^{-1}))</th>
<th>(E_{\text{A}}) (kJ mol(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO\textsubscript{2}</td>
<td>38</td>
<td>4.96\times10(^{-10})</td>
<td>16</td>
</tr>
<tr>
<td>CH\textsubscript{4}</td>
<td>30</td>
<td>2.24\times10(^{-9})</td>
<td>10.2</td>
</tr>
</tbody>
</table>

Table S2. Single-site Langmuir fitting parameters for pure H\textsubscript{2} isotherms in UTSA-62a. The fit is for a temperature of 298 K.

<table>
<thead>
<tr>
<th></th>
<th>(q_{\text{A,sat}}) (mol kg(^{-1}))</th>
<th>(b_{\text{A}}) (Pa(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>H\textsubscript{2}</td>
<td>35</td>
<td>2.03\times10(^{-8})</td>
</tr>
</tbody>
</table>

Table S3. Structural data on different adsorbents evaluated in this study for comparison purposes. The data for MgMOF-74 and NaX are from Herm et al.15 and Krishna and Long.4 The data for MIL-101 are taken from Chowdhury et al.16 The data for Cu-TDPAT are from Wu et al.3 The data for LTA-5A are from Pakseresht et al.17 and Sircar and Golden.18 The data for UTSA-40a are from He et al.19

<table>
<thead>
<tr>
<th>MOFs</th>
<th>Surface area (m(^2) g(^{-1}))</th>
<th>Pore volume (cm(^3) g(^{-1}))</th>
<th>Framework density (kg m(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgMOF-74</td>
<td>1800</td>
<td>0.573</td>
<td>905</td>
</tr>
<tr>
<td>MIL-101</td>
<td>2674</td>
<td>1.38</td>
<td>440</td>
</tr>
<tr>
<td>CuBTC</td>
<td>2097</td>
<td>0.848</td>
<td>879</td>
</tr>
<tr>
<td>Cu-TDPAT</td>
<td>1938</td>
<td>0.93</td>
<td>782</td>
</tr>
<tr>
<td>NaX zeolite</td>
<td>950</td>
<td>0.280</td>
<td>1421</td>
</tr>
<tr>
<td>LTA-5A</td>
<td>450</td>
<td>0.250</td>
<td>1508</td>
</tr>
<tr>
<td>UTSA-40a</td>
<td>1630</td>
<td>0.654</td>
<td>827</td>
</tr>
<tr>
<td>UTSA-62a</td>
<td>2186</td>
<td>0.9077</td>
<td>584.3</td>
</tr>
</tbody>
</table>
Table S4. BET surface areas of lanthanide-organic frameworks.

<table>
<thead>
<tr>
<th>MOF</th>
<th>Formula</th>
<th>BET (m² g⁻¹)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>KHo(C₂O₄)₂</td>
<td></td>
<td>69.1</td>
<td>20</td>
</tr>
<tr>
<td>Gd₂(Imidc)₂</td>
<td></td>
<td>372</td>
<td>21</td>
</tr>
<tr>
<td>Na₆Eu(L)₄Cl</td>
<td></td>
<td>426</td>
<td>22</td>
</tr>
<tr>
<td>Er₂(PDC)₃</td>
<td></td>
<td>427</td>
<td>23</td>
</tr>
<tr>
<td>Gd₂(FDA)₃</td>
<td></td>
<td>438</td>
<td>24</td>
</tr>
<tr>
<td>Eu₂(1,3-BDC)₃</td>
<td></td>
<td>502</td>
<td>25</td>
</tr>
<tr>
<td>Yb(BPT)</td>
<td></td>
<td>515.6</td>
<td>26</td>
</tr>
<tr>
<td>Gd(BTC)</td>
<td></td>
<td>585</td>
<td>27</td>
</tr>
<tr>
<td>Dy(BTC)</td>
<td></td>
<td>655</td>
<td>28</td>
</tr>
<tr>
<td>Y₂(PDC)₃</td>
<td></td>
<td>676</td>
<td>29</td>
</tr>
<tr>
<td>MIL-103</td>
<td>Tb(BTB)</td>
<td>730-930</td>
<td>29</td>
</tr>
<tr>
<td>PCN-17(Dy)</td>
<td>Dy₄(TATB)₈/₃(SO₄)₂</td>
<td>738</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Nd(TPO)</td>
<td>793</td>
<td>31</td>
</tr>
<tr>
<td>PCN-17(Yb)</td>
<td>Yb₄(TATB)₈/₃(SO₄)₂</td>
<td>820</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>La(BTB)</td>
<td>1014</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Y(BTC)</td>
<td>1080</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Tb(TATB)</td>
<td>1783</td>
<td>35</td>
</tr>
<tr>
<td>UTSA-62a</td>
<td>Yb₃O(H₂O)₃(L)(NO₃)</td>
<td>2186</td>
<td>This work</td>
</tr>
</tbody>
</table>

References

