Electronic Supporting Information (ESI)

Anisotropy barrier enhancement via ligand substitution in tetranuclear $\{Co_{2}^{III}Ln_{2}^{III}\}$ single molecule magnets.

Stuart K. Langley, Nicholas F. Chilton, Boujemaa Moubaraki and Keith S. Murray^{*}

Experimental

Synthesis of [Tb^{III}₂Co^{III}₂(OH)₂(bdea)₂(acac)₂(NO₃)₄] (2).

Co(acac)₂·2H₂O (0.15 g, 0.5 mmol) and Tb(NO₃)₃·6H₂O (0.66 g, 1.5 mmol) were dissolved in MeOH (20 mL), followed by the addition of n-butyldiethanolamine (0.08 mL, 0.5 mmol), and triethylamine (0.3 mL, 2.0 mmol) to give a green solution. This was stirred for 2 hours after which the solution turned blue/green. This was subsequently layered with diethylether (Et₂O) and within 2 - 3 days dark green crystals of **2** had appeared, in approximate yield of 65 %. Anal. Calculated (found) for **2**: Co₂Tb₂C₂₆H₅₀N₆O₂₂: C, 25.29 (25.43); H, 4.08 (4.02); N, 6.81 (6.54).

Synthesis of [Dy^{III}₂Co^{III}₂(OH)₂(bdea)₂(acac)₂(NO₃)₄] (3).

Co(acac)₂·2H₂O (0.15 g, 0.5 mmol) and Dy(NO₃)₃·6H₂O (0.66 g, 1.5 mmol) were dissolved in MeOH (20 mL), followed by the addition of n-butyldiethanolamine (0.08 mL, 0.5 mmol), and triethylamine (0.3 mL, 2.0 mmol) to give a green solution. This was stirred for 2 hours after which the solution turned blue/green. This was subsequently layered with diethylether (Et₂O) and within 2 - 3 days dark green crystals of **3** had appeared, in approximate yield of 65 %. Anal. Calculated (found) for **3**: Co₂Dy₂C₂₆H₅₀N₆O₂₂ : C, 25.15 (25.40); H, 4.16 (4.02); N, 6.77 (6.59).

X-RAY CRYSTALLOGRAPHY. X-ray measurements for 2 and 3 were performed at 123(2) K using a Bruker Smart Apex X8 diffractometer with Mo K α radiation. The data

collection and integration were performed within SMART and SAINT+ software programs, and corrected for absorption using the Bruker SADABS program. Compounds **2** and **3** were all solved by direct methods (SHELXS-97), and refined (SHELXL-97) by full least matrix least-squares on all F^2 data.¹ Crystallographic data and refinement parameters for **2** and **3** are summarized in Table S1.

 Table S1. Crystallographic data for compounds 2 and 3.

	2	3
Formula ^a	$Co_2Tb_2C_{26}H_{50}$	$Co_2Dy_2C_{26}H_{50}$
	N_6O_{22}	N ₆ O ₂₂
M, gmol ⁻¹	1234.42	1241.58
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1/n$	$P2_{1}/n$
a/Å	11.3107(5)	11.310(2)
b/Å	11.7100(5)	11.725(2)
c/Å	15.4715(7)	15.497(3)
α/deg	90	90
β/deg	102.871(2)	102.90(3)
γ/deg	90	90
$V/\text{\AA}^3$	1997.69(15)	2003.2(7)
T/K	123(2)	123(2)
Z	2	2
ρ , calc	2.052	2 059
[g cm ⁻³]		2.038
$\lambda^b\!/ {\rm \AA}$	0.71073	0.71073
Data Measured	9293	12647

Ind. reflns	3372	3472
R _{int}	0.0295	0.1015
Reflns with	2070	2226
$I > 2\sigma(I)$	3079	3220
Parameters	268	268
Restraints	1	0
R1 ^c (obs) wR2 ^c (all)),0.0211, 0.0526	0.1525, 0.0608
goodness o fit	of 1.026	1.138
Largest residuals/	0.576, -0.576	3.141, -3.057
e Å ⁻³		

^a Including solvate molecules. ^b Graphite monochromator.

$${}^{c}R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, wR2 = \{ \Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}] \}^{1/2}.$$

Table S2. Selected bond lengths (\AA) for 2 and 3.

	2 {Co ₂ Tb ₂ }	3 {Co ₂ Dy ₂ }
Ln1-O2A	$2.255(2)^{1}$	2.227(5) ^{II}
Ln1-O3	2.238(2)	2.237(5)
Ln1-O1	2.407(2)	2.384(5)
Ln1-O6	2.403(2)	2.389(6)
Ln1-O10	2.397(2)	2.390(5)
Ln1-O1A	$2.394(2)^{1}$	2.399(5) ^{II}
Ln1-O9	2.466(2)	2.449(5)
Ln1-O7	2.456(2)	2.469(5)
Co1-O2	1.887(2)	1.884(5)
Co1-O5	1.890(2)	1.892(5)
Co1-O3	1.8816(19)	1.895(5)
Co1-O4	1.881(2)	1.909(5)
Co1-O1	1.953(2)	1.950(5)
Co1-N1	1.962(3)	1.975(6)

Symmetry transformation: (I) 2 - x, 1 - y, 1 - z; (II) 1 - x, 1 - y, - z;

Reference

1. G. M. Sheldrick, Acta Cryst. A, 2008, A64, 112.

Figure S1. Plot of $\chi_M T$ versus *T* for **2** measured at 0.01, 0.1 and 1 T. The solid lines just join up the points.

Figure S2. Plot of $\chi_M T$ versus *T* for **3** measured at 0.01, 0.1 and 1 T. The solid lines just join up the points.

Figure S3. Isothermal *M versus H* plot for compound **2**. The solid lines just join up the points.

Figure S4. Isothermal *M versus H* plot for compound **3**. The solid lines just join up the points.

Figure S5. (top) Plot of χ_{M} ' versus v for **3**; (bottom) Plot of χ_{M} ' versus T for **3**.

Figure S6. Plot of χ_M '' versus *T* for **2** with $H_{DC} = 0$ Oe.

Figure S7. Plot of χ_M '' versus *T* for **2** with $H_{DC} = 5000$ Oe.