Supporting Information

[4+3] Cycloaddition of *in-situ* generated azoalkenes with C,N-cyclic azomethine imines: Efficient synthesis of tetrazepine derivatives

Xiao-Qiang Hu, Jia-Rong Chen*, Shuang Gao, Bin Feng, Liang-Qiu Lu, and Wen-Jing Xiao*

Contents

1. General Information

- 2. Preparation and Spectral Data of Substrates
 - 2.1 General Procedure for Preparation of Hydrazones 1
 - 2.2 Spectral Data of Substrates 1a 1n, and 2g
- 3. General Procedure and Spectral Data of Products
 - 3.1 General Procedure
 - 3.2 Spectral Data of Cyclic Products
- 4. X-Ray structure of **3aa**, **5**
- 5. Preliminary studies on [4+3] Cycloaddition with in situ generated C,N-cyclic azomethine imine **2g'** and N,N'-cyclic azomethine imine **2h**
- 6. NMR and HRMS Spectra of Hydrazones and the Cyclic Products

1. General Information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. All the solvents were treated according to general methods. Flash column chromatography was performed using 200-300 mesh silica gel. ¹H NMR spectra were recorded on 400/600 MHz spectrophotometers. Chemical shifts (δ) are reported in ppm from the solvent resonance as the internal standard (CDCl₃: 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublets, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR spectra were recorded on Varian Mercury 400 (100 MHz) with complete proton decoupling spectrophotometers (CDCl₃: 77.0 ppm, DMSO-d⁶: 39.5 ppm). Mass spectra were measured on a MS spectrometer.

2. Preparation and Spectral Data of Substrates

2.1 General procedure for preparation of N-acetyl hydrazones 1.^{1,2}

To a stirred solution of 2-bromo-1-phenylethanone (20 mmol, 1.0 eq.) in Methanol (20 mL), the acethydrazide (30 mmol, 1.5 eq.) and HCl (conc., 0.5 mL) was added at 0 $^{\circ}$ C. The mixture was stirred at the same temperature for 3 h and filtered then washed with Et₂O (15 mL). The crude product was then recrystallized from MeOH. Compound **1a** was obtained as a white solid (3.20 g, 63% yield).

The other N-acetyl hydrazones were prepared according to the above procedure.

The C,N-cyclic azomethines were also prepared according to Maruoka's procedure.³

References: [1] J. M. Hatcher and D. M. Coltart, J. Am. Chem. Soc., 2010, 132, 4546.

[2] J. R. Chen, W. R. Dong, M. Candy, F. F. Pan, M. Jorres and C. Bolm, *J. Am. Chem. Soc.*, 2012, **134**, 6924.
[3] T. Hashimoto, Y. Maeda, M. Omote, H. Nakatsu and K. Maruoka, *J. Am. Chem. Soc.*, 2010, **132**, 4076.

2.2 Spectral Data of Substrates

Hydrazone 1a

¹H NMR (600 MHz, CDCl₃) δ (ppm, major+minor) 9.66 (1 H, s, major), 8.39 (1 H, s, CH₃ minor), 7.75 (2 H, d, J = 4.5 Hz, major), 7.49 – 7.46 (3 H, m, minor), 7.40 (3 H, s, major), 7.27 – 7.24 (2 H, m, minor), 4.33 (2 H, s, major), 4.27 (2 H, s, minor), 2.40 (3 H, s, major), 2.31 (3 H, s, minor). ¹³C NMR (100 MHz, CDCl₃/DMSO-d⁶) δ (ppm) 174.42, 172.64,

147.32, 143.49, 135.18, 130.28, 130.00, 129.34, 128.35, 127.29, 125.66, 34.73, 20.48, 20.18, 18.94. M.P.: 130 – 132 °C. IR (in KBr): 3060, 3023, 1669, 1552, 1364, 1264, 1074, 776, 692, 535 cm⁻¹.

Hydrazone 1b

¹H NMR (600 MHz, CDCl₃) δ (ppm, major+minor) 9.75 (1 H, s, major), 8.40 (1 H, s, minor), 7.74 (2 H, s, major), 7.49 (3 H, s, minor), 7.40 (3 H, s, major), 7.26 (2 H, d, J = 6.6 Hz, minor), 4.51 (2 H, s, major), 4.38 (2 H, s, minor), 2.41 (3 H, s, major), 2.31 (3 H, s, minor). ¹³C NMR (100 MHz, CDCl₃/DMSO-d⁶) δ (ppm) 174.18, 172.53, 147.07,

143.25, 135.20, 129.89, 129.28, 129.13, 128.23, 127.12, 125.59, 47.20, 32.94, 20.35, 20.03. M.P.: 111 -113 °C. IR (in KBr): 2969, 1681, 1589, 1342, 1022, 777, 687, 613 cm⁻¹.

Hydrazone 1c

¹H NMR (600 MHz, CDCl₃) δ (ppm, only one isomer) 9.36 (1 H, s), 7.72 (2 H, d, J =7.9 Hz), 6.94 (2 H, d, J = 7.9 Hz), 4.29 (2 H, s), 3.85 (3 H, s), 2.41 (3 H, s). ¹³C NMR (100 MHz, CDCl₃/DMSO-d⁶) δ (ppm) 174.41, 160.64, 143.61, 128.90, 127.69, 127.25, 114.90, 113.86, 55.18, 20.53, 18.78. M.P.: 128 – 129 °C. IR (in KBr): 3095, 2971, 1682, 1606, 1341, 1251, 837, 800, 618 cm⁻¹.

Hydrazone 1d

¹H NMR (600 MHz, CDCl₃) δ (ppm, only one isomer) 9.58 (1 H, s), 7.66 (2 H, d, J = 7.2 Hz), 7.23 (2 H, d, J = 7.3 Hz), 4.32 (2 H, s), 2.42 (3 H, s), 2.39 (3 H, s). ¹³C NMR (100 MHz, CDCl₃/DMSO-d⁶) δ (ppm) 174.30, 172.54, 147.51, 143.58, 140.19, 139.46, 132.36, 130.03, 129.06, 127.19, 127.15, 126.16, 125.58, 34.86, 21.07, 20.99,

20.47, 20.16, 18.90. M.P.: 142 - 143 °C. IR (in KBr): 3186, 3097, 1669, 1609, 1384, 1337, 1020, 861, $612, 536 \text{ cm}^{-1}$.

Hydrazone 1e

¹H NMR (600 MHz, CDCl₃) δ (ppm, major+minor) 9.67 (1 H, s, major), 8.39 (1 H, s, minor), 7.71 (2 H, d, J = 8.2 Hz, major), 7.50 (2 H, d, J = 8.1 Hz, minor), 7.40 (2 H, d, J = 8.2 Hz, major), 7.25 (2 H, d, J = 7.9 Hz, minor), 4.32 (2 H, s, major), 4.27 (2 H, s, minor), 2.41 (3 H, s, major), 2.33 (3 H, s, minor). ¹³C NMR (100 MHz,

CDCl₃/DMSO-d⁶) δ (ppm) 173.55, 141.35, 134.38, 133.43, 129.13, 128.61, 127.98, 127.98, 127.20, 126.59, 21.23, 20.18, 19.75, 18.77. M.P.: 157 – 159 °C. IR (in KBr): 3187, 3086, 1669, 1598, 1485, 1378, 1336, 1020, 605, 529 cm⁻¹.

Hydrazone 1f

¹H NMR (600 MHz, CDCl₃) δ (ppm, major+minor) 9.60 (1 H, s, major), 8.37 (1 H, s, minor), 7.64 (4 H, d, J = 6.9 Hz, major+minor), 7.55 (2 H, d, J = 7.8 Hz, major), 7.17 (2 H, s, minor), 4.30 (2 H, s, major), 4.27 (2 H, s, minor), 2.41 (3 H, s, major), 2.32 (3 H, s, minor). ¹³C NMR (100 MHz, CDCl₃/DMSO-d⁶) δ (ppm) 173.38, 141.23, 133.85,

130.84, 126.79, 122.65, 20.13, 18.73. M.P.: 157 – 159 °C. IR (in KBr): 3187, 3086, 1669, 1598, 1485, 1378, 1336, 1020, 605, 529 cm⁻¹.

Hydrazone 1g

¹H NMR (600 MHz, CDCl₃) δ (ppm, major+minor) 9.38 (1 H, s, major), 8.34 (1 H, s, minor), 7.77 – 7.75 (2 H, m, major), 7.31 – 7.29 (2 H, m, minor), 7.22 (2 H, t, J = 7.9 Hz, minor), 7.12 (2 H, t, J = 7.9 Hz, major), 4.29 (2 H, s, major), 4.28 (2 H, s, minor), 2.41 (3 H, s, major), 2.33 (3 H, s, minor). ¹³C NMR (100 MHz, CDCl₃/DMSO-d⁶) δ

(ppm) 174.34, 172.76, 164.52, 162.03, 146.26, 142.53, 131.46, 131.43, 129.72, 129.64, 127.72, 127.64, 116.80, 116.59, 115.52, 115.30, 34.83, 20.51, 20.23, 18.89. M.P.: 141 – 142 °C. IR (in KBr): 3105, 1684, 1604, 1513, 1337, 1235, 1151, 1123, 838, 613, 534 cm⁻¹.

Hydrazone 1h

¹H NMR (600 MHz, CDCl₃) δ (ppm, major+minor) 9.55 (1 H, s, major), 8.36 (1 H, s, minor), 7.76 (1 H, s, major), 7.63 (1 H, d, J = 7.3 Hz, major), 7.47 (2 H, d, J = 6.7 Hz, minor), 7.38 (2 H, m, major), 7.29 (1 H, s, minor), 7.19 (1 H, d, J = 6.1 Hz, minor), 4.30 (2 H, s, major), 4.27 (2 H, s, minor), 2.43 (3 H, s, major), 2.33 (3 H, s, minor). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 175.16, 173.22, 145.84, 142.68, 137.10, 135.63, 134.63, 132.25, 130.89, 130.36, 129.78, 129.47, 127.65, 125.94, 125.81, 124.00, 34.52, 20.65, 20.38, 18.67. M.P.: 138 - 140 °C.

IR (in KBr): 3189, 3093, 1683, 1583, 1513, 1336, 1267, 1157, 787, 678, 632 cm⁻¹.

Hydrazone 1i

¹H NMR (600 MHz, CDCl₃) δ (ppm, major+minor) 9.49 (1 H, s, major), 8.36 (1 H, s, minor), 7.61 (1 H, q, *J* = 8.0, 12.0 Hz, major), 7.33 – 7.28 (1 H, m, minor), 7.05 (1 H, t, *J* = 7.8 Hz, minor), 7.00 (1 H, d, *J* = 8.9 Hz, minor), 6.95 (1 H, t, *J* = 8.0 Hz, major), 6.89 (1 H, t, *J* = 9.7 Hz, major), 4.30 (4 H, s, major+minor), 2.35 (3 H, s, major), 2.34

(3 H, s, minor). ¹³C NMR (100 MHz, CDCl₃/DMSO-d⁶) δ (ppm) 172.84, 166.49, 163.27, 163.15, 160.77, 160.71, 160.65, 160.60, 158.20, 158.08, 143.20, 139.09, 131.18, 130.46, 120.05, 110.73, 110.55, 103.52, 103.26, 103.00, 102.74, 21.63, 21.56, 20.72, 19.60. M.P.: 115 – 118 °C. IR (in KBr): 2989, 1689, 1665, 1556, 1501, 1266, 1145, 1094, 868, 821, 614 cm⁻¹.

Hydrazone 1j

¹H NMR (600 MHz, CDCl₃) δ (ppm, only one isomer) 9.06 (1 H, s), 8.29 (2 H, d, J = 8.6 Hz), 7.93 (2 H, d, J = 8.5 Hz), 4.27 (2 H, s), 2.45 (3 H, s). ¹³C NMR (100 MHz, CDCl₃/TFA) δ (ppm) 178.41, 177.84, 150.52, 148.59, 146.29, 140.59, 136.74, 130.17, 129.12, 127.26, 124.87, 124.04, 20.13, 17.38. M.P.: 186 – 188 °C. IR (in KBr): 3109,

2976,1726, 1690, 1566, 1517, 1377, 1186, 1016, 911, 855, 699, 605 cm⁻¹.

Hydrazone 1k

¹H NMR (600 MHz, CDCl₃) δ (ppm, only one isomer) 9.03 (1 H, s), 8.27 (1 H, d, J = 8.6 Hz), 7.91 (1 H, d, J = 8.5 Hz), 7.24 (2 H, s), 4.26 (1 H, s), 2.43 (1 H, s), 1.54 (3 H, s). ¹³C NMR (100 MHz, CDCl₃/DMSO-d⁶) δ (ppm) 173.87, 140.53, 139.78, 127.50, 127.01, 125.76, 20.15, 18.79. M.P.: 144 – 146 °C. IR (in KBr): 3174, 2961,1728, 1674, 1445,

1378, 1338, 1156, 1105, 706, 637, 605, 518 cm⁻¹.

Hydrazone 11

¹H NMR (600 MHz, CDCl₃) δ (ppm, only one isomer) 9.15 (1 H, s), 4.08 (2 H, s), 2.27 (3 H, s), 1.18 (9 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 174.42, 153.21, 38.36, 32.14, 27.39, 20.22. M.P.: 83 – 86 °C. IR (in KBr): 3229, 2969, 1674, 1463, 1391, 1295, 1138, 1074, 926, 863, 767, 727, 627 cm⁻¹.

Hydrazone 1m

¹H NMR (600 MHz, CDCl₃) δ (ppm, only one isomer) 9.55 (1 H, s), 8.10 (1 H, d, J = 7.7 Hz), 7.30 (1 H, t, J = 7.3 Hz), 7.26 (1 H, d, J = 7.3 Hz), 7.18 (1 H, d, J = 7.3 Hz), 5.20 (1 H, s), 3.27 (1 H, t, J = 13.2 Hz), 2.75 (1 H, d, J = 16.5 Hz), 2.44 (3 H, s), 2.39 (1 H, d, J = 14.5 Hz), 2.27 (1 H, t, J = 13.4 Hz). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 174.39, 142.87,

137.98, 129.66, 129.46, 128.56, 126.72, 124.77, 48.24, 30.83, 23.95, 20.60. M.P.: 163 - 165 °C. IR (in KBr): 3177, 3079,1714, 1666, 1383, 1138, 958, 778, 725, 620, 569 cm⁻¹.

Hydrazone 1n

¹H NMR (600 MHz, CDCl₃) δ (ppm, major+minor) 10.04 (1 H, s, minor), 9.83 (1 H, s, major), 8.06 (1 H, s, minor), 7.99 (1 H, d, J = 7.8 Hz, major), 7.40 (1 H, d, J = 8.2 Hz, minor), 7.33 (1 H, t, J = 7.7 Hz, major), 7.04 (1 H, t, J = 7.5 Hz, major), 7.01 (1 H, d, J =8.2 Hz, major), 6.90 (1 H, d, J = 8.0 Hz, minor), 5.25 (1 H, s, minor), 5.20 (1 H, s, major),

4.57 (1 H, d, J = 12.9 Hz, major), 4.41 (1 H, d, J = 13.0 Hz, major), 2.45 (3 H, s, minor), 2.44 (3 H, s, major). ¹³C NMR (100 MHz, CDCl₃/DMSO-d⁶) δ (ppm) 173.74, 155.06, 137.94, 130.67, 124.38, 121.69, 117.62, 117.15, 69.68, 35.55, 20.25. M.P.: 173 – 175 °C. IR (in KBr): 3183, 2930, 1667, 1613, 1397, 1138, 1140, 1059, 946, 774, 596 cm⁻¹.

C.N-cyclic azomethine imine salt 2g

Prepared according to the known literature procedure.³

¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.65 (1 H, s), 8.19 (2 H, d, J = 7.5), 7.61 (1 H, t, J = 7.4), 7.51 (2 H, t, J = 7.7), 4.26 (2 H, m), 2.16 (2 H, m), 1.90 (4 H, t, J = 9.6), 1.79 - 1.73 (4 H, m), 1.66 (1 H, s), 1.56 (2 H, d, J = 10.7), 1.49 (1 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 184.26, 164.15, 133.26, 128.41, 128.35, 128.17, 55.78, 40.78, 33.34, 26.05, 24.24, 19.59, 18.02.

3. General Procedure and Spectral Data of Products

3.1 General Procedure

1a (0.3 mmol, 76.5 mg), K₂CO₃ (0.6 mmol, 82.9 mg) and 2a (0.33 mmol, 82.6 mg) were dissolved in THF (3 mL). Then, the mixture was stirred at room temperature until the reaction was completed monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $5:1 \sim 3:1$) to give the desired product **3aa** as a white solid.

3.2 Spectral Data of Products.

Product 3aa

Yield of **3aa** : 85% and 86% respectively. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.61 (2 H, d, J = 7.6 Hz), 7.56 (2 H, d, J = 7.1 Hz), 7.38 (4 H, m), 7.34 (2 H, t, J = 7.5 Hz), 7.17 - 7.16 (2 H, m), 7.12 - 7.10 (2 H, m), 6.98 (1 H, d, J = 4.9 Hz), 5.65 (1 H, d, J = 18.0 Hz), 3.95 (1 H, d, J = 18.0 Hz), 3.39 (2 H, m), 3.08 - 3.02 (1 H, m), 2.74 (1 H, m), 2.46 (3 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 173.66, 173.25, 155.76, 135.66, 135.11, 134.86, 132.75, 130.20, 129.83, 129.03, 128.37, 127.80, 127.64, 126.99, 126.82, 125.87, 70.62, 49.26, 48.21, 24.78, 22.06. M.P.: 192 - 195 °C. IR (in KBr): 2974, 2912, 1686, 1613, 1657, 1380, 1278, 1032, 1016, 755, 701 cm⁻¹. HRMS (EI): m/z [M + H⁺] calcd for C₂₆H₂₄N₄O₂: 425.1978; found: 425.1973.

Product 3ca

Yield of **3ca** : 92%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.65 (2 H, d, J = 6.7 Hz), 7.56 (2 H, d, J = 7.3 Hz), 7.39 (3 H, m), 7.17 – 7.16 (2 H, m), 7.10 (1 H, d, J = 3.2Hz), 7.02 (2 H, d, J = 4.4 Hz), 6.87 (2 H, d, J = 8.3 Hz), 5.66 (1 H, d, J = 18.0 Hz), 3.99 (1 H, d, J = 18.0 Hz), 3.80 (3 H, s), 3.39 (2 H, s), 3.04 – 2.99 (1 H, m), 2.75 (1 H, d, J = 16.8 Hz), 2.43 (3 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 173.46,

172.88, 161.36, 156.59, 135.08, 134.79, 132.66, 129.76, 128.82, 128.54, 127.73, 127.69, 127.58, 127.52, 126.63, 125.93, 113.70, 70.76, 55.20, 48.89, 47.46, 25.13, 22.11. M.P.: 154 – 156 °C. IR (in KBr): 2964, 2925, 1679, 1653, 1607, 1377, 1250, 1173, 1034, 790, 701 cm⁻¹. HRMS (EI): m/z [M + H⁺] calcd for $C_{27}H_{26}N_4O_3$: 455.2083; found: 455.2079.

Product 3da

Yield of **3da** : 84%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.53 (2 H, d, J = 7.5 Hz), 7.50 (2 H, d, J = 7.5 Hz), 7.38 – 7.33 (3 H, m), 7.13 – 7.12 (4 H, m), 7.07 – 7.05 (2 H, m), 6.97 – 6.95 (1 H, m), 5.63 (1 H, d, J = 18.0 Hz), 3.92 (1 H, d, J = 18.0 Hz), 3.35 (2 H, d, J = 5.4 Hz), 3.03 – 2.97 (1 H, m), 2.71 (1 H, d, J = 17.0 Hz), 2.42 (3 H, s), 2.31 (3 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 173.54, 173.12, 156.40, 140.62,

135.18, 134.88, 132.78, 130.79, 129.81, 129.09, 128.94, 127.76, 127.64, 126.96, 126.77, 125.97, 70.68, 49.15, 47.98, 25.01, 22.08, 21.22. M.P.: 164 – 167 °C. IR (in KBr): 2912, 1676, 1655, 1383, 1356, 1305, 905, 772, 747 cm⁻¹. HRMS (EI): m/z [M + H⁺] calcd for $C_{27}H_{26}N_4O_2$: 439.2134; found: 439.2127.

Product 3ea

Yield of **3ea** : 91%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.57 (2 H, s), 7.55 (2 H, s), 7.44 – 7.36 (3 H, m), 7.32 (2 H, d, J = 8.2 Hz), 7.17 (2 H, m), 7.13 (2 H, s), 6.94 (1 H,

d, J = 7.0 Hz), 5.60 (1 H, d, J = 18.0 Hz), 3.92 (1 H, d, J = 18.0 Hz), 3.41 (2 H, m), 3.07 (1 H, m), 2.76 (1 H, d, J = 16.7 Hz), 2.46 (3 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 173.85, 173.31, 153.94, 136.31, 134.92, 134.83, 134.02, 132.58, 129.95, 129.18, 128.59, 128.23, 127.89, 127.69, 127.61, 126.84, 125.70, 70.68, 49.31, 48.04, 24.53, 22.07. M.P.: 171 – 173 °C. IR (in KBr): 2916, 1678, 1656, 1378, 1281, 1103, 736, 702, 618 cm⁻¹. HRMS (EI): m/z [M + H⁺] calcd for C₂₆H₂₃ClN₄O₂: 459.1588; found: 459.1582.

Product 3fa

Yield of **3fa** : 76%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.54 (2 H, d, J = 7.1 Hz), 7.46 (4 H, s), 7.39 – 7.35 (3 H, m), 7.15 (2 H, m), 7.11 (2 H, d, J = 6.8 Hz), 6.92 (1 H, d, J = 7.5 Hz), 5.58 (1 H, d, J = 18.0 Hz), 3.90 (1 H, d, J = 18.0 Hz), 3.43 – 3.37 (2 H, m), 3.09 – 3.03 (1 H, m), 2.75 (1 H, d, J = 17.2 Hz), 2.45 (3 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 173.80, 173.24, 153.90, 134.89, 134.79, 134.46, 132.54, 131.50, 129.90, 129.15, 128.41, 127.85, 127.64, 127.57, 126.80, 125.63, 124.63,

70.60, 49.27, 47.98, 24.45, 22.02. M.P.: 196 – 198 °C. IR (in KBr): 2915, 1680, 1657, 1377, 1304, 1023, 752, 727, 636 cm⁻¹. HRMS (EI): m/z [M + H⁺] calcd for $C_{26}H_{23}BrN_4O_2$: 503.1083; found: 503.1075.

Product 3ga

Yield of **3ga** : 85%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.63 (2 H, s), 7.56 (2 H, d, J = 7.3 Hz), 7.41 – 7.37 (3 H, m), 7.18 – 7.16 (2 H, m), 7.13 – 7.10 (2 H, m), 7.03 (2 H, t, J = 8.6 Hz), 6.96 (1 H, d, J = 6.6 Hz), 5.61 (1 H, d, J = 18.0 Hz), 3.94 (1 H, d, J = 18.0 Hz), 3.41 (2 H, s), 3.08 – 3.04 (1 H, m), 2.77 (1 H, d, J = 17.1 Hz), 2.46 (3 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 173.86, 173.19, 165.23, 162.73, 154.57, 135.02,

134.90, 132.74, 131.82, 129.94, 129.07, 128.99, 127.88, 127.68, 126.82, 125.80, 115.56, 115.34, 70.79, 49.27, 48.11, 24.78, 22.06. M.P.: 187 – 189 °C. IR (in KBr): 2980, 1684, 1662, 1381, 1278, 1020, 755, 648 cm⁻¹. HRMS (EI): m/z [M + H⁺] calcd for C₂₆H₂₃FN₄O₂: 443.1883; found: 443.1878.

Product 3ha

Yield of **3ha** : 85%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.60 (1 H, s), 7.57 (2 H, d, *J* = 7.4 Hz), 7.51 (1 H, d, *J* = 7.5 Hz), 7.42 (3 H, m), 7.37 (1 H, d, *J* = 7.9 Hz), 7.30 (1 H, d, *J* = 7.9 Hz), 7.23 – 7.16 (3 H, m), 7.15 (1 H, d, *J* = 7.1 Hz), 6.94 (1 H, d, *J* = 7.1 Hz), 5.60 (1 H, d, *J* = 18.0 Hz), 3.94 (1 H, d, *J* = 18.0 Hz), 3.48 – 3.41 (2 H, m),

3.13 – 3.08 (1 H, m), 2.78 (1 H, d, *J* = 17.0 Hz), 2.51 (3 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 173.86, 173.29, 153.22, 137.44, 134.97, 134.83, 134.41, 132.62, 130.09, 129.93, 129.62, 129.19, 128.70, 127.92, 127.67, 127.63, 126.91, 125.63, 124.99, 70.58, 49.41, 48.20, 24.49, 22.02. M.P.: 182 – 184 °C. IR

(in KBr): 2959, 2918, 1685, 1658, 1359, 1306, 1033, 753, 704 cm⁻¹. HRMS (EI): m/z [M + H⁺] calcd for $C_{26}H_{23}ClN_4O_2$: 459.1588; found: 459.1582.

Product 3ia

Yield of **3ia** : 78%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.58 – 7.56 (1 H, m), 7.54 (2 H, d, J = 7.3 Hz), 7.38 (3 H, m), 7.23 – 7.20 (2 H, m), 7.17 – 7.14 (2 H, m), 6.88 – 6.85 (2 H, m), 6.73 (1 H, t, J = 9.8 Hz), 5.26 (1 H, d, J = 18.0 Hz), 4.03 (1 H, d, J = 18.0 Hz), 3.45 (1 H, m), 3.39 (1 H, m), 3.12 (1 H, m), 2.76 (1 H, d, J = 17.1 Hz), 2.47 (3 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 174.14, 173.22, 164.94, 162.32, 161.86,

159.34, 150.93, 135.16, 134.92, 132.64, 130.96, 129.98, 129.16, 127.94, 127.72, 127.01, 125.81, 121.15, 121.05, 111.90, 111.69, 104.53, 104.27, 104.02, 70.47, 50.28, 49.58, 24.55, 21.95. M.P.: 152 - 154 °C. IR (in KBr): 2977, 1689, 1658, 1384, 1354, 1302, 1018, 849, 734 cm⁻¹. HRMS (EI): m/z [M + H⁺] calcd for C₂₆H₂₂F₂N₄O₂: 461.1789; found: 461.1783.

Product 3ja

Yield of **3ja** : 92%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.21 (2 H, d, *J* = 8.6 Hz), 7.78 (2 H, d, *J* = 8.6 Hz), 7.58 (2 H, d, *J* = 7.3 Hz), 7.46 (1 H, t, *J* = 7.3 Hz), 7.42 (2 H, t, *J* = 7.3 Hz), 7.23 – 7.19 (4 H, m), 6.91 (1 H, d, *J* = 7.4 Hz), 5.61 (1 H, d, *J* = 18.0 Hz), 3.98 (1 H, d, *J* = 18.0 Hz), 3.58 – 3.40 (2 H, m), 3.16 (1 H, m), 2.82 (1 H, d, *J* = 17.9 Hz), 2.53 (3 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 174.03, 173.31,

151.49, 148.37, 141.65, 134.77, 134.71, 132.41, 130.00, 129.36, 127.98, 127.67, 127.65, 127.53, 126.91, 125.30, 123.47, 70.58, 49.50, 48.24, 24.12, 21.92. M.P.: 178 - 181 °C. IR (in KBr): 2924, 1690, 1635, 1491, 1382, 1308, 1264, 907, 873, 760 cm⁻¹. HRMS (EI): m/z [M + H⁺] calcd for C₂₆H₂₃N₅O₄: 470.1828; found: 470.1822.

Product 3ka

Yield of **3ka** : 81%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.55 (2 H, d, J = 7.2 Hz), 7.41 – 7.35 (5 H, m), 7.15 (2 H, m), 7.11 (1 H, d, J = 7.1 Hz), 7.02 – 6.99 (2 H, m), 6.97 (1 H, d, J = 7.4 Hz), 5.70 (1 H, d, J = 18.0 Hz), 4.00 (1 H, d, J = 18.0 Hz), 3.39 (2 H, d, J = 5.9 Hz), 3.06 – 3.02 (1 H, m), 2.77 (1 H, m), 2.45 (3 H, s). ¹³C NMR (100

MHz, CDCl₃) δ (ppm) 173.53, 172.96, 151.16, 139.59, 134.97, 134.88, 132.51, 129.93, 129.32, 129.14, 128.88, 127.96, 127.86, 127.67, 127.54, 126.87, 125.96, 71.09, 49.11, 46.67, 25.16, 22.06. M.P.: 178 – 180 °C. IR (in KBr): 2968, 2919, 1674, 1652, 1379, 1355, 1277, 1174, 1006, 984, 778, 737, 716 cm⁻¹. HRMS (EI): m/z [M + H⁺] calcd for C₂₄H₂₂N₄O₂S: 431.1542; found: 431.1534.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Product 3la

Yield of **3la** : 83%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.53 (2 H, d, *J* = 6.6 Hz), 7.39 – 7.35 (3 H, m), 7.20 (1 H, t, *J* = 7.2 Hz), 7.16 (1 H, t, *J* = 7.3 Hz), 7.12 (1 H, d, *J* = 7.4 Hz), 7.09 (1 H, s), 6.89 (1 H, d, *J* = 7.7 Hz), 5.27 (1 H, d, *J* = 18.0 Hz), 3.56 (1 H, d, *J* = 18.0 Hz), 3.37 – 3.35 (1 H, m), 3.28 (1 H, m), 3.06 – 3.00 (1 H, m), 2.71

(1 H, d, J = 17.2 Hz), 2.40 (3 H, s), 1.00 (9 H, s).¹³C NMR (100 MHz, CDCl₃) δ (ppm) 173.49, 173.36, 164.42, 135.31, 134.94, 132.81, 129.63, 128.88, 127.60, 127.55, 126.45, 126.26, 69.83, 49.11, 46.02, 38.41, 27.66, 24.42, 21.90. M.P.: 179 – 181 °C. IR (in KBr): 2973, 1681, 1660, 1363, 1331, 1262, 1095, 984, 752, 704, 697 cm⁻¹. HRMS (EI): m/z [M + H⁺] calcd for C₂₄H₂₈N₄O₂: 450.2291; found: 450.2285.

Product 3bb

Yield of **3bb** : 80%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.66 (2 H, d, J = 6.9 Hz), 7.56 (2 H, d, J = 7.1 Hz), 7.41 (2 H, d, J = 6.4 Hz), 7.38 (4 H, s), 7.08 (2 H, s), 6.89 (1 H, t, J = 7.4 Hz), 6.72 (1 H, d, J = 8.7 Hz), 5.69 (1 H, d, J = 18.0 Hz), 3.95 (1 H, d, J = 18.0 Hz), 3.40 (2 H, s), 3.02 – 2.99 (1 H, m), 2.72 (1 H, d, J = 16.7 Hz), 2.47 (3 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 173.67, 173.14, 162.67, 160.21, 156.19,

135.44, 134.99, 130.65, 130.58, 130.58, 130.43, 129.94, 128.49, 127.69, 127.62, 127.04, 115.28, 115.07, 112.77, 112.55, 70.45, 49.23, 48.10, 24.18, 22.01. M.P.: 189 - 190 °C. IR (in KBr): 2975, 2916, 1682, 1654, 1495, 1311, 1021, 927, 764, 698 cm⁻¹. HRMS (EI): m/z [M + H⁺] calcd for C₂₆H₂₃FN₄O₂: 443.1883; found: 443.1871.

Product 3db

Yield of **3db** : 77%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.58 – 7.56 (4 H, m), 7.43 – 7.37 (3 H, m), 7.19 (1 H, s), 7.18 (1 H, s), 7.09 – 7.04 (1 H, m), 7.04 (1 H, s), 6.89 (1 H, t, *J* = 7.7 Hz), 6.73 (1 H, d, *J* = 8.9 Hz), 5.69 (1 H, d, *J* = 17.8 Hz), 3.95 (1 H, d, *J* = 18.0 Hz), 3.39 (2 H, s), 3.03 – 2.97 (1 H, m), 2.72 (1 H, d, *J* = 18.0 Hz), 2.46 (3 H, s), 2.36 (3 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 173.60, 173.10, 162.63,

160.18, 156.78, 140.94, 134.99, 134.80, 132.48, 130.59, 130.51, 129.94, 129.21, 127.71, 127.61, 127.03, 115.27, 115.06, 112.87, 112.65, 70.45, 49.13, 47.85, 24.32, 22.11, 21.29. M.P.: 185 - 188 °C . IR (in KBr): 2917, 1677, 1653, 1494, 1380, 1289, 1255, 1019, 815, 705, 628 cm⁻¹. HRMS (EI): m/z [M + H⁺] calcd for C₂₇H₂₅FN₄O₂: 457.2040; found: 457.2028.

Product 3jb

Yield of **3jb** : 81%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.22 (2 H, d, J = 8.2 Hz), 7.80 (2 H, d, J = 8.0 Hz), 7.54 (2 H, d, J = 7.4 Hz), 7.46 – 7.43 (1 H, m), 7.40 (2 H, t, J = 7.3 Hz), 7.16 – 7.14 (2 H, m), 6.94 (1 H, t, J = 8.1 Hz), 6.63 (1 H, d, J = 8.8 Hz), 5.61 (1 H, d, J = 18.0 Hz), 3.95 (1 H, d, J = 18.0 Hz), 3.46 (2 H, s), 3.09 – 3.07 (1 H, m), 2.78 (1 H, d, J = 16.8 Hz), 2.51 (3 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 174.09, 173.23, 162.66, 160.20, 151.80, 148.57, 141.46, 134.56, 131.05, 130.43, 130.17, 127.75, 127.58, 123.61, 115.52, 115.31, 112.27, 112.05, 70.42, 49.54, 48.14, 23.54, 21.92. M.P.: 210 – 212 °C. IR (in KBr): 2921, 1692, 1631, 1520, 1367, 1346, 1261, 869, 695, 634 cm⁻¹. HRMS (EI): m/z [M + H⁺] calcd for C₂₆H₂₂FN₅O₄: 488.1734; found: 488.1729.

Product 3bc

Yield of **3bc** : 85%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.64 (2 H, d, J = 7.2 Hz), 7.58 (2 H, d, J = 7.0 Hz), 7.43 – 7.40 (3 H, m), 7.39 – 7.36 (3 H, m), 7.12 (1 H, s), 7.01 – 6.98 (2 H, m), 6.79 (1 H, s), 5.68 (1 H, d, J = 18.0 Hz), 3.98 (1 H, d, J = 18.0 Hz), 3.40 – 3.38 (2 H, m), 3.05 – 2.99 (1 H, m), 2.71 (1 H, d, J = 16.9 Hz), 2.49 (3 H, s), 2.28 (3 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 173.67,

173.23, 155.80, 136.37, 135.67, 135.11, 132.39, 131.62, 130.16, 129.78, 129.01, 128.88, 128.60, 128.33, 127.59, 127.02, 126.22, 70.52, 49.36, 48.25, 24.27, 22.08, 21.05. M.P.: 201 – 203 °C. IR (in KBr): 2932, 1686, 1655, 1382, 1367, 1279, 1022, 904, 768, 691 cm⁻¹. HRMS (EI): m/z [M + H⁺] calcd for $C_{27}H_{26}N_4O_2$: 439.2134; found: 439.2124.

Product 3cc

Yield of **3cc** : 82%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.63 (2 H, s), 7.54 (2 H, s), 7.35 (3 H, d, J = 5.9 Hz), 6.95 (3 H, s), 6.86 (2 H, s), 6.79 (1 H, s), 5.63 (1 H, d, J = 18.0 Hz), 3.98 (1 H, d, J = 18.0 Hz), 3.80 (3 H, d, J = 4.6 Hz), 3.34 (2 H, d, J = 21.8 Hz), 2.94 (1 H, s), 2.68 (1 H, d, J = 12.9 Hz), 2.41 (3 H, s), 2.25 (3 H, d, J = 4.5 Hz). ¹³C NMR (100 MHz, CDCl₃) 173.41, 172.80, 161.38, 156.76, 136.29,

136.19, 135.12, 132.46, 132.41, 131.62, 129.71, 128.64, 128.58, 127.81, 127.54, 126.36, 113.70, 70.66, 55.18, 49.02, 47.53, 24.76, 22.10, 21.01. M.P.: 166 – 168 °C. IR (in KBr): 2918, 1679, 1651, 1610, 1514, 1380, 1254, 1173, 1023, 740, 695 cm⁻¹. HRMS (EI): m/z [M + H⁺] calcd for $C_{28}H_{28}N_4O_3$: 469.2240; found: 469.2226.

Product 3hc

Yield of **3hc** : 89%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.56 (3 H, d, J = 4.8 Hz), 7.49 (1 H, d, J = 7.1 Hz), 7.41 – 7.35 (4 H, m), 7.28 (1 H, t, J = 7.8 Hz), 7.13 (1 H, s), 7.00 (2 H, s), 6.72 (1 H, s), 5.57 (1 H, d, J = 18.0 Hz), 3.92 (1 H, d, J = 18.0 Hz), 3.39 (2 H, s), 3.05 – 3.01 (1 H, m), 2.71 (1 H, d, J = 16.7 Hz), 2.49 (3 H, s), 2.27 (3 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 173.91,

173.32, 153.42, 137.46, 136.54, 134.96, 134.36, 132.29, 131.60, 130.05, 129.90, 129.59, 129.07, 128.74, 127.65, 127.59, 127.11, 126.08, 125.02, 70.53, 49.50, 48.36, 24.00, 22.05, 21.05. M.P.: 187 - 188 °C. IR (in KBr): 2921, 1693, 1654, 1364, 1355, 1167, 984, 709, 687 cm⁻¹. HRMS (EI): m/z [M + H⁺] calcd for C₂₇H₂₅ClN₄O₂: 473.1744; found: 473.1734.

Product 3ad

Yield of **3ad** : 88%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.60 (2 H, s), 7.49 (2 H, d, *J* = 7.7 Hz), 7.37 (1 H, d, *J* = 7.0 Hz), 7.34 (2 H, d, *J* = 7.4 Hz), 7.35 – 7.34 (4 H, m), 7.10 (2 H, s), 6.97 (1 H, s), 5.63 (1 H, d, *J* = 18.0 Hz), 3.94 (1 H, d, *J* = 18.0 Hz), 3.47 – 3.41 (2 H, m), 3.06 (1 H, d, *J* = 7.3 Hz), 2.75 (1 H, d, *J*

= 17.0 Hz), 2.44 (3 H, s), 2.35 (3 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 173.60, 173.12, 155.89, 139.98, 135.58, 134.81, 132.67, 131.93, 130.09, 128.94, 128.25, 127.79, 127.69, 126.90, 126.69, 125.76, 70.54, 49.14, 48.24, 24.68, 21.94, 21.28. M.P.: 94 – 96 °C. IR (in KBr): 2921, 1688, 1645, 1382, 1278, 984, 749, 694 cm⁻¹. HRMS (EI): m/z [M + Na⁺] calcd for C₂₇H₂₆N₄O₂: 461.1953; found: 461.1945.

Product 3ae

Yield of **3ae** : 81%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.59 (2 H, d, J = 7.1 Hz), 7.54 (2 H, d, J = 8.0 Hz), 7.38 (1 H, d, J = 6.8 Hz), 7.35 (4 H, m), 7.17 (2 H, s), 7.11 (2 H, s), 6.96 (1 H, s), 5.64 (1 H, d, J = 18.0 Hz), 3.93 (1 H, d, J = 18.0 Hz), 3.45 (1 H, m), 3.36 (1 H, s), 3.05 (1 H, s), 2.76 (1 H, d, J = 16.5 Hz),

2.45 (3 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 173.32, 172.43, 155.41, 135.95, 135.48, 134.72, 133.30, 132.47, 130.24, 129.36, 129.07, 128.37, 127.93, 127.89, 126.91, 126.88, 125.82, 70.56, 49.26, 48.26, 24.61, 21.99. M.P.: 85 – 88 °C. IR (in KBr): 2923, 1643, 1552, 1382, 1309, 1089, 839, 750 cm⁻¹. HRMS (EI): m/z [M + Na⁺] calcd for C₂₆H₂₃ClN₄O₂: 481.1407; found: 481.1400.

Product 3af

Yield of **3af** : 87%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.54 (2 H, d, *J* = 7.1), 7.37 – 7.35 (1 H, m), 7.31 (2 H, t, *J* = 7.3 Hz), 7.17 (3 H, s), 7.12 (1 H, s), 6.96 (1 H, d, *J* = 4.7 Hz), 5.53 (1 H, d, *J* = 18.0 Hz), 3.74 (1 H, d, *J* = 18.0 Hz), 3.61 (1 H, s), 3.49 (1 H, d, *J* = 13.8 Hz), 3.07 (1 H, s), 2.83 (1 H, d, *J* = 17.2 Hz), 2.41 (3 H, s), 2.23 (3 H, s).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 175.51, 173.31, 156.12, 135.56, 134.76, 132.53, 130.09, 129.13, 128.38, 127.79, 126.89, 126.80, 125.88, 70.86, 49.09, 47.27, 24.49, 21.90, 20.85. M.P.: 104 – 106 °C. IR (in KBr): 2923, 1669, 1383, 1263, 1132, 976, 846, 760 cm⁻¹. HRMS (EI): m/z [M + Na⁺] calcd for $C_{21}H_{22}N_4O_2$: 385.1640; found: 385.1643.

Product 3ma

Yield of **3ma** : 64%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.07 (1 H, d, *J* = 6.7 Hz), 7.57 (2 H, s), 7.44 (2 H, s), 7.36 (3 H, s), 7.21 – 7.15 (3 H, m), 7.00 (1 H, s), 6.63 (1 H, s), 5.84 (1 H, s), 3.48 (2 H, d, *J* = 7.0 Hz), 3.27 (1 H, s), 2.95 (2 H, s), 2.79 (1 H, s), 2.68 (2 H, d, *J* = 15.6 Hz), 2.11 (3 H, s), 2.00 (1 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 172.09, 171.25, 169.47, 141.36, 135.48, 133.97, 133.03, 132.11,

130.39, 129.81, 128.33, 127.67, 127.36, 127.15, 126.87, 126.78, 126.73, 68.06, 58.32, 47.50, 29.85, 29.75, 28.21, 22.36. M.P.: 197 – 200 °C. IR (in KBr): 2895, 2844, 1657, 1584, 1386, 1323, 1035, 842, 741, 614 cm⁻¹. HRMS (EI): m/z [M + H⁺] calcd for $C_{28}H_{26}N_4O_2$: 451.2134; found: 451.2125.

Product 3na

Yield of **3na** : 62%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.07 (1 H, s), 7.57 (2 H, s),
7.44 (2 H, s), 7.37 (3 H, s), 7.19 – 7.17 (2 H, m), 7.01 (2 H, s), 6.67 (1 H, s), 6.10 (1 H, s), 4.62 (1 H, s), 4.22 (1 H, s), 3.48 (2 H, d, J = 7.6 Hz), 3.25 (1 H, s), 2.77 (2 H, d, J = 48.7), 2.12 (3 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 172.73, 169.60,
166.88, 158.74, 134.81, 134.35, 133.93, 133.03, 130.28, 129.60, 127.78, 127.24,

127.00, 126.78, 126.59, 126.17, 122.32, 118.69, 117.94, 68.86, 67.75, 56.90, 48.38, 29.89, 22.41. M.P.: 169 – 171 °C. IR (in KBr): 2895, 2844, 1663, 1612, 1595, 1386, 1321, 1037, 771, 741 cm⁻¹. HRMS (EI): m/z [M + H⁺] calcd for $C_{27}H_{24}N_4O_3$: 453.1927; found: 453.1922.

Product 5

Yield of **5** : 62%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.65 (2 H, s), 7.48 (2 H, s), 7.30 (5 H, s), 7.21 (4 H, d, *J* = 11.9 Hz), 7.15 (2 H, s), 7.07 – 7.04 (5 H, m), 6.01 (1 H, s), 3.79 (1 H, s), 2.88 (2 H, s), 2.82 (1 H, s). ¹³C NMR (100 MHz, CDCl₃/DMSO-d⁶) δ (ppm) 166.42, 164.25, 133.14, 132.97, 132.95, 132.46, 132.13, 129.44, 128.47, 128.16, 127.08, 126.74, 126.68, 126.39, 126.29, 126.02, 125.85,

125.60, 123.42, 101.88, 72.31, 44.10, 27.04. M.P.: 186 – 189 °C. IR (in KBr): 3273, 2968, 1644, 1620, 1444, 1314, 1057, 1027, 756, 696 cm⁻¹. HRMS (EI): m/z [M + H⁺] calcd for $C_{31}H_{26}N_4O_2$: 487.2134; found: 487.2125

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

4. X-Ray structure of 3aa and 5

5. Preliminary studies on [4+3] Cycloaddition with in situ generated C,N-cyclic azomethine imine 2g' and N,N'-cyclic azomethine imine 2h.

6. NMR and HRMS spectra of Hydrazones, 2g and the Cyclic Products

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃/DMSO-d⁶) spectrum of hydrazone 1a

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃/DMSO-d⁶) spectrum of hydrazone 1c

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃/DMSO-d⁶) spectrum of hydrazone 1e

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃/DMSO-d⁶) spectrum of hydrazone 1g

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of hydrazone 1h

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃/DMSO-d⁶) spectrum of hydrazone 1i

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃/TFA) spectrum of hydrazone 1j

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃/DMSO-d⁶) spectrum of hydrazone 1k

 $^{1}\mathrm{H}$ NMR (600 MHz, CDCl_3) and $^{13}\mathrm{C}$ NMR (100 MHz, CDCl_3) spectrum of hydrazone 11

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of hydrazone 1m

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃/DMSO-d⁶) spectrum of hydrazone 1n

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of C,N-cyclic azomethine imine 2g

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3aa

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3ca

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3da

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3ea

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3fa

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3ga

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3ha

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3ia

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3ja

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3ka

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3la

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3bb

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3db

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3jb

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3bc

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3cc

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3hc

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3ma

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3na

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃/DMSO-d⁶) spectrum of cyclic product 5

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3ad

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3ae

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 3af