Supporting Information

Highly Diastereoselective Synthesis of Chiral Aminophenolate Zinc Complexes and
Isoselective Polymerization of rac-Lactide

Haobing Wang and Haiyan Ma*

Shanghai Key Laboratory of Functional Materials Chemistry and Laboratory of Organometallic
Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R.
China.
Contents:

1. Experimental

1.1 Synthesis

1.1.1 General considerations

1.1.2 Synthesis of proligands

Scheme S1. Synthesis of chiral aminophenol proligands L^1H – L^5H.

1.1.2.1 Synthesis of (S)-N-benzyl-1-(1-ethylpyrrolidin-2-yl)methanamine

1.1.2.2 Synthesis of (S)-N-benzyl-1-(1-butylpyrrolidin-2-yl)methanamine

1.1.2.3 Synthesis of L^1H

1.1.2.4 Synthesis of L^2H

1.1.2.5 Synthesis of L^3H

1.1.2.6 Synthesis of L^4H

1.1.2.7 Synthesis of L^5H

1.1.3 Synthesis of zinc complexes

1.1.3.1 Synthesis of $[L^1ZnN(SiMe_3)_2]$ (1)

1.1.3.2 Synthesis of $[L^2ZnN(SiMe_3)_2]$ (2)

1.1.3.3 Synthesis of $[L^3ZnN(SiMe_3)_2]$ (3)

1.1.3.4 Synthesis of $[L^4ZnN(SiMe_3)_2]$ (4)

1.1.3.5 Synthesis of $[L^5ZnN(SiMe_3)_2]$ (5)

1.2 X-Ray diffraction measurements

1.3 Ring-opening polymerization of rac-LA

1.3.1 General considerations

1.3.2 Typical polymerization procedure

1.3.3 Kinetic studies
2. Results

2.1 1H NMR spectra of zinc complexes 1-5

Figure S1. 1H NMR spectrum of zinc complex 1

Figure S2. 1H NMR spectrum of zinc complex 2

Figure S3. 1H NMR spectrum of zinc complex 3

Figure S4. 1H NMR spectrum of zinc complex 4

Figure S5. 1H NMR spectrum of zinc complex 5

2.2 X-Ray molecular structures

Figure S6. X-Ray molecular structure of 1a (left) and 1b (right).

Figure S7. X-Ray molecular structure of 3a

Figure S8. X-Ray molecular structure of 5

Table S1. Crystallographic data for 1a/1b, 3a and 5

2.3 Ring-opening polymerization

Table S2. ROP of rac-lactide initiated by complexes 1, 3-5 in THF.

Figure S9. Plots of observed M_n and PDI of PLA sample vs. monomer conversion obtained by 5.

Figure S10. ln([LA]₀/[LA]ₜ) vs time plots for the ROP of D- and L-lactide catalyzed by complex 5.

2.4 Microstructure analysis of poly(rac-lactide)

Figure S11 - Figure S16. Methine region of homonuclear decoupled 1H NMR spectra of PLAs

Figure S17. Plot of P_m vs. conversion for polymerization of rac-LA with 5.

Figure S18. Heat flow vs. temperature curve for PLA obtained by 5 at $-38 \, ^{\circ}C$.

Figure S19. 1H NMR spectrum of rac-lactide oligomer obtained by complex 5/2-propanol in toluene.

Figure S20. The carbonyl and methine regions of 13C NMR spectrum of PLA obtained from rac-lactide by using 5 as initiator in toluene at $-38^{\circ}C$
1. Experimental

1.1 Synthesis

1.1.1 General considerations

All manipulations were carried out under a dry argon atmosphere using standard Schlenk-line or glove-box techniques. Toluene and \(n \)-hexane were refluxed over sodium benzophenone ketyl prior to use. Benzene-\(d_6 \) and other reagents were properly dried and stored in a glove-box. Zn[\(N(SiMe_3)_2 \)]\(_2 \) was synthesized according to the literature method.\([S1]\) \((S)-(1\text{-Ethylpyrrolidin-2-yl})\text{methanamine and } (S)-(1\text{-"butylpyrrolidin-2-yl})\text{methanamine were synthesized according to the reported procedure.}\([S2]\) All other chemicals were commercially available and used after appropriate purification. NMR spectra were recorded on a Bruker AVANCE-400 spectrometer at 25 °C (\(^1H \): 400 MHz, \(^{13}C \): 100 MHz) unless otherwise stated. Chemical shifts for \(^1H \) and \(^{13}C \) NMR spectra were referenced internally using the residual solvent resonances and reported relative to tetramethylsilane (TMS). Elemental analyses were performed on an EA-1106 instrument.

1.1.2 Synthesis of proligands

\[
\begin{align*}
\text{H} & \quad \text{H} \\
\text{O} & \quad \text{O} \\
\text{N} & \quad \text{N} \\
\text{R}^3 & \quad \text{R}^3 \\
\text{Br} & \quad \text{NaHCO}_3 \\
\text{DMF} & \quad \text{LiAlH}_4 \\
\text{THF} & \quad \text{NaBH}_4 \\
\text{R}^1 & \quad \text{R}^2 \\
\text{O} & \quad \text{O} \\
\text{N} & \quad \text{N} \\
\text{R}^3 & \quad \text{R}^3 \\
\text{Cl} & \quad \text{Et} \\
\text{Me} & \quad \text{Et} \\
\text{tBu} & \quad \text{Et} \\
\text{Me} & \quad \text{nBu} \\
\text{(HCHO)}_n & \quad \text{(HCHO)}_n \\
\end{align*}
\]

\((S)-L^1H: R^1 = R^2 = \text{Cl}, R^3 = \text{Et} \)
\((S)-L^2H: R^1 = R^2 = \text{Me}, R^3 = \text{Et} \)
\((S)-L^3H: R^1 = R^2 = \text{tBu}, R^3 = \text{Et} \)
\((S)-L^4H: R^1 = \text{Trityl}, R^2 = \text{Me}, R^3 = \text{Et} \)
\((S)-L^5H: R^1 = \text{Trityl}, R^2 = \text{Me}, R^3 = \text{nBu} \)

Scheme S1. Synthesis of chiral aminophenol proligands \(L^1H – L^5H \).
1.1.2.1 Synthesis of (S)-N-benzyl-1-(1-ethylpyrrolidin-2-yl)methanamine

(S)-(1-Ethylpyrrolidin-2-yl)methanamine (1.92 g, 0.015 mol) was added to a solution of benzaldehyde (1.75 g, 0.017 mol) in ethanol (20 mL) and the mixture was heated to reflux for 24 h. After cooling to r.t., sodium borohydride (1.33 g, 0.035 mmol) was sequentially added to the above light yellow solution in three times and the mixture was stirred for 3 h at 60 °C. The mixture was poured into water and extracted with methylene dichloride. The organic phase was dried over anhydrous MgSO₄. Evaporation of the solvent gave the target product as viscous oil (2.96 g), which was used directly for the next step without further purification.

1.1.2.2 Synthesis of (S)-N-benzyl-1-(1-n-butylpyrrolidin-2-yl)methanamine

(S)-(1-n-Butylpyrrolidin-2-yl)methanamine (2.34 g, 0.015 mol) was added to a solution of benzaldehyde (1.75 g, 0.017 mol) in ethanol (20 mL) and the mixture was heated to reflux for 24 h. After cooling to r.t., sodium borohydride (1.33 g, 0.035 mmol) was sequentially added to the above light yellow solution in three times and the mixture was stirred for 3 h at 60 °C. The mixture was poured into water and extracted with methylene dichloride. The organic phase was dried over anhydrous MgSO₄. Evaporation of the solvent gave the target product as viscous oil (3.40 g), which was used directly for the next step without further purification.

1.1.2.3 Synthesis of (S)-2-\{N-benzyl-N\-[(1-ethylpyrrolidin-2-yl)methyl]aminomethyl\}-4, 6-dichlorophenol (L¹H)

Paraformaldehyde (0.600 g, 20.0 mmol) and 2, 4-dichlorophenol (1.63 g, 10.0 mmol) was added to a solution of (S)-N-benzyl-1-(1-ethylpyrrolidin-2-yl)methanamine (2.18 g, 10.0 mmol) in ethanol (30 mL) at 90 °C during 12 h with magnetic stirring. The mixture was cooled to ambient temperature and concentrated under vacuum to give red oil, which was purified by column chromatography (silica gel 100 Merck, petroleum ether/ethyl acetate = 5 : 1) to provide dark red oil (2.32 g, 59.0%) after removal of all the volatiles. \(^1\)H NMR (400 MHz, CDCl₃): δ 7.38-7.27 (m, 4H, ArH), 7.27-7.23 (m, 2H, ArH), 6.83 (d,
\(^3J_{HH} = 2.4\ Hz, 1H, ArH\), 3.84 (d, \(^2J_{HH} = 14.0\ Hz, 1H, ArCH_2N\)), 3.65 (d, \(^2J_{HH} = 13.0\ Hz, 1H, ArCH_2N\)), 3.53 (d, \(^2J_{HH} = 14.0\ Hz, 1H, ArCH_2N\)), 3.39 (d, \(^2J_{HH} = 13.0\ Hz, 1H, ArCH_2N\)), 3.06 (m, 1H, NCH- of pyrrolidinyl), 2.80-2.70 (m, 1H, NCH₂- of pyrrolidinyl), 2.60-2.50 (m, 2H, NCH₂CH), 2.60-2.50 (m, 1H, NCH₂- of pyrrolidinyl), 2.21-2.08 (m, 2H, NCH₂CH₃), 2.01-1.94 (m, 1H, -CH₂- of pyrrolidinyl), 1.71-1.63 (m, 2H, -CH₂- of pyrrolidinyl), 1.45-1.38 (m, 1H, -CH₂- of pyrrolidinyl), 1.00 (t, \(^3J_{HH} = 7.2\ Hz, 3H, CH₂CH₃\)). 13C {¹H} NMR (100 MHz, CDCl₃): δ 136.2, 130.2, 130.1, 129.0, 128.9, 128.1, 127.4, 125.0, 123.6, 121.9 (All ArC), 62.6 (ArC₂H₂N), 59.3 (ArC₂H₂N), 58.3 (NCH- of pyrrolidinyl), 57.9 (NCH₂- of pyrrolidinyl), 53.7 (NCH₂CH), 49.2 (NCH₂CH₃), 30.2 (-CH₂- of pyrrolidinyl), 22.6 (-CH₂- of pyrrolidinyl), 13.8 (CH₂CH₃). Anal. Calcd. for C₂₁H₂₆Cl₂N₂O: C, 64.12; H, 6.66; N, 7.12. Found: C, 63.64; H, 6.65; N, 6.69%.

1.1.2.4 Synthesis of (S)-2-\{N-benzyl-N-[(1-ethylpyrrolidin-2-yl)methyl]aminomethyl\}-4, 6-di-methylphenol (L²H)

Paraformaldehyde (0.600 g, 20.0 mmol) and 2, 4-di-methylphenol (1.22 g, 10.0 mmol) was added to a solution of (S)-N-benzyl-1-(1-ethylpyrrolidin-2-yl)methanamine (2.18 g, 10.0 mmol) in ethanol (20 mL) at 90 °C during 12 h with magnetic stirring. The mixture was cooled to ambient temperature and concentrated under vacuum to give brown oil, which was purified by column chromatography (silica gel 100 Merck, petroleum/ethyl acetate = 5 : 1) to provide light brown oil (1.59 g, 45.1%) after removal of all the volatiles. ¹H NMR (400 MHz, CDCl₃): δ 10.50 (s, 1H, ArOH), 7.36-7.23 (m, 5H, ArH), 6.86 (s, 1H, ArH), 6.66 (s, 1H, ArH), 3.95 (d, \(^2J_{HH} = 13.7\ Hz, 1H, ArCH₂N\)), 3.74 (d, \(^2J_{HH} = 13.0\ Hz, 1H, ArCH₂N\)), 3.49 (d, \(^2J_{HH} = 13.7\ Hz, 1H, ArCH₂N\)), 3.39 (d, \(^2J_{HH} = 13.0\ Hz, 1H, ArCH₂N\)), 3.06 (ddd, \(^3J_{HH} = 9.5, 3J_{HH} = 6.9, 3J_{HH} = 2.9\ Hz, 1H, NCH₂- of pyrrolidinyl\)), 2.74 (dq, \(^2J_{HH} = 11.9, 3J_{HH} = 7.2\ Hz, 1H, NCH₂CH₃\)), 2.60-2.50 (m, 2H, NCH- & NCH₂- of pyrrolidinyl), 2.46 (dd, \(^2J_{HH} = 12.6, 3J_{HH} = 9.5\ Hz, 1H, NCH₂CH\)), 2.23 (s, 3H, ArCH₃), 2.21 (s, 3H, ArCH₃), 2.14 (dq, \(^2J_{HH} = 11.9, 3J_{HH} = 7.2\ Hz, 1H, NCH₂CH₃\)), 2.10-1.95 (m, 2H, NCH₂CH & -CH₂- of pyrrolidinyl), 1.73-1.52 (m, 2H, -CH₂- of pyrrolidinyl), 1.46-1.31 (m, 1H, -CH₂- of pyrrolidinyl), 1.04 (t, \(^3J_{HH} = 7.2\ Hz, 3H, NCH₂CH₃\)). 13C {¹H} NMR (100 MHz, CDCl₃):
153.3, 137.1, 130.8, 128.6, 127.9, 127.7, 127.2, 124.8, 121.4 (All Ar-\text{C}), 62.4 (Ar\text{CH}_2\text{N}), 59.3 (Ar\text{CH}_2\text{N}), 59.0 (N\text{CH}- of pyrrolidinyl), 58.6 (N\text{CH}_2- of pyrrolidinyl), 53.8 (N\text{CH}_2\text{CH}), 49.1 (N\text{CH}_2\text{CH}_3), 30.5 (-\text{CH}_2- of pyrrolidinyl), 22.6 (-\text{CH}_2- of pyrrolidinyl), 21.6 (Ar\text{CH}_3), 16.0 (Ar\text{CH}_3), 14.0 (\text{CH}_2\text{CH}_3).

Anal. Calcd. for \text{C}_{23}\text{H}_{32}\text{N}_2\text{O}: \text{C}, 78.36; \text{H}, 9.15; \text{N}, 7.95. Found: \text{C}, 77.67; \text{H}, 9.08; \text{N}, 7.61%.

1.1.2.5 Synthesis of (\text{S})-2-\{N-benzyl-N-[1-ethylpyrrolidin-2-yl]methyl\}aminomethyl]-4, 6-di-\text{tert-}butylenol (L^3\text{H})

Paraformaldehyde (0.600 g, 20.0 mmol) and 2, 4-di-\text{tert-}butylphenol (2.06 g, 10.0 mmol) was added to a solution of (\text{S})-N-benzyl-1-(1-ethylpyrrolidin-2-yl) methanamine (2.18 g, 10.0 mmol) in ethanol (30 mL) at 90 °C during 12 h with magnetic stirring. The mixture was cooled to ambient temperature and concentrated under vacuum to give brown oil, which was purified by column chromatography (silica gel 100 Merck, petroleum ether/ethyl acetate = 20 : 1) to provide light brown oil (1.95 g, 44.7%) after removal of all the volatiles. 1H NMR (400 MHz, CDCl$_3$): δ 10.55 (s, 1H, Ar\text{O}H), 7.35-7.23 (m, 5H, Ar\text{H}), 7.18 (s, 1H, Ar\text{H}), 6.85 (s, 1H, Ar\text{H}), 3.97 (d, $^2\text{J}_{\text{HH}}= 13.4$ Hz, 1H, Ar\text{CH}_2\text{N}), 3.75 (d, $^2\text{J}_{\text{HH}}= 13.0$ Hz, 1H, Ar\text{CH}_2\text{N}), 3.51 (d, $^2\text{J}_{\text{HH}}= 13.4$ Hz, 1H, Ar\text{CH}_2\text{N}), 3.37 (d, $^2\text{J}_{\text{HH}}= 13.0$ Hz, 1H, Ar\text{CH}_2\text{N}), 3.09-3.02 (m, 1H, NC\text{H}- of pyrrolidinyl), 2.71-2.63 (m, 1H, N\text{CH}_2- of pyrrolidinyl), 2.50-2.38 (m, 3H, NC\text{H}_2\text{CH} & NC\text{H}_2- of pyrrolidinyl), 2.11-2.01 (m, 1H, N\text{CH}_2- of pyrrolidinyl), 2.03-1.88 (m, 2H, \text{CH}_2\text{CH}_3), 1.67-1.55 (m, 2H, -\text{CH}_2- of pyrrolidinyl), 1.39 (s, 9H, C(\text{CH}_3)_3), 1.37-1.28 (m, 1H, -\text{CH}_2- of pyrrolidinyl), 1.22 (s, 9H, C(\text{CH}_3)_3), 1.03 (t, $^3\text{J}_{\text{HH}}= 7.1$ Hz, 3H, \text{CH}_3\text{CH}_2\text{CH}_3). 13C {1H} NMR (100 MHz, CDCl$_3$): 154.0, 140.8, 137.3, 135.8, 130.1, 128.5, 127.6, 124.0, 123.1, 121.8 (All Ar-\text{C}), 62.3 (Ar\text{CH}_2\text{N}), 60.0 (Ar\text{CH}_2\text{N}), 59.4 (N\text{CH}- of pyrrolidinyl), 58.6 (N\text{CH}_2- of pyrrolidinyl), 53.9 (N\text{CH}_2\text{CH}), 49.2 (N\text{CH}_2\text{CH}_3), 35.1 (C(\text{CH}_3)_3), 34.1 (C(\text{CH}_3)_3), 31.9 (C(\text{CH}_3)_3), 30.4 (-\text{CH}_2- of pyrrolidinyl), 29.8 (C(\text{CH}_3)_3), 22.6 (-\text{CH}_2- of pyrrolidinyl), 14.0 (\text{CH}_2\text{CH}_3). Anal. Calcd. for \text{C}_{29}\text{H}_{44}\text{N}_2\text{O-(0.26 CH}_3\text{COOCH}_2\text{CH}_3): \text{C}, 78.51; \text{H}, 10.11; \text{N}, 6.10. Found: \text{C}, 78.88; \text{H}, 10.03; \text{N}, 6.46%.
1.1.2.6 Synthesis of \((S)-2\{N\text{-}benzyl\text{-}N\text{-}[(1\text{-}ethylpyrrolidin-2\text{-}yl})\text{methyl}\}\text{aminomethyl}\)-4-methyl-6-(triphenylmethyl)phenol (L\(^4\)H)

Paraformaldehyde (0.600 g, 20.0 mmol) and 2-trityl-4-methylphenol (3.50 g, 10.0 mmol) was added to a solution of \((S)-N\text{-}benzyl-1-(1\text{-}ethylpyrrolidin-2\text{-}yl})\text{methylamine} (2.18 g, 10.0 mmol) in ethanol (30 mL) at 90 °C during 12 h with magnetic stirring. The mixture was cooled to ambient temperature and concentrated under vacuum to give a white solid, which was purified by column chromatography (silica gel 100 Merck, petroleum ether/ethyl acetate = 20 : 1) to provide a white powder (3.96 g, 68.2%) after removal of all the volatiles.

\(^1\text{H} \text{NMR} \ (400 \text{ MHz, CDCl}_3)\): \(\delta\) 10.3 (s, 1H ArOH), 7.28-7.20 (m, 15H, ArH), 7.18-7.14 (m, 3H, ArH), 6.95 (s, 1H ArH), 6.93-6.87 (m, 2H, ArH), 6.82 (s, 1H, ArH), 3.89 (d, \(\text{J}_{HH} = 13.5 \text{ Hz}\), 1H, ArCH\(_2\)N), 3.54 (d, \(\text{J}_{HH} = 12.8 \text{ Hz}\), 1H, ArCH\(_2\)N), 3.50 (d, \(\text{J}_{HH} = 13.5 \text{ Hz}\), 1H, ArCH\(_2\)N), 3.29 (d, \(\text{J}_{HH} = 12.8 \text{ Hz}\), 1H, ArCH\(_2\)N), 3.03-2.92 (m, 1H, NC\(_2\)H- of pyrrolidinyl), 2.70-2.59 (m, 1H, NC\(_2\)H- of pyrrolidinyl), 2.30-2.21 (m, 3H, NC\(_2\)HCH & NC\(_2\)HCH\(_3\)), 2.30 (s, 3H, ArC\(_3\)), 2.08-2.00 (m, 1H, NCH\(_2\) of pyrrolidinyl), 1.94 (dd, 1H, \(\text{J}_{HH} = 17.3\), \(\text{J}_{HH} = 9.0 \text{ Hz}\), NCH\(_2\)CH), 1.62-1.50 (m, 1H, -CH\(_2\)- of pyrrolidinyl), 1.48-1.38 (m, 2H, -CH\(_2\)- of pyrrolidinyl), 1.06-0.99 (m, 1H, -CH\(_2\)- of pyrrolidinyl), 0.95 (t, \(\text{J}_{HH} = 7.2 \text{ Hz}\), 3H, CH\(_2\)CH\(_3\)).

\(^{13}\text{C}\{^1\text{H}\} \text{NMR} \ (100 \text{ MHz, CDCl}_3)\): 154.1, 146.3, 137.3, 133.8, 131.5, 131.0, 130.3, 129.2, 128.4, 127.4, 127.1, 126.6, 125.5, 122.8 (All ArC), 63.5 (Ar-CH\(_3\)), 62.5 (ArCH\(_2\)N), 59.8 (ArCH\(_3\)), 59.1 (NCH- of pyrrolidinyl), 57.2 (NCH\(_2\) of pyrrolidinyl), 53.7 (NCH\(_2\)CH), 49.1 (NCH\(_2\)CH\(_3\)), 29.9 (-CH\(_2\)- of pyrrolidinyl), 22.6 (-CH\(_2\)- of pyrrolidinyl), 21.1 (Ar-CH\(_3\)), 13.9 (CH\(_2\)CH\(_3\)).

Anal. Calcd. for C\(_{41}\)H\(_{44}\)N\(_2\)O: C, 84.79; H, 7.64; N, 4.82. Found: C, 84.37; H, 7.61; N, 4.77%.

1.1.2.7 Synthesis of \((S)-2\{N\text{-}benzyl\text{-}N\text{-}[(1\text{-}n\text{butyl}pyrrolidin-2\text{-}yl})\text{methyl}\}\text{aminomethyl}\)-4-methyl-6-(triphenylmethyl)phenol (L\(^5\)H)

Paraformaldehyde (0.600 g, 20.0 mmol) and 2-trityl-4-methylphenol (3.50 g, 10.0 mmol) was added to a solution of \((S)-N\text{-}benzyl-1-(1\text{-}n\text{butylpyrrolidin-2-yl})\text{methylamine} (2.18 g, 10.0 mmol) in ethanol (30 mL) at 90 °C during 12 h with magnetic stirring. The mixture was cooled to ambient temperature and concentrated under vacuum to give a white solid, which was purified by recrystallization from methanol.
to provide a white powder (5.46 g, 89.8%). \(^1\)H NMR (400 MHz, C\(_6\)D\(_6\)): \(\delta\) 10.59 (s, 1H, ArOH), 7.56 (d, \(^3\)J\(_{HH}\) = 7.5 Hz, 6H, Ar\(H\)), 7.35 (d, \(^4\)J\(_{HH}\) = 1.6 Hz, 1H, Ar\(H\)), 7.14-7.08 (m, 9H, Ar\(H\)), 7.02 (t, \(^3\)J\(_{HH}\) = 7.3 Hz, 3H, Ar\(H\)), 6.93-6.88 (m, 2H, Ar\(H\)), 6.74 (d, \(^4\)J\(_{HH}\) = 1.6 Hz, 1H, Ar\(CH_2N\)), 3.62 (d, \(^2\)J\(_{HH}\) = 13.4 Hz, 1H, ArC\(H2N\)), 3.42 (d, \(^2\)J\(_{HH}\) = 13.4 Hz, 1H, ArC\(H2N\)), 3.29 (d, \(^2\)J\(_{HH}\) = 12.8 Hz, 1H, ArC\(H2N\)), 3.15 (d, \(^2\)J\(_{HH}\) = 12.8 Hz, 1H, ArC\(H2N\)), 2.82-2.75 (m, 1H, NC\(H\)- of pyrrolidinyl), 2.49-2.39 (m, 1H, NC\(H\)- of pyrrolidinyl), 2.24 (d, \(^3\)J\(_{HH}\) = 5.3 Hz, 2H, N\(CH_2\)CH), 2.15 (s, 3H, ArC\(H3\)), 2.11-2.03 (m, 1H, NC\(H\)- of pyrrolidinyl), 1.83-1.75 (m, 1H, N\(CH_2\)- of pyrrolidinyl), 1.68 (dd, \(^2\)J\(_{HH}\) = 16.6, \(^3\)J\(_{HH}\) = 9.0 Hz, 1H, N\(CH_2\)CH\(_2\)CH\(_3\)), 1.38 (m, 1H, -C\(H\)- of pyrrolidinyl), 1.33-1.11 (m, 6H, -C\(H\)- of pyrrolidinyl & N\(CH_2\)CH\(_2\)CH\(_3\)), 1.05 (m, 1H, N\(CH_2\)CH\(_2\)CH\(_2\)CH\(_3\)), 0.84 (t, \(^3\)J\(_{HH}\) = 7.0 Hz, 3H, N\(CH_2\)CH\(_2\)CH\(_2\)CH\(_3\)). \(^13\)C\(^1\)H\(_1\) NMR (100 MHz, C\(_6\)D\(_6\)): 154.9, 147.2, 138.4, 134.8, 132.3, 131.7, 130.1 129.9, 128.9, 127.8, 127.7, 127.1, 126.1, 123.1 (All Ar\(C\)), 64.3 (ArC\(Phs\)), 63.3 (Ar(CH\(_2\))\(_2\)), 60.4 (ArCH\(_2\)), 59.6 (N\(CH\)- of pyrrolidinyl), 57.4 (N\(CH_2\)- of pyrrolidinyl), 55.5 (N\(CH_2\)), 54.3 (N\(CH_2\)CH\(_2\)CH\(_2\)), 31.6 (-CH\(_2\)- of pyrrolidinyl), 30.1 (-CH\(_2\)- of pyrrolidinyl), 23.1 (Ar\(CH_3\)), 21.4 (CH\(_2\)CH\(_2\)CH\(_2\)), 21.3 (CH\(_2\)CH\(_2\)CH\(_2\)), 14.7 (CH\(_2\)CH\(_2\)CH\(_2\)). Anal. Calcd. for C\(_{43}\)H\(_{48}\)N\(_2\)O: C, 84.82; H, 7.95; N, 4.60. Found: C, 84.75; H, 7.80; N, 4.62%.

1.1.3 Synthesis of zinc complexes

1.1.3.1 Synthesis of [L\(^1\)ZnN(SiMe\(_3\))\(_2\)] (1)

In a glove box, the aminophenol L\(^1\)H (0.590 g, 1.50 mmol) was dissolved in toluene (3 mL) and was added dropwise to a solution of Zn[N(SiMe\(_3\))\(_2\)]\(_2\) (0.580 g, 1.50 mmol) in \(n\)-hexane (3 mL). The reaction mixture was stirred at room temperature overnight, whereas a white precipitate was formed. After filtration, the collected white precipitate was washed with cold \(n\)-hexane (3 × 2 mL) and dried under vacuum to afford the target complex 1 in 51% (0.473 g) as a mixture of two diastereomers in 2 : 5 ratio (isomer 1\(a\) : isomer 1\(b\)). NMR spectroscopic data for isomer 1\(a\): \(^1\)H NMR (400 MHz, C\(_6\)D\(_6\)): \(\delta\) 7.45 (d, \(^4\)J\(_{HH}\) = 2.7 Hz, 1H, Ar\(H\)), 7.13-7.11 (m, 3H, Ar\(H\)), 7.01 (dd, \(^3\)J\(_{HH}\) = 6.5, \(^4\)J\(_{HH}\) = 3.0 Hz, 2H, Ar\(H\)), 6.44 (d, \(^4\)J\(_{HH}\) = 2.7 Hz, 1H, Ar\(H\)), 4.07 (d, \(^2\)J\(_{HH}\) = 13.8 Hz, 1H, Ar\(CH_2N\)), 3.75 (d, \(^2\)J\(_{HH}\) = 12.7 Hz, 1H, Ar\(CH_2N\)), 3.62 (d, \(^2\)J\(_{HH}\) = 13.4 Hz, 1H, Ar\(CH_2N\)), 3.42 (d, \(^2\)J\(_{HH}\) = 13.4 Hz, 1H, Ar\(CH_2N\)), 3.29 (d, \(^2\)J\(_{HH}\) = 12.8 Hz, 1H, Ar\(CH_2N\)), 3.15 (d, \(^2\)J\(_{HH}\) = 12.8 Hz, 1H, Ar\(CH_2N\)).
3.64 (d, $^2J_{HH} = 13.8$ Hz, 1H, ArCH$_2$N), 2.76 (d, $^2J_{HH} = 12.7$ Hz, 1H, ArCH$_2$N), 2.62-2.52 (m, 1H, NCH- of pyrrolidinyl), 2.51-2.44 (m, 1H, NCH$_2$- of pyrrolidinyl), 2.41-2.30 (m, 2H, NCH$_2$CH$_3$), 2.02 (m, 1H, NCH$_2$CH), 1.78-1.60 (m, 2H, NCH$_2$- of pyrrolidinyl & NCH$_2$CH), 1.16 (t, $^3J_{HH} = 7.1$ Hz, 3H, CH$_2$CH$_3$), 1.02-0.92 (m, 2H, -CH$_2$- of pyrrolidinyl), 0.88-0.78 (m, 1H, -CH$_2$- of pyrrolidinyl), 0.53 (s, 18H, Si(CH$_3$)$_3$), 0.38-0.32 (m, 1H, -CH$_2$- of pyrrolidinyl). 13C { 1H} NMR (100 MHz, C$_6$D$_6$): 162.5, 132.7, 132.4, 131.7, 130.8, 129.2, 128.5, 125.8, 125.0, 117.1 (All Ar-C), 66.7 (ArCH$_2$N), 64.9 (ArCH$_2$N), 59.5 (NCH- of pyrrolidinyl), 59.1 (NCH$_2$- of pyrrolidinyl), 50.5 (NCH$_2$CH), 50.4 (NCH$_2$CH$_3$), 25.6 (-CH$_2$- of pyrrolidinyl), 20.8 (-CH$_2$- of pyrrolidinyl), 14.5 (CH$_2$CH$_3$), 7.5 (Si(CH$_3$)$_3$). NMR spectroscopic data for isomer 1b: 1H NMR (400 MHz, C$_6$D$_6$): δ 7.12 (d, $^4J_{HH} = 2.7$ Hz, 1H, ArH), 7.13-7.11 (m, 3H, ArH), 6.37 (d, $^4J_{HH} = 2.7$ Hz, 1H, ArH), 4.07 (pseudo d, $^2J_{HH} = 13.3$ Hz, 2H, ArCH$_2$N), 3.85 (d, $^2J_{HH} = 14.0$ Hz, 1H, ArCH$_2$N), 2.89 (d, $^2J_{HH} = 12.9$ Hz, 1H, ArCH$_2$N), 2.89-2.76 (m, 1H, NCH- of pyrrolidinyl), 2.62-2.44 (m, 1H, NCH$_2$- of pyrrolidinyl), 2.30-2.24 (m, 2H, NCH$_2$CH), 1.93-1.84 (m, 1H, NCH$_2$- of pyrrolidinyl), 1.78-1.60 (m, 2H, NCH$_2$CH$_3$), 1.14 (t, $^3J_{HH} = 7.2$ Hz, 3H), 1.02-0.92 (m, 1H, -CH$_2$- of pyrrolidinyl), 0.71-0.65 (m, 1H, -CH$_2$- of pyrrolidinyl), 0.54 (s, 18H, Si(CH$_3$)$_3$), 0.44-0.38 (m, 1H, -CH$_2$- of pyrrolidinyl), 0.38-0.33 (m, 1H, -CH$_2$- of pyrrolidinyl), 13C { 1H} NMR (100 MHz, C$_6$D$_6$): 130.9, 130.7, 129.9, 129.4, 129.3, 129.1, 128.5, 126.3, 122.6, 116.9 (All Ar-C), 64.9 (ArCH$_2$N), 63.4 (ArCH$_2$N), 59.0 (NCH- of pyrrolidinyl), 58.6 (NCH$_2$- of pyrrolidinyl), 49.8 (NCH$_2$CH), 48.9 (NCH$_2$CH$_3$), 25.0 (-CH$_2$- of pyrrolidinyl), 19.9 (-CH$_2$- of pyrrolidinyl), 13.7 (CH$_2$CH$_3$), 7.3 (Si(CH$_3$)$_3$). Anal. Calcd. for C$_{27}$H$_{43}$Cl$_2$N$_3$OSi$_2$Zn: C, 52.46; H, 7.01; N, 6.80. Found: C, 52.47; H, 7.07; N, 6.86%.

1.1.3.2 Synthesis of [L$_2$ZnN(SiMe$_3$)$_2$] (2).

In a glove box, the aminophenol L$_2$H (0.529 g, 1.50 mmol) was dissolved in toluene (3 mL) and was added dropwise to a solution of Zn[N(SiMe$_3$)$_2$]$_2$ (0.580 g, 1.50 mmol) in hexane (3 mL). The reaction mixture was stirred at room temperature overnight, whereas white solids was formed. After filtration, the collected white precipitate was washed with cold hexane (3 × 2 mL) and dried under vacuum to obtain the
target complex 2 in 54% (0.465 g) as a mixture of two diastereoisomers in 1 : 2 ratio (isomer \(2a : \text{isomer } 2b\)). NMR spectroscopic data for isomer \(2a\): \(^1\)H NMR (400 MHz, \(\text{C}_6\text{D}_6\)): \(\delta\) 7.15-7.03 (m, 4H, \(\text{ArH}\)), 6.92-6.88 (m, 2H, \(\text{ArH}\)), 6.30 (s, 1H, \(\text{ArH}\)), 4.32 (d, \(^2J\text{HH} = 12.4\) Hz, 1H), 4.17 (d, \(^2J\text{HH} = 13.8\) Hz, 1H), 3.99 (d, \(^2J\text{HH} = 13.8\) Hz, 1H), 3.16 (d, \(^2J\text{HH} = 12.4\) Hz, 1H), 3.00-2.91 (m, 1H, \(-\text{C}-\text{H}\) of pyrrolidinyl), 2.65-2.55 (m, 2H, \(-\text{NCH}_2\text{CH}_2\)), 2.54-2.44 (m, 1H, \(-\text{ArCH}_3\)), 2.16 (s, 3H, \(-\text{ArCH}_3\)), 2.19-2.07 (m, 2H, \(-\text{NCH}_2\text{CH}_3\)), 1.19 (t, \(^3J\text{HH} = 6.4\) Hz, 3H), 1.06-0.96 (m, 2H, \(-\text{NCH}_2\text{CH}_3\)), 0.92-0.82 (m, 1H, \(-\text{NCH}_2\text{CH}_3\)), 0.58 (s, 18H), 0.49-0.35 (m, 1H, \(-\text{NCH}_2\text{CH}_3\)). \(^{13}\)C\({}^1\)H) NMR (100 MHz, \(\text{C}_6\text{D}_6\)): \(\delta\) 163.8, 132.7, 131.6, 130.1, 129.1, 129.1, 128.9, 128.5, 128.3, 118.9 (All \(\text{ArC}\)), 63.5 (\(\text{ArC}_2\text{HNN}\)), 59.6 (\(\text{ArC}_2\text{HNN}\)), 59.0 (\(\text{NCH}\) of pyrrolidinyl), 50.2 (\(\text{NCH}_2\) of pyrrolidinyl), 49.6 (\(\text{NCH}_2\text{CH}\)), 48.4 (\(\text{NCH}_2\text{CH}_3\)), 25.1 (\(-\text{C}-\text{H}\) of pyrrolidinyl), 21.0 (\(\text{ArCH}_3\)), 18.5 (-\(\text{C}-\text{H}\) of pyrrolidinyl), 13.7 (\(\text{NCH}_2\text{CH}_3\)), 7.4 (Si(\(\text{C}_3\text{H}_3\))).

NMR spectroscopic data for isomer \(2b\): \(^1\)H NMR (400 MHz, \(\text{C}_6\text{D}_6\)): \(\delta\) 7.15-7.03 (m, 6H, \(\text{ArH}\)), 6.39 (s, 1H, \(\text{ArH}\)), 4.22 (d, \(^2J\text{HH} = 13.9\) Hz, 1H), 4.05 (d, \(^2J\text{HH} = 12.4\) Hz, 1H), 3.80 (d, \(^2J\text{HH} = 13.9\) Hz, 1H), 3.07 (d, \(^2J\text{HH} = 12.4\) Hz, 1H), 2.75-2.65 (m, 1H, \(-\text{CH}\) of pyrrolidinyl), 2.65-2.55 (m, 1H, \(\text{NCH}_2\text{CH}\)), 2.48 (s, 3H, \(\text{ArCH}_3\)), 2.41-2.31 (m, 2H, \(-\text{C}-\text{H}\) of pyrrolidinyl & \(\text{NCH}_2\text{CH}\)), 2.22 (s, 3H, \(\text{ArCH}_3\)), 1.98-1.79 (m, 4H, \(\text{ArCH}_3\)), 1.75-1.65 (m, 1H, \(-\text{CH}_2\) of pyrrolidinyl), 1.15 (t, \(^3J\text{HH} = 6.9\) Hz, 3H), 1.06-0.96 (m, 2H, \(-\text{CH}_2\) of pyrrolidinyl), 0.92-0.82 (m, 1H, \(-\text{CH}_2\) of pyrrolidinyl), 0.57 (s, 18H), 0.49-0.35 (m, 1H, \(-\text{CH}_2\) of pyrrolidinyl). \(^{13}\)C\({}^1\)H) NMR (100 MHz, \(\text{C}_6\text{D}_6\)): \(\delta\) 164.7, 133.3, 132.9, 132.6, 131.9, 129.1, 129.1, 127.9, 121.6, 121.4 (All \(\text{ArC}\)), 66.7 (\(\text{ArCH}_2\text{N}\)), 64.6 (\(\text{ArCH}_2\text{N}\)), 60.4 (\(\text{NCH}\) of pyrrolidinyl), 59.2 (\(\text{NCH}_2\) of pyrrolidinyl), 50.4 (\(\text{NCH}_2\text{CH}\)), 50.1 (\(\text{NCH}_2\text{CH}_3\)), 25.8 (-\(\text{CH}_2\) of pyrrolidinyl), 21.1 (\(\text{ArCH}_3\)), 20.9 (\(\text{ArCH}_3\)), 18.0 (-\(\text{CH}_2\) of pyrrolidinyl), 14.6 (\(\text{NCH}_2\text{CH}_3\)), 7.6 (Si(\(\text{C}_3\text{H}_3\))).

Anal. Calcd. For C\(_{29}\)H\(_{49}\)N\(_3\)OSi\(_2\)Zn: C, 60.33; H, 8.56; N, 7.28. Found: C, 60.31; H, 8.50; N, 7.19%.

1.1.3.3 Synthesis of \([L^3\text{ZnN(SiMe}_3)_2]\) (3)

In a glove box, the aminophenol \(L^3\text{H}\) (0.654 mg, 1.50 mmol) was dissolved in toluene (2 mL) and was cannulated to a solution of Zn[N(SiMe\(_3\))\(_2\)] (0.655 g, 1.50 mmol) in \(n\)-hexane. The reaction mixture was
allowed to be stirred at room temperature overnight. The solvent and volatile components were removed
under reduced pressure to afford a white vesicular solid which was then recrystallized with n-hexane. The
resulting colorless crystals were washed with cold n-hexane three times and dried under vacuum to give
the target complex 3 in 59% (0.585 g) as a mixture of two diastereomers in 1 : 1 ratio. Due to the same
percentage in the mixture, the NMR signals could be assigned properly to an exact isomer, thus all the
signals were listed together. 1H NMR (400 MHz, C$_6$D$_6$): δ 7.65-7.60 (m, 1H, ArH), 7.59-7.55 (m, 1H,
ArH), 7.30-7.20 (m, 2H, ArH), 7.17-7.12 (m, 3H, ArH), 7.10-7.04 (m, 3H, ArH), 6.97 (d, 2J$_{HH} = 2.3$ Hz,
1H, ArH), 6.92-6.87 (m, 2H), 6.66 (d, 4J$_{HH} = 2.4$ Hz, 1H). 4.33 (d, 2J$_{HH} = 14.0$ Hz, 1H, ArCH$_2$N), 4.31 (d, 2J$_{HH} = 13.9$ Hz, 1H, ArCH$_2$N), 4.25 (d, 2J$_{HH} = 14.0$ Hz, 1H, ArCH$_2$N), 4.08 (d, 2J$_{HH} = 14.0$ Hz, 1H, ArCH$_2$N), 3.95 (d, 2J$_{HH} = 13.9$ Hz, 1H, ArCH$_2$N), 3.64 (d, 2J$_{HH} = 12.3$ Hz, 1H, ArCH$_2$N), 3.29 (d, 2J$_{HH} = 12.3$ Hz, 2H, ArCH$_2$N), 3.13 (d, 2J$_{HH} = 12.4$ Hz, 1H, ArCH$_2$N), 3.11-3.02 (m, 1H), 2.86 – 2.74 (m, 1H),
2.52-2.44 (m, 3H), 2.39 (m, 2H), 2.32 (m, 2H), 2.23 (m, 1H), 2.02 (dd, 2J$_{HH} = 14.3$, 3J$_{HH} = 4.1$ Hz, 1H),
1.96-1.91 (m, 1H), 1.87 (s, 9H, C(CH$_3$)$_3$), 1.81 (s, 9H, C(CH$_3$)$_3$), 1.76-1.73 (m, 1H), 1.61-1.55 (m, 2H),
1.53-1.50 (m, 1H), 1.46 (s, 9H, C(CH$_3$)$_3$), 1.39 – 1.33 (m, 2H), 1.27 (s, 9H, C(CH$_3$)$_3$), 1.23-1.20 (m, 2H),
1.20 (t, 3J$_{HH} = 7.0$ Hz, 3H, NCH$_2$CH$_3$), 1.16-1.12 (m, 1H), 0.94 (t, 3J$_{HH} = 7.1$ Hz, 3H, NCH$_2$CH$_3$), 0.71-
0.65 (m, 1H), 0.59 (s, 18H, Si(CH$_3$)$_3$), 0.48 (s, 18H, Si(CH$_3$)$_3$). 13C{1H} NMR (100 MHz, C$_6$D$_6$): δ
165.1, 164.7, 138.9, 138.5, 135.1, 134.9, 132.6, 132.4, 131.7, 129.2, 129.1, 128.9, 128.5, 128.3, 127.1,
126.8, 125.3, 124.9, 120.7, 120.2 (All ArC), 64.2 (ArCH$_2$N), 61.7 (ArCH$_2$N), 60.7 (ArCH$_2$N), 59.7
(ArCH$_2$N), 59.1 (NCH- of pyrrolidinyl), 57.9 (NCH- of pyrrolidinyl), 54.0 (NCH$_2$- of pyrrolidinyl), 51.2
(NCH$_2$- of pyrrolidinyl), 49.6 (NCH$_2$CH$_3$), 49.4 (NCH$_2$CH$_3$), 36.3 (C(CH$_3$)$_3$), 36.3 (C(CH$_3$)$_3$), 34.5
(C(CH$_3$)$_3$), 34.3 (C(CH$_3$)$_3$), 32.7 (C(CH$_3$)$_3$), 32.5 (C(CH$_3$)$_3$), 30.9 (C(CH$_3$)$_3$), 30.6 (C(CH$_3$)$_3$), 26.6 (-CH$_2$-
of pyrrolidinyl), 24.9 (-CH$_2$- of pyrrolidinyl), 21.8 (-CH$_2$- of pyrrolidinyl), 19.6 (-CH$_2$- of pyrrolidinyl),
14.1 (CH$_2$CH$_3$), 13.2 (CH$_2$CH$_3$), 7.7 (Si(CH$_3$)$_3$), 7.4 (Si(CH$_3$)$_3$). Anal. Calcd. for C$_{35}$H$_{61}$N$_3$O$_2$Si$_2$Zn: C,
63.55; H, 9.30; N, 6.35. Found: C, 63.84; H, 9.07; N, 5.87%.

1.1.3.4 Synthesis of [L4ZnN(SiMe$_3$)$_2$] (4).
In a glove box, the aminophenol L4H (0.871 g, 1.50 mmol) was dissolved in toluene (2 mL) and was cannulated to a solution of Zn[N(SiMe3)2]2 (0.580 g, 1.50 mmol) in n-hexane. The reaction mixture was allowed to be stirred at room temperature overnight. The solvent and volatile components were removed under reduced pressure to afford a white vesicular solid which was then recrystallized with a mixture of n-hexane and toluene. The resulting colorless crystals were washed with cold n-hexane three times and dried under vacuum to give a white solid 4 in 52.3% (0.631 g) as a mixture of two diasteromers in 7 : 1 (isomer 4a : isomer 4b). Due to a relatively small percentage in the mixture, the NMR signals of isomer 4b could not be identified completely, thus only the NMR spectroscopic data of isomer 4a was listed: 1H NMR (400 MHz, C6D6): δ 7.67-7.55 (m, 6H, ArH), 7.39 (d, JHH = 2.2 Hz, 1H, ArH), 7.14-7.09 (m, 7H, ArH), 7.07-6.87 (m, 7H, ArH), 6.40 (d, JHH = 2.2 Hz, 1H, ArH), 4.38 (d, JHH = 12.3 Hz, 1H, ArCH2N), 4.21 (d, JHH = 14.2 Hz, 1H, ArCH2N), 4.07 (d, JHH = 14.2 Hz, 1H, ArCH2N), 3.27 (d, JHH = 12.3 Hz, 1H, ArCH2N), 3.02-2.93 (m, 1H, NC2H of pyrrolidinyl), 2.26-2.15 (m, 1H, NCH2- of pyrrolidinyl), 1.98-1.89 (m, 2H, NCH2CH), 1.86-1.75 (m, 1H, NCH2CH3), 1.39-1.29 (m, 1H, NCH2- of pyrrolidinyl), 1.18-1.05 (m, 2H, NCH2CH3 & -CH2- of pyrrolidinyl), 1.02 (t, 3JHH = 7.1 Hz, 3H, NCH2CH3), 0.97-0.83 (m, 1H, -CH2- of pyrrolidinyl), 0.60-0.52 (m, 1H, -CH2- of pyrrolidinyl), 0.50-0.40 (m, 1H, -CH2- of pyrrolidinyl), 0.35 (s, 18H, Si(CH3)3). 13C{1H} NMR (100 MHz, C6D6): δ 165.0, 135.8, 134.9, 132.8, 132.7, 132.4, 131.6, 129.7, 129.2, 128.9, 127.8, 127.5, 126.0, 125.4, 120.8, 120.7 (All ArC), 64.7 (ArCPh3), 62.9 (ArCH2N), 59.7 (ArCH2N), 58.3 (NCH- of pyrrolidinyl), 49.8 (NCH2- of pyrrolidinyl), 48.7 (NCH2CH), 48.4 (NCH2CH3), 24.9 (-CH2- of pyrrolidinyl), 21.1 (ArCH3), 20.0 (-CH2- of pyrrolidinyl), 14.2 (CH2CH3), 7.6 (Si(CH3)3). Anal. Calcd. for C47H61N3OSi2Zn: C, 70.07; H, 7.63; N, 5.22. Found: C, 69.95; H, 7.46; N, 4.56%.

1.1.3.5 Synthesis of [L5ZnN(SiMe3)2] (5).

In a glove box, the aminophenol L5H (0.912 g, 1.50 mmol) was dissolved in toluene (3 mL) and added dropwise to a solution of Zn[N(SiMe3)2]2 (0.580 g, 1.50 mmol) in hexane (2 mL). The reaction mixture was allowed to be stirred at room temperature overnight. All the volatiles were removed under vacuum to
afford a white solid which was then recrystallized with a mixture of hexane and toluene. Colorless crystals were obtained in 60% (0.749 g) as enantiomerically pure complex 5. 1H NMR (400 MHz, C$_6$D$_6$): δ 7.67-7.50 (m, 6H), 7.40 (d, 2J$_{HH}$ = 2.2 Hz, 1H, ArH), 7.14-7.07 (m, 9H, ArH), 7.02-6.89 (m, 5H, ArH), 6.39 (d, 2J$_{HH}$ = 2.2 Hz, 1H, ArH), 4.38 (d, 2J$_{HH}$ = 12.3 Hz, 1H, ArCH$_2$N), 4.25 (d, 2J$_{HH}$ = 14.2 Hz, 1H, ArCH$_2$N), 4.12 (d, 2J$_{HH}$ = 14.2 Hz, 1H, ArCH$_2$N), 3.27 (d, 2J$_{HH}$ = 12.3 Hz, 1H, ArCH$_2$N), 3.06-2.98 (m, 1H, NC- of pyrrolidinyl), 2.28-2.18 (m, 1H, NC- of pyrrolidinyl), 2.05 (s, 3H, ArC$_3$), 1.98-1.91 (m, 2H, NCH$_2$CH), 1.86-1.76 (m, 2H, NCH$_2$CH$_2$CH$_2$CH$_3$), 1.49-1.31 (m, 2H, -CH$_2$- of pyrrolidinyl & NCH$_2$CH$_2$CH$_2$CH$_3$), 1.23-1.06 (m, 3H, NCH$_2$CH$_2$CH$_2$CH$_3$), 1.02-0.95 (m, 1H, -CH$_2$- of pyrrolidinyl), 0.98 (t, 3J$_{HH}$ = 7.1 Hz, 3H, NCH$_2$CH$_2$CH$_2$CH$_3$), 0.88-0.79 (m, 1H, -CH$_2$- of pyrrolidinyl), 0.67-0.54 (m, 1H, -CH$_2$- of pyrrolidinyl), 0.52-0.43 (m, 1H, -CH$_2$- of pyrrolidinyl), 0.35 (s, 18H, Si(C$_3$H$_3$)). 13C (1H) NMR (100 MHz, C$_6$D$_6$): δ 165.2, 135.6, 134.9, 132.9, 132.7, 131.7, 129.2, 128.7, 128.5, 128.3, 127.9, 125.4, 120.9, 120.7 (All ArC), 64.8 (ArCPh$_3$), 63.6 (ArCH$_2$N), 59.7 (ArCH$_2$N), 58.4 (NCH$_2$- of pyrrolidinyl), 56.3 (NCH- of pyrrolidinyl), 49.1 (NCH$_2$CH), 48.5 (NCH$_2$CH$_2$CH$_2$CH$_3$), 30.9 (-CH$_2$- of pyrrolidinyl), 25.1 (-CH$_2$- of pyrrolidinyl), 21.2 (Ar-CH$_3$), 21.1 (CH$_2$CH$_2$CH$_2$CH$_3$), 19.9 (CH$_2$CH$_2$CH$_2$CH$_3$), 14.6 (CH$_2$CH$_2$CH$_2$CH$_3$), 7.6 (Si(CH$_3$)$_3$). Anal. Calcd. for C$_{49}$H$_{65}$N$_3$OSi$_2$Zn·C$_7$H$_8$: C, 72.65; H, 7.95; N, 4.54. Found: C, 72.32; H, 8.02; N, 4.41%.

1.2 X-Ray diffraction measurements

Single crystals of complexes 1 and 5 were obtained from benzene-d_6 by slow evaporation at room temperature, and single crystals of complex 3 were isolated from a saturated n-hexane solution at –38 °C. The X-ray diffraction measurements were performed at room temperature on a Bruker SMART APEX II diffractometer with graphite-monochromated Mo-Kα (λ= 0.71073 Å) radiation. All data were collected at 20 °C using the ω-scan techniques. All structures were solved by direct methods and refined using Fourier techniques. An absorption correction based on SADABS was applied.83 All non-hydrogen atoms were refined by full-matrix least-squares on F^2 using the SHELXTL program package.84 Hydrogen atoms were located and refined by the geometry method. The cell refinement, data collection, and
reduction were done by Bruker SAINT.[S5] The structure solution and refinement were performed by SHELXS-97[S6] and SHELXL-97[S7] respectively. For further crystal data and details of measurements see Table S1. Molecular structures were generated using ORTEP program.[S8] CCDC numbers 936902 (1a/1b), 936900 (3a), and 936901 (5) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

1.3 Ring-opening polymerization of \textit{rac}-lactide

1.3.1 General considerations

\textit{rac}-Lactide was recrystallized with dry toluene and then sublimed twice under vacuum at 90 °C. 2-Propanol was dried over calcium hydride prior to distillation. Glassware and vials used in the polymerization were dried in an oven at 120°C overnight and exposed to vacuum-argon cycle three times. Gel permeation chromatography (GPC) analyses were carried out on a Agilent 1260 infinity instrument in THF at 25 °C, at a flow rate of 1 mL·min\(^{-1}\), with two PLgel 5μm Mixed-C columns (7.5×300 mm). Calibration standards were commercially available narrowly distributed linear polystyrene samples that cover a broad range of molar masses (10\(^3\) < \(M_n\) < 4.4×10\(^4\) g·mol\(^{-1}\)).

Monomer conversion determination was monitored by integration of monomer vs. polymer methine resonances in \(^1\)H NMR spectra. All spectroscopic analyses of polymers and homonuclear decoupled \(^1\)H NMR spectra were performed in CDCl\(_3\) on a Bruker Avance 400 MHz spectrometer with acryoprobe.

1.3.2 Typical polymerization procedure

In a glove box, an initiator solution (0.5 mL, 10 mmol/mL) from a stock solution in toluene or THF was injected sequentially to a series of 10 mL vials loaded with \textit{rac}-lactide (0.144 g, 1.0 mmol) and suitable amounts (0.5 mL) of the same dry solvent. The mixture was stirred at room temperature and quenched at the specific time intervals by adding an excess amount of normal light petroleum ether. After being dissolved with dichloromethane, a small amount of aliquot of the bulk solution was withdrawn and
dried under reduced pressure for monomer conversion characterization via 1H NMR spectroscopy. The bulk solution was slightly concentrated and the polymer was precipitated from dichloromethane via the addition of excess methanol. The collected polymer sample was further dried in a vacuum oven at 60 °C for 16 h to constant weight for gel permeation chromatography (GPC), 1H and homonuclear decoupled 1H NMR analyses.

In the cases where 2-propanol was used, the monomer solution was treated first with the solution of 2-propanol for 5 min, and then the solution of initiator was injected to the mixture. Otherwise the procedures were the same.

1.3.3 Kinetic studies

In a teflon sealed NMR tube, D- or L-lactide (36 mg, 0.25 mmol) was added to a solution of 5 in 0.50 mL of C_6D_6 (0.01 M, 0.005 mmol). This mixture was immediately cooled with ice/water mixture. The NMR tube was warmed to room temperature before being inserted into the NMR spectrometer. The reaction mixture was determined in the specific time intervals (Bruker Avance 400 MHz spectrometer). Rate constants k_{obsd} for the ROP of D- or L-lactide with 5 as the initiator were determined by the slope of the plots of ln([LA]$_0$/[LA]$_t$) vs. polymerization time.
2. Results

2.1 1H NMR spectra of zinc complexes

Figure S1. 1H NMR spectrum of 1a and 1b (C$_6$D$_6$, 400 MHz).
Figure S2. 1H NMR spectrum of 2a and 2b (C$_6$D$_6$, 400 MHz).
Figure S3. 1H NMR spectrum of 3a and 3b (C$_6$D$_6$, 400 MHz).
Figure S4. 1H NMR spectrum of 4a and 4b (C$_6$D$_6$, 400 MHz).
Figure S5. 1H NMR spectrum of 5 (C$_6$D$_6$, 400 MHz).
2.2 X-Ray molecular structures

Figure S6. X-Ray molecular structure of 1a (left) and 1b (right). Thermal ellipsoids represent the 30% probability surfaces. Hydrogen atoms are omitted for the sake of clarity. Selected bond lengths (Å) and angles (°), for 1a: Zn1–O1 1.934(10), Zn1–N3 1.935(11), Zn1–N2 2.108(12), Zn1–N1 2.138(11), O1–Zn1–N3 115.2(5), O1–Zn1–N2 100.4(5), N3–Zn1–N2 130.2(5), O1–Zn1–N1 95.3(4), N3–Zn1–N1 121.6(5), N2–Zn1–N1 86.1(4); for 1b: Zn2–N6 1.902(12), Zn2–O2 1.947(10), Zn2–N5 2.105(11), Zn2–N4 2.142(11), N6–Zn2–O2 114.3(5), N6–Zn2–N5 127.7(5), O2–Zn2–N5 101.0(5), N6–Zn2–N4 126.6(5), O2–Zn2–N4 93.4(4), N5–Zn2–N4 86.0(4).
Figure S7. X-Ray molecular structure of 3a. Thermal ellipsoids represent the 30% probability surfaces. Hydrogen atoms are omitted for the sake of clarity. Selected bond lengths (Å) and angles (°): Zn1–N3 1.913(5), Zn1–O1 1.932(4), Zn1–N1 2.093(5), Zn1–N2 2.120(6), N3–Zn1–O1 116.80(19), N3–Zn1–N1 118.43(19), O1–Zn1–N1 96.62(18), N3–Zn1–N2 127.7(2), O1–Zn1–N2 104.4(2), N1–Zn1–N2 85.1(2).
Figure S8. X-Ray molecular structure of 5. Thermal ellipsoids represent the 30% probability surfaces. Hydrogen atoms are omitted for the sake of clarity. Selected bond lengths (Å) and angles (°): Zn1–N3 1.941(3), Zn1–O1 1.962(2), Zn1–N2 2.137(3), Zn1–N1 2.145(3), N3–Zn1–O1 119.37(12), N3–Zn1–N2 127.10(13), O1–Zn1–N2 103.70(11), N3–Zn1–N1 116.68(12), O1–Zn1–N1 97.41(11), N2–Zn1–N1 83.89(12).
Table S1. Crystallographic data for 1a/1b, 3a and 5.

<table>
<thead>
<tr>
<th>Compound reference</th>
<th>1a / 1b</th>
<th>3a</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C_{27}H_{43}Cl_2N_3OSi_2Zn</td>
<td>C_{35}H_{61}N_3OSi_2Zn</td>
<td>C_{40}H_{68}N_3OSi_2Zn</td>
</tr>
<tr>
<td>Formula Mass</td>
<td>618.09</td>
<td>661.42</td>
<td>833.59</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Orthorhombic</td>
<td>Tetragonal</td>
</tr>
<tr>
<td>a/Å</td>
<td>26.943(3)</td>
<td>17.997(2)</td>
<td>19.5766(7)</td>
</tr>
<tr>
<td>b/Å</td>
<td>13.5555(12)</td>
<td>18.266(2)</td>
<td>19.5766(7)</td>
</tr>
<tr>
<td>c/Å</td>
<td>17.9722(16)</td>
<td>14.8576(16)</td>
<td>13.6033(7)</td>
</tr>
<tr>
<td>α°</td>
<td>90.00</td>
<td>90.00</td>
<td>90.00</td>
</tr>
<tr>
<td>β°</td>
<td>100.167(2)</td>
<td>90.00</td>
<td>90.00</td>
</tr>
<tr>
<td>γ°</td>
<td>90.00</td>
<td>90.00</td>
<td>90.00</td>
</tr>
<tr>
<td>Unit cell volume/Å³</td>
<td>6460.8(10)</td>
<td>4884.2(9)</td>
<td>5213.4(4)</td>
</tr>
<tr>
<td>Space group</td>
<td>P2(1)/c</td>
<td>P2(1)2(1)c</td>
<td>P4(1)</td>
</tr>
<tr>
<td>No. of formula units per unit cell, Z</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Radiation type</td>
<td>Mo-Kα</td>
<td>Mo-Kα</td>
<td>Mo-Kα</td>
</tr>
<tr>
<td>Absorption coefficient, μ/mm⁻¹</td>
<td>1.023</td>
<td>0.574</td>
<td>0.551</td>
</tr>
<tr>
<td>No. of reflections measured</td>
<td>36037</td>
<td>9603</td>
<td>10207</td>
</tr>
<tr>
<td>No. of independent reflections</td>
<td>11995</td>
<td>9603</td>
<td>10207</td>
</tr>
<tr>
<td>R int</td>
<td>0.0739</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Final R₁ values (I > 2σ(I))</td>
<td>0.1523</td>
<td>0.0653</td>
<td>0.0506</td>
</tr>
<tr>
<td>Final wR(F²) values (I > 2σ(I))</td>
<td>0.3275</td>
<td>0.1456</td>
<td>0.1118</td>
</tr>
<tr>
<td>Final R₁ values (all data)</td>
<td>0.1882</td>
<td>0.1528</td>
<td>0.0757</td>
</tr>
<tr>
<td>Goodness of fit on F²</td>
<td>1.140</td>
<td>0.808</td>
<td>0.940</td>
</tr>
<tr>
<td>Flack parameter</td>
<td>0.03(2)</td>
<td>0.024(11)</td>
<td></td>
</tr>
</tbody>
</table>
2.3 Ring-opening polymerization

Table S2. ROP of rac-lactide initiated by zinc complexes 1, 3-5 in THF.a

<table>
<thead>
<tr>
<th>Cat.</th>
<th>[LA]₀/[Zn]₀/[iPrOH]₀</th>
<th>Time (min)</th>
<th>Conv.b (%)</th>
<th>$M_{n,\text{calcd}}$c ($\times 10^4$)</th>
<th>M_nd ($\times 10^4$)</th>
<th>M_w/M_nd</th>
<th>P_{m}e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200:1:0</td>
<td>15</td>
<td>98</td>
<td>2.82</td>
<td>16.7</td>
<td>1.54</td>
<td>0.39</td>
</tr>
<tr>
<td>1</td>
<td>200:1:1</td>
<td>3</td>
<td>99</td>
<td>2.85</td>
<td>2.69</td>
<td>1.49</td>
<td>0.40</td>
</tr>
<tr>
<td>3</td>
<td>200:1:0</td>
<td>30</td>
<td>99</td>
<td>2.85</td>
<td>5.72</td>
<td>1.59</td>
<td>0.74</td>
</tr>
<tr>
<td>3</td>
<td>200:1:1</td>
<td>20</td>
<td>98</td>
<td>2.82</td>
<td>2.62</td>
<td>1.53</td>
<td>0.74</td>
</tr>
<tr>
<td>4</td>
<td>200:1:0</td>
<td>300</td>
<td>94</td>
<td>2.70</td>
<td>7.36</td>
<td>1.47</td>
<td>0.77</td>
</tr>
<tr>
<td>4</td>
<td>200:1:1</td>
<td>60</td>
<td>84</td>
<td>2.42</td>
<td>2.25</td>
<td>1.15</td>
<td>0.78</td>
</tr>
<tr>
<td>5</td>
<td>200:1:0</td>
<td>300</td>
<td>75</td>
<td>2.16</td>
<td>9.07</td>
<td>1.25</td>
<td>0.80</td>
</tr>
<tr>
<td>5</td>
<td>200:1:1</td>
<td>180</td>
<td>86</td>
<td>2.48</td>
<td>3.34</td>
<td>1.09</td>
<td>0.80</td>
</tr>
<tr>
<td>5</td>
<td>200:1:1</td>
<td>4 f</td>
<td>96</td>
<td>2.76</td>
<td>4.11</td>
<td>1.40</td>
<td>0.84</td>
</tr>
</tbody>
</table>

a [LA]₀ = 1.0 mmol·L-1, in THF, 25 °C. b Determined by 1H NMR spectroscopy. c $M_{n,\text{calcd}} = [\text{LA}]_0/[\text{Zn}]_0 \times \text{Conv.\%} \times 144.13\text{ g·mol-1}$. d Determined by GPC. e Determined by analysis of all of the tetrad signals in the methine region of the homonuclear-decoupled 1H NMR spectrum. f At −38°C.

Figure S9. Plots of observed M_n (■) and molecular weight distribution (●) of PLA sample vs. monomer conversion obtained by 5 ([LA]₀/[Zn]₀/[iPrOH]₀ = 200 : 1 : 1, toluene, 25 °C).
Figure S10. ln([LA]₀/[LA]ₜ) vs time plots for the ROP of D- and L-lactide catalyzed by complex 5 at 20 °C in C₆D₆. The rate constants are \(k_{D(\text{obsd})} = 3.93 \times 10^{-2} \text{ min}^{-1} \) and \(k_{L(\text{obsd})} = 1.12 \times 10^{-2} \text{ min}^{-1} \) respectively.

2.4 Microstructure analysis of poly(rac-lactide)

<table>
<thead>
<tr>
<th>Peak</th>
<th>Integration</th>
<th>(P_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sis</td>
<td>0.19</td>
<td>0.38</td>
</tr>
<tr>
<td>sii</td>
<td>0.10</td>
<td>0.28</td>
</tr>
<tr>
<td>iis</td>
<td>0.12</td>
<td>0.40</td>
</tr>
<tr>
<td>iii</td>
<td>0.34</td>
<td>0.49</td>
</tr>
<tr>
<td>isi</td>
<td>0.25</td>
<td>0.50</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.41</td>
</tr>
</tbody>
</table>

Figure S11. De-convoluted homonuclear decoupled \(^1\text{H}\) NMR spectrum of PLA obtained from rac-lactide by using 1 as initiator in toluene at 25 °C (CDCl₃, 400 MHz, \(P_m = 0.41 \)).
Figure S12. De-convoluted homonuclear decoupled 1H NMR spectrum of PLA obtained from rac-lactide by using 2 as initiator in toluene at 25 °C (CDCl$_3$, 400 MHz, $P_m = 0.59$).

Figure S13. De-convoluted homonuclear decoupled 1H NMR spectrum of PLA obtained from rac-lactide by using 3 as initiator in toluene at 25 °C (CDCl$_3$, 400 MHz, $P_m = 0.74$).
Figure S14. De-convoluted homonuclear decoupled 1H NMR spectrum of PLA obtained from rac-lactide by using 4 as initiator in toluene at 25 °C (CDCl$_3$, 400 MHz, $P_m = 0.77$).

<table>
<thead>
<tr>
<th>Peak</th>
<th>Integration</th>
<th>P_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>sis</td>
<td>0.04</td>
<td>0.72</td>
</tr>
<tr>
<td>sii</td>
<td>0.09</td>
<td>0.76</td>
</tr>
<tr>
<td>iis</td>
<td>0.10</td>
<td>0.72</td>
</tr>
<tr>
<td>iii</td>
<td>0.70</td>
<td>0.79</td>
</tr>
<tr>
<td>isi</td>
<td>0.07</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Average 0.77

Figure S15. De-convoluted homonuclear decoupled 1H NMR spectrum of PLA obtained from rac-lactide by using 5 as initiator in toluene at 25 °C (CDCl$_3$, 400 MHz, $P_m = 0.81$).

<table>
<thead>
<tr>
<th>Peak</th>
<th>Integration</th>
<th>P_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>sis</td>
<td>0.03</td>
<td>0.77</td>
</tr>
<tr>
<td>sii</td>
<td>0.09</td>
<td>0.76</td>
</tr>
<tr>
<td>iis</td>
<td>0.07</td>
<td>0.83</td>
</tr>
<tr>
<td>iii</td>
<td>0.74</td>
<td>0.82</td>
</tr>
<tr>
<td>isi</td>
<td>0.07</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Average 0.81
Figure S16. De-convoluted homonuclear decoupled 1H NMR spectrum of PLA obtained from rac-lactide by using 5 as initiator in toluene at –38 °C (CDCl$_3$, 400 MHz, $P_m = 0.84$).

<table>
<thead>
<tr>
<th>Peak</th>
<th>Integration</th>
<th>P_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>sis</td>
<td>0.02</td>
<td>0.80</td>
</tr>
<tr>
<td>sii</td>
<td>0.07</td>
<td>0.83</td>
</tr>
<tr>
<td>iis</td>
<td>0.07</td>
<td>0.83</td>
</tr>
<tr>
<td>iii</td>
<td>0.79</td>
<td>0.85</td>
</tr>
<tr>
<td>isi</td>
<td>0.05</td>
<td>0.90</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.84</td>
</tr>
</tbody>
</table>

Figure S17. Plot of P_m vs. conversion for polymerization of rac-LA with 5 as the initiator ([LA]$_0$/[5]$_0$/[PrOH]$_0 = 200:1:1$, [LA]$_0 = 1.0$ mmol·L$^{-1}$, toluene, 25 °C).
Figure S18. Heat flow vs. temperature curve for PLA obtained from rac-lactide by using 5 as initiator at
\(-38 \, ^\circ\text{C} \) ([LA]₀/[Zn]₀/[iPrOH]₀ = 200:1:1, in toluene, \(P_m = 0.84 \)). The curve shows a glass transition
temperature of 53 \(^\circ\text{C} \), a melting point of 166 \(^\circ\text{C} \).

Figure S19. \(^1\)H NMR spectrum (CDCl₃, 400 MHz) of rac-lactide oligomer obtained by complex 5/2-
Figure S20. The carbonyl and methine regions of 13C NMR spectrum (CDCl$_3$, 500 MHz) of PLA obtained from rac-lactide by using 5 as initiator in toluene at -38°C.

References

[S3] SADABS, Bruker Nonius area detector scaling and absorption correction, V2.05, Bruker AXS Inc., Madison, WI, 1996.