[Supporting Information]

L-Proline: an efficient N,O-bidentate ligand for copper-catalyzed aerobic oxidation of primary and secondary benzylic alcohols at room temperature

Guofu Zhang,^a^ Xingwang Han,^a^ Yuxin Luan,^a^ Yong Wang,^a^ Xin Wen^a^ and Chengrong Ding^a^

^a^ College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China.
Fax: (+86)-571-8832-0147; Tel: (+86)-571-8832-0147; E-mail: dingcr@zjut.edu.cn

Table of Contents

General Experimental...page S2

Experimental Sections...page S3-S5

a) General procedures for preparation of secondary alcohol

b) General procedures for copper-catalyzed secondary alcohol oxidation under air at room temperature

c) General procedures for copper-catalyzed primary alcohol oxidation under air at room temperature

d) The optimization of copper-catalyzed primary alcohol oxidation

NMR Characterization Data and Figures.................................page S6-S46
General Experimental

All reagents were purchased from commercial suppliers and used without purification unless otherwise stated. Copper salts, L-proline, L-valine, 8-hydroxyquinoline, glycine, 2-picolinic acid, benzyl alcohol, p-tolylmethanol, 4-methoxybenzyl alcohol, 3,4-dimethylbenzyl alcohol, 2-methoxybenzyl alcohol, 1-naphthalenemethanol, p-nitrobenzyl alcohol, 4-fluorobenzyl alcohol, 4-chlorobenzyl alcohol, 4-bromobenzyl alcohol, 2-chlorobenzyl alcohol, 3-chlorobenzyl alcohol, 2,4-dichlorobenzyl alcohol, cinnamyl alcohol, 2-thiophenemethanol, furfuryl alcohol, 3-pyridinemethanol, cyclohexanol and n-octyl alcohol were purchased from Aladdin reagent Co., LTD (Shanghai). 1-Phenethyl alcohol, diphenylmethanol, benzoin, 4-fluoro-α-methylbenzyl alcohol, 4-chloro-α-methylbenzyl alcohol, 4-bromo-α-methylbenzyl alcohol, 1-(2-furyl)ethanol, were purchased from Sigma-Aldrich Company. The other secondary alcohols were reduced from their corresponding acetophenones or acetylpyridine.

Column chromatography was performed with silica gel (300-400 mesh) produced by Qingdao Marine Chemical Factory, Qingdao (China). GC-MS analysis of determination of conversion was performed on the instrument of Agilent 7890 GC-QQQ. NMR spectra were recorded on Bruker AVANCE III 500MHz instrument with TMS as internal standard.
Experimental Sections

a) General procedures for preparation of secondary alcohol

To a solution of substrate (10.0 mmol) in C\textsubscript{2}H\textsubscript{5}OH (10.0 mL) was added NaBH\textsubscript{4} (0.9458 g, 25.0 mmol) at room temperature. After 12 h, the reaction mixture was diluted with H\textsubscript{2}O (20.0 mL) and then partitioned between EtOAc (20.0 mL). The water layer was washed with EtOAc (3×15.0 mL). The combined organic layers were washed with brine (20.0 mL), dried with anhydrous Na\textsubscript{2}SO\textsubscript{4}, filtered, and concentrated in vacuo. The residue was purified by silica-gel column chromatography to give desired product.

![Chemical Structure](image)

1-(4-Methylphenyl)ethanol

(1.2257 g, 90%) as a colorless oil. 1H NMR (500 MHz, CDCl\textsubscript{3}): \(\delta\) 1.49(d, \(J = 6.4\) Hz, 3H), 2.38(s, 3H), 4.83-4.88(q, 1H), 7.18(d, \(J = 8.0\) Hz, 2H), 7.28(d, \(J = 8.0\) Hz, 2H).

![Chemical Structure](image)

1-(2-Chlorophenyl)ethanol

(1.4878 g, 95%) as a pale yellow oil. 1H NMR (500 MHz, CDCl\textsubscript{3}): \(\delta\) 1.49(d, \(J = 6.4\) Hz, 3H), 5.26(t, \(J = 6.3\) Hz, 1H), 7.18(t, \(J = 7.4\) Hz, 1H), 7.26(d, \(J = 7.5\) Hz, 1H), 7.56(d, \(J = 7.6\) Hz, 1H).

![Chemical Structure](image)

1-(3-Pyridyl)ethanol

(1.1453 g, 93%) as a colorless oil. 1H NMR (500 MHz, CDCl\textsubscript{3}): \(\delta\) 1.38(d, \(J = 6.5\) Hz, 3H), 4.78-4.82(q, 1H), 7.13-7.17(q, 1H), 7.65 (t, \(J = 3.9\) Hz, 1H), 8.21-8.24(q, 1H), 8.33(d, \(J = 2.0\) Hz, 1H).

b) General procedures for copper-catalyzed secondary alcohol oxidation under air at room temperature (1-phenethyl alcohol).

A mixture of 1-phenethyl alcohol (0.1222 g, 1.0 mmol), L-proline (0.0058 g, 0.05
mmol), CuI (0.0095 g, 0.05 mmol), tBuOK (0.1122 g, 1.0 mmol), TEMPO (0.0078 g, 0.05 mmol), DMF (4.0 mL) were placed into a 50 mL flask equipped with a magnetic stirrer. Then the resulting mixture was vigorously stirred under air at room temperature for 5 h. After the reaction, the residue was filtered off, and the solvent was removed under vacuum to give the crude product, which was purified by column chromatography on silica gel to give the pure product (0.1117 g, isolated yield 93%). \(^1\)H NMR (500 MHz, CDCl\(_3\)): δ 2.62(s, 3H), 7.47(t, \(J = 7.5\) Hz, 2H), 7.57(t, \(J = 7.0\), 1H), 7.97(d, \(J = 7.5\) Hz, 2H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)): δ 26.5, 128.2, 128.4, 133.0, 137.0, 198.0.

c) General procedures for copper-catalyzed primary alcohol oxidation under air at room temperature (benzyl alcohol).

A mixture of benzyl alcohol (0.1081 g, 1.0 mmol), L-proline (0.0078g, 0.05 mmol), CuBr (0.0072g, 0.05 mmol), Na\(_2\)CO\(_3\) (0.1060 g, 1.0 mmol), TEMPO (0.0078 g, 0.05 mmol), CH\(_3\)OH (4.0 mL) were placed into a 50 mL flask equipped with a magnetic stirrer. Then the resulting mixture was vigorously stirred under air at room temperature for 5 h. After the reaction, the residue was filtered off, and the solvent was removed under vacuum. Then the crude was purified by column chromatography on silica gel to give the pure product (0.0997 g, isolated yield 94%). \(^1\)H NMR (500 MHz, CDCl\(_3\)): δ 7.53(t, \(J = 7.8\) Hz, 2H), 7.61-7.65(m, 1H), 7.87-7.90(m, 2H), 10.02(s, 1H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)): δ 128.9, 129.7, 134.4, 136.4, 192.3.
d) The optimization of copper-catalyzed primary alcohol oxidation

Table S1 The optimization of copper-catalyzed primary alcohol oxidationa

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Copper salt</th>
<th>Ligandb</th>
<th>Conv. (%)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>DMFc</td>
<td>CuI</td>
<td>A</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>CH$_3$OH</td>
<td>CuCl</td>
<td>A</td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td>C$_2$H$_5$OH</td>
<td>CuCl</td>
<td>A</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>CH$_3$CN</td>
<td>CuCl</td>
<td>A</td>
<td>56</td>
</tr>
<tr>
<td>5</td>
<td>CH$_2$Cl$_2$</td>
<td>CuCl</td>
<td>A</td>
<td>69</td>
</tr>
<tr>
<td>6</td>
<td>toluene</td>
<td>CuCl</td>
<td>A</td>
<td>63</td>
</tr>
<tr>
<td>7</td>
<td>DMFc</td>
<td>CuCl</td>
<td>A</td>
<td>61</td>
</tr>
<tr>
<td>8</td>
<td>CH$_3$OH</td>
<td>CuCl$_2$</td>
<td>A</td>
<td>88</td>
</tr>
<tr>
<td>9</td>
<td>CH$_3$OH</td>
<td>CuBr$_2$</td>
<td>A</td>
<td>71</td>
</tr>
<tr>
<td>10</td>
<td>CH$_3$OH</td>
<td>CuBr</td>
<td>A</td>
<td>$>$99</td>
</tr>
<tr>
<td>11</td>
<td>CH$_3$OH</td>
<td>CuSO$_4$</td>
<td>A</td>
<td>73</td>
</tr>
<tr>
<td>12</td>
<td>CH$_3$OH</td>
<td>Cu(OAc)$_2$</td>
<td>A</td>
<td>79</td>
</tr>
<tr>
<td>13</td>
<td>CH$_3$OH</td>
<td>CuI</td>
<td>A</td>
<td>93</td>
</tr>
<tr>
<td>14</td>
<td>CH$_3$OH</td>
<td>CuBr</td>
<td>B</td>
<td>87</td>
</tr>
<tr>
<td>15</td>
<td>CH$_3$OH</td>
<td>CuBr</td>
<td>C</td>
<td>79</td>
</tr>
<tr>
<td>16</td>
<td>CH$_3$OH</td>
<td>CuBr</td>
<td>D</td>
<td>30</td>
</tr>
<tr>
<td>17</td>
<td>CH$_3$OH</td>
<td>CuBr</td>
<td>E</td>
<td>90</td>
</tr>
<tr>
<td>18e</td>
<td>CH$_3$OH</td>
<td>-</td>
<td>A</td>
<td>8</td>
</tr>
<tr>
<td>19e</td>
<td>CH$_3$OH</td>
<td>CuBr</td>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td>20e</td>
<td>CH$_3$OH</td>
<td>CuBr</td>
<td>-</td>
<td>28</td>
</tr>
<tr>
<td>21e</td>
<td>CH$_3$OH</td>
<td>CuBr</td>
<td>A</td>
<td>27</td>
</tr>
</tbody>
</table>

aReaction condition: p-tolylmethanol (1.0 mmol), copper salt (5 mol%), TEMPO (5 mol%), Na$_2$CO$_3$ (1.0 mmol), L-proline (5 mol%), Solvent (4.0 mL), 5 h, 900r/min. bA is L-proline, B is L-valine, C is Glycine, D is 8-Quinolinol, E is 2-Picolinic acid. cDetermined by GC-MS. dstandard conditions for the aerobic oxidation of secondary alcohols. eCopper salt was omitted. fThe reaction was carried out in the absence of TEMPO. gNo L-proline was employed. hBase was omitted.

Table S2 Effect of stirring rate on conversion.

<table>
<thead>
<tr>
<th>Stirring Rate (r/min)</th>
<th>500</th>
<th>700</th>
<th>900</th>
<th>1100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conv. (%)a</td>
<td>88</td>
<td>96</td>
<td>$>$99</td>
<td>$>$99</td>
</tr>
<tr>
<td>Conv. (%)b</td>
<td>80</td>
<td>94</td>
<td>$>$99</td>
<td>$>$99</td>
</tr>
</tbody>
</table>

aReaction condition: p-tolylmethanol (1.0 mmol), CuBr (5 mol%), TEMPO (5 mol%), Na$_2$CO$_3$ (1.0 mmol), L-proline (5 mol%), CH$_3$OH (4.0 mL), 5 h. bReaction condition: 1-phenylethanol (1.0 mmol), CuI (5 mol%), TEMPO (5 mol%), BuOK (1.0 mmol), L-proline (5 mol%), DMF (4.0 mL), 5 h.

e) Effect of stirring rate on conversion of alcohol oxidation

Considering these reactions are categorized into gas-liquid phase reactions. The stirring rate should affect on the reaction rate. Hence we investigated the relationship between conversion with stirring rate. The corresponding results were summarized in Table S2.
NMR Characterization Data and Figures

Acetophenone (Table 2, entry 1) 1H NMR (500 MHz, CDCl$_3$): δ 2.62(s, 3H), 7.47(t, $J = 7.5$ Hz, 2H), 7.57(t, $J = 7.5$ Hz, 1H), 7.97(d, $J = 7.5$ Hz, 2H). 13C NMR (125 MHz, CDCl$_3$): δ 26.5, 128.2, 128.4, 133.0, 137.0, 198.0.

Benzophenone (Table 2, entry 2) 1H NMR (500 MHz, CDCl$_3$): δ 7.50(t, $J = 8.0$ Hz, 4H), 7.61(t, $J = 7.3$ Hz, 2H), 7.82(d, $J = 7.5$ Hz, 4H). 13C NMR (125 MHz, CDCl$_3$): δ 128.2, 130.0, 132.4, 137.6, 196.7.

Benzil (Table 2, entry 3) 1H NMR (500 MHz, CDCl$_3$): δ 7.54(t, $J = 7.8$ Hz, 4H), 7.68(t, $J = 7.0$ Hz, 2H), 7.98-8.00(q, 4H). 13C NMR (125 MHz, CDCl$_3$): δ 129.0, 129.9, 133.0, 134.8, 194.6.

4-Methylacetophenone (Table 2, entry 4) 1H NMR (500 MHz, CDCl$_3$): δ 2.40(s, 3H), 2.57(s, 3H), 7.25(d, $J = 8.0$ Hz, 2H), 7.85 (d, $J = 8.5$ Hz, 2H). 13C NMR (125 MHz, CDCl$_3$): δ 21.6, 26.4, 128.4, 129.2, 134.7, 143.8, 197.9.

4-Methoxyacetophenone (Table 2, entry 5) 1H NMR (500 MHz, CDCl$_3$): δ 2.57(s, 3H), 3.88(s, 3H), 6.95(d, $J = 9.0$ Hz, 2H), 7.95(d, $J = 9.0$ Hz, 2H). 13C NMR (125 MHz, CDCl$_3$): δ 26.3, 55.4, 113.7, 130.4, 130.6, 163.5, 196.8.
3,4-Diethoxyacetophenone (Table 2, entry 6) 1H NMR (500 MHz, CDCl$_3$): δ 2.56(s, 3H), 3.94(d, J = 6.0 Hz, 6H), 6.89(d, J = 8.5 Hz, 1H), 7.53 (d, J = 2.5 Hz, 1H), 7.56-7.59(q, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 26.1, 55.9, 56.0, 109.9, 110.1, 123.2, 130.5, 149.0, 153.3, 196.7.

3,4,5-Trimethoxyacetophenone (Table 2, entry 7) 1H NMR (500 MHz, CDCl$_3$): δ 2.59(s, 3H), 3.92(d, J = 2.5 Hz, 9H), 7.22(s, 2H). 13C NMR (125 MHz, CDCl$_3$): δ 26.3, 56.3, 60.9, 105.9, 132.4, 153.0, 196.8.

4-Fluoroacetophenone (Table 2, entry 8) 1H NMR (500 MHz, CDCl$_3$): δ 2.58(s, 3H), 7.12(t, J = 8.8 Hz, 2H), 7.96-8.00(q, 2H). 13C NMR (125 MHz, CDCl$_3$): δ 26.2, 115.5, 130.9, 133.6, 166.7, 196.4.

4-Chloroacetophenone (Table 2, entry 9) 1H NMR (500 MHz, CDCl$_3$): δ 2.60(s, 3H), 7.45(d, J = 8.5 Hz, 2H), 7.91 (d, J = 8.5 Hz, 2H). 13C NMR (125 MHz, CDCl$_3$): δ 26.5, 128.8, 129.7, 135.4, 139.5, 196.7.

4-Bromoacetophenone (Table 2, entry 10) 1H NMR (500 MHz, CDCl$_3$): δ 2.60(s, 3H), 7.62(d, J = 8.5 Hz, 2H), 7.83 (d, J = 8.5 Hz, 2H). 13C NMR (125 MHz, CDCl$_3$): δ 26.5, 128.4, 129.8, 131.9, 135.7, 197.1.
2-Chloroacetophenone (Table 2, entry 11) 1H NMR (500 MHz, CDCl$_3$):
δ 2.64(s, 3H), 7.31(td, $J = 7.5$, 1.5 Hz, 1H), 7.36-7.42(m, 2H), 7.54(dd, $J = 1.5$, 2.0 Hz, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 30.6, 126.9, 129.3, 130.6, 131.2, 131.9, 139.1, 200.4.

3-Chloroacetophenone (Table 2, entry 12) 1H NMR (500 MHz, CDCl$_3$): δ 2.59(s, 3H), 7.41(t, $J = 7.7$ Hz, 1H), 7.52-7.55(m, 1H), 7.81-7.84(m, 1H), 7.91(t, $J = 1.8$ Hz, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 26.5, 126.3, 128.3, 129.9, 132.9, 134.9, 138.6, 196.6.

2,4-Dichloroacetophenone (Table 2, entry 13) 1H NMR (500 MHz, CDCl$_3$): δ 2.64(s, 3H), 7.30-7.33(q, 1H), 7.44 (d, $J = 2.0$ Hz, 1H), 7.54(d, $J = 8.5$ Hz, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 30.6, 127.3, 130.5, 130.6, 132.5, 137.2, 137.7, 198.8.

3-Trifluoromethylacetophenone (Table 2, entry 14) 1H NMR (500 MHz, CDCl$_3$): δ 2.64(s, 3H), 7.61(t, $J = 7.8$ Hz, 1H), 7.81(d, $J = 7.5$ Hz, 1H), 8.13(d, $J = 8.0$ Hz, 1H), 8.19(s, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 26.4, 124.7, 125.0, 129.2, 129.5, 131.1, 131.4, 137.5, 196.6.

4-Phenylacetophenone (Table 2, entry 15) 1H NMR (500 MHz, CDCl$_3$): δ 2.64(s, 3H), 7.41(t, $J = 7.3$ Hz, 1H), 7.48 (t, $J = 7.5$ Hz, 2H), 7.63(d,
$J = 7.0 \text{ Hz, 2H}$, 7.69(d, $J = 9.0 \text{ Hz, 2H}$), 8.03(d, $J = 8.5 \text{ Hz, 2H}$). 13C NMR (125 MHz, CDCl$_3$): δ 26.6, 127.1, 127.2, 128.2, 128.8, 128.9, 135.8, 139.8, 145.8, 197.7.

3-Acetylpyridine (Table 2, entry 16) 1H NMR (500 MHz, CDCl$_3$): δ 2.52(s, 3H), 7.30-7.33(q, 1H), 8.10-8.13(m, 1H), 8.65-8.67(q, 1H), 9.05(d, $J = 1.5 \text{ Hz, 1H}$). 13C NMR (125 MHz, CDCl$_3$): δ 26.6, 127.1, 127.2, 128.2, 128.8, 128.9, 135.8, 139.8, 145.8, 197.7.

2-Acetylfuran (Table 2, entry 17) 1H NMR (500 MHz, CDCl$_3$): δ 2.39(s, 3H), 6.45-6.47(q, 1H), 7.11 (d, $J = 3.5 \text{ Hz, 1H}$), 7.51(t, $J = 0.8 \text{ Hz, 1H}$). 13C NMR (125 MHz, CDCl$_3$): δ 25.7, 112.0, 117.0, 146.2, 152.6, 186.5.

Benzaldehyde (Table 3, entry 1) 1H NMR (500 MHz, CDCl$_3$): δ 7.53(t, $J = 7.8 \text{ Hz, 2H}$), 7.61-7.65(m, 1H), 7.87-7.90(m, 2H), 10.02(s, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 128.9, 129.7, 134.4, 136.4, 192.3.

4-Methylbenzaldehyde (Table 3, entry 2) 1H NMR (500 MHz, CDCl$_3$): δ 2.44(s, 3H), 7.34(d, $J = 8.0 \text{ Hz, 2H}$), 7.78(d, $J = 8.0 \text{ Hz, 2H}$), 9.97(s, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 21.8, 129.7, 129.8, 134.2, 145.5, 191.9.

4-Methoxybenzaldehyde (Table 3, entry 3) 1H NMR (500 MHz, CDCl$_3$): δ 3.90(s, 3H), 7.00-7.03(m, 2H), 7.83-7.87(m, 2H), 9.89(s, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 55.5, 114.3, 129.9, 131.9, 164.6, 190.8.

3,4-Dimethylbenzaldehyde (Table 3, entry 4) 1H NMR (500 MHz, CDCl$_3$): δ 2.30(d, $J = 4.0 \text{ Hz, 6H}$), 7.25(d, $J = 8.0 \text{ Hz, 1H}$), 7.58(t, $J = 14.0 \text{ Hz, 2H}$), 9.89(s, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 19.4, 20.0, 127.5, 130.0, 130.4,
2-Methoxybenzaldehyde (Table 3, entry 5) 1H NMR (500 MHz, CDCl$_3$): δ 3.95(s, 3H), 7.00-7.07(m, 2H), 7.55-7.60(m, 1H), 7.84-7.86(q, 1H), 10.49(s, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 55.5, 111.6, 120.6, 125.0, 128.5, 135.9, 161.8, 189.8.

1-Naphthaldehyde (Table 3, entry 6) 1H NMR (500 MHz, CDCl$_3$): δ 7.57(t, $J = 7.5$ Hz, 2H), 7.66-7.70(m, 1H), 7.89(d, $J = 8.0$ Hz, 1H), 7.93(dd, $J = 8.0$, 1.5 Hz, 1H), 9.26(d, $J = 9.0$ Hz, 1H), 10.37(s, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 124.7, 126.8, 128.3, 128.9, 130.3, 131.2, 133.5, 135.1, 136.4, 193.3.

4-Nitrobenzaldehyde (Table 3, entry 7) 1H NMR (500 MHz, CDCl$_3$): δ 8.09(dd, $J = 7.0$, 2.0 Hz, 2H), 8.41(d, $J = 8.5$ Hz, 2H), 10.17(s, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 124.3, 130.4, 140.0, 151.1, 190.2.

4-Fluorobenzaldehyde (Table 3, entry 8) 1H NMR (500 MHz, CDCl$_3$): δ 7.16-7.20(m, 2H), 7.87-7.90(m, 2H), 9.94(s, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 116.3, 132.4, 133.0, 164.8, 191.6.

4-Chlorobenzaldehyde (Table 3, entry 9) 1H NMR (500 MHz, CDCl$_3$): δ 7.49-7.53(dt, $J = 9.5$, 7.5 Hz, 2H), 7.81-7.84(m, $J = 13.0$ Hz, 2H), 9.96(s, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 129.4, 130.8, 134.7, 140.9, 190.8.

4-Bromobenzaldehyde (Table 3, entry 10) 1H NMR (500 MHz, CDCl$_3$): δ 7.69-7.72(q, 2H), 7.75-7.78(m, 2H), 9.99(s, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 129.9, 131.0, 132.4, 135.0, 191.0.
2-Chlorobenzaldehyde (Table 3, entry 11) 1H NMR (500 MHz, CDCl$_3$): δ 7.34(t, J = 7.5 Hz, 1H), 7.39-7.42(q, 1H), 7.47-7.51(m, 1H), 7.86-7.88(q, 1H), 10.43(s, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 127.1, 129.2, 130.4, 132.3, 135.0, 137.7, 189.5.

3-Chlorobenzaldehyde (Table 3, entry 12) 1H NMR (500 MHz, CDCl$_3$): δ 7.47(t, J = 7.8 Hz, 1H), 7.57-7.60(m, 1H), 7.74-7.77(m, 1H), 7.84(t, J = 1.7 Hz, 1H), 9.96(s, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 127.9, 129.2, 130.3, 134.3, 135.4, 137.8, 190.7.

2,4-Dichlorobenzaldehyde (Table 3, entry 13) 1H NMR (500 MHz, CDCl$_3$): δ 7.37(q, J = 10.0 Hz, 1H), 7.47(d, J = 2.0 Hz, 1H), 7.86(d, J = 8.5 Hz, 1H), 10.40(s, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 127.9, 130.3, 130.4, 130.9, 138.5, 141.0, 188.4.

Cinnamaldehyde (Table 3, entry 14) 1H NMR (500 MHz, CDCl$_3$): δ 6.71(q, J = 7.5 Hz, 1H), 7.42(d, J = 2.0 Hz, 1H), 7.43(d, J = 2.0 Hz, 2H), 7.45(d, J = 2.5 Hz, 1H), 7.55(d, J = 2.5 Hz, 1H), 7.56(d, J = 2.0 Hz, 1H), 9.69(d, J = 7.0 Hz, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 128.5, 129.1, 131.2, 134.0, 152.7, 193.8.

2-Thiopheneformaldehyde (Table 2, entry 15) 1H NMR (500 MHz, CDCl$_3$): δ 7.18-7.21(q, 1H), 7.74-7.75(q, 1H), 7.77(dd, J = 3.5, 1.5 Hz, 1H), 9.91(d, J = 1.5 Hz, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 128.2, 135.0, 136.3, 143.8, 182.9.

2-Furaldehyde (Table 2, entry 16) 1H NMR (500 MHz, CDCl$_3$): δ 6.53-6.55(q, 1H), 7.20(t, J = 1.8 Hz, 1H), 7.63(d, J = 1.0 Hz, 1H), 9.58(s, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 112.5, 121.2, 148.1, 152.9, 177.8.
3-Nicotinaldehyde (Table 3, entry 17) \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta \) 7.46-7.50 (q, 1H), 8.15-8.18 (m, 1H), 8.82-8.84 (q, 1H), 9.07 (d, \(J = 2.0 \) Hz, 1H), 10.10 (s, 1H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)): \(\delta \) 124.0, 131.4, 135.7, 151.9, 154.6, 190.6.
Figure 1. 1H NMR and 13C NMR spectrum of acetophenone
Figure 2. 1H NMR and 13C NMR spectrum of benzophenone
Figure 3. 1H NMR and 13C NMR spectrum of benzil
Figure 4. 1H NMR and 13C NMR spectrum of 4-methylacetophenone
Figure 5. 1H NMR and 13C NMR spectrum of 4-methoxyacetophenone
Figure 6. 1H NMR and 13C NMR spectrum of 3,4-dimethoxyacetophenone
Figure 7. 1H NMR and 13C NMR spectrum of 3,4,5-trimethoxyacetophenone
Figure 8. 1H NMR and 13C NMR spectrum of 4-fluoroacetophenone
Figure 9. 1H NMR and 13C NMR spectrum of 4-chloroacetophenone
Figure 10. 1H NMR and 13C NMR spectrum of 4-bromoacetophenone
Figure 11. 1H NMR and 13C NMR spectrum of 2-chloroacetophenone
Figure 12. 1H NMR and 13C NMR spectrum of 3-chloroacetophenone
Figure 13. 1H NMR and 13C NMR spectrum of 2,4-dichloroacetophenone
Figure 14. 1H NMR and 13C NMR spectrum of 3-trifluoromethylacetophenone
Figure 15. 1H NMR and 13C NMR spectrum of 4-acetylbiphenyl
Figure 16. 1H NMR and 13C NMR spectrum of 3-acetylpyridine
Figure 17. 1H NMR and 13C NMR spectrum of 2-acetylfuran
Figure 18. 1H NMR and 13C NMR spectra of benzaldehyde.
Figure 19. 1H NMR and 13C NMR spectra of 4-methylbenzaldehyde.
Figure 20. 1H NMR and 13C NMR spectra of 4-methoxybenzaldehyde.
Figure 21. 1H NMR and 13C NMR spectra of 3,4-dimethylbenzaldehyde
Figure 22. 1H NMR and 13C NMR spectra of 2-methoxybenzaldehyde.
Figure 23. 1H NMR and 13C NMR spectra of 1-naphthaldehyde
Figure 24. 1H NMR and 13C NMR spectra of 4-nitrobenzaldehyde.
Figure 25. 1H NMR and 13C NMR spectra of 4-fluorobenzaldehyde.
Figure 26. 1H NMR and 13C NMR spectra of 4-chlorobenzaldehyde.
Figure 27. 1H NMR and 13C NMR spectra of 4-bromobenzaldehyde.
Figure 28. 1H NMR and 13C NMR spectra of 2-chlorobenzaldehyde
Figure 29. 1H NMR and 13C NMR spectra of 3-chlorobenzaldehyde
Figure 30. 1H NMR and 13C NMR spectra of 2,4-dichlorobenzaldehyde.
Figure 31. 1H NMR and 13C NMR spectra of cinnamaldehyde.
Figure 32. 1H NMR and 13C NMR spectra of 2-thiopheneformaldehyde.
Figure 33. 1H NMR and 13C NMR spectra of 2-furaldehyde.
Figure 34. 1H NMR and 13C NMR spectra of 3-nicotinaldehyde.