# Electronic Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2013 ####################################################################### # # Cambridge Crystallographic Data Centre # CCDC # ####################################################################### # # This CIF contains data from an original supplementary publication # deposited with the CCDC, and may include chemical, crystal, # experimental, refinement, atomic coordinates, # anisotropic displacement parameters and molecular geometry data, # as required by the journal to which it was submitted. # # This CIF is provided on the understanding that it is used for bona # fide research purposes only. It may contain copyright material # of the CCDC or of third parties, and may not be copied or further # disseminated in any form, whether machine-readable or not, # except for the purpose of generating routine backup copies # on your local computer system. # # For further information on the CCDC, data deposition and # data retrieval see: # www.ccdc.cam.ac.uk # # Bona fide researchers may freely download Mercury and enCIFer # from this site to visualise CIF-encoded structures and # to carry out CIF format checking respectively. # data_1 _database_code_depnum_ccdc_archive 'CCDC 907061' loop_ _platon_squeeze_void_nr _platon_squeeze_void_average_x _platon_squeeze_void_average_y _platon_squeeze_void_average_z _platon_squeeze_void_volume _platon_squeeze_void_count_electrons _platon_squeeze_void_content 1 -0.009 -0.004 -0.002 3438 3154 ' ' _platon_squeeze_details ; A large region of solvent molecules in the lattice could not be modelled from F-maps as high degree of statistical and positional disorder. We employed PLATON SQUEEZE to calculate the contribution to the diffraction from the solvent region and thereby produced a set of solvent-free diffraction intensities. SQUEEZE estimated a total count of 3154 electrons per unit cell, which were assigned to be 14.4 H+-DMMP molecules per unit cell. The final formula was calculated from TGA combined with elemental analysis data. ; _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C10.80 H25.20 Ga0.80 N1.80 O2.80 S6.50 Sn2.70' _chemical_formula_weight 809.76 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' S S 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Ga Ga 0.2307 1.6083 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Sn Sn -0.6537 1.4246 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Tetragonal _symmetry_space_group_name_H-M P-42c loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' 'y, -x, -z' '-y, x, -z' '-x, y, -z+1/2' 'x, -y, -z+1/2' '-y, -x, z+1/2' 'y, x, z+1/2' _cell_length_a 14.6663(3) _cell_length_b 14.6663(3) _cell_length_c 24.9609(11) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 5369.1(3) _cell_formula_units_Z 8 _cell_measurement_temperature 185(2) _cell_measurement_reflns_used 9968 _cell_measurement_theta_min 2.55 _cell_measurement_theta_max 26.00 _exptl_crystal_description diamond _exptl_crystal_colour yellow _exptl_crystal_size_max 0.15 _exptl_crystal_size_mid 0.10 _exptl_crystal_size_min 0.07 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 2.004 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 3110 _exptl_absorpt_coefficient_mu 3.800 _exptl_absorpt_correction_type empirical _exptl_absorpt_correction_T_min 0.5995 _exptl_absorpt_correction_T_max 0.7768 _exptl_absorpt_process_details 'SADABS, Bruker, 2002' _exptl_special_details ; ? ; _diffrn_ambient_temperature 185(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'CCD area detector' _diffrn_measurement_method 'phi and omega scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 26534 _diffrn_reflns_av_R_equivalents 0.0536 _diffrn_reflns_av_sigmaI/netI 0.0400 _diffrn_reflns_limit_h_min -17 _diffrn_reflns_limit_h_max 13 _diffrn_reflns_limit_k_min -17 _diffrn_reflns_limit_k_max 17 _diffrn_reflns_limit_l_min -22 _diffrn_reflns_limit_l_max 29 _diffrn_reflns_theta_min 1.39 _diffrn_reflns_theta_max 24.99 _reflns_number_total 4739 _reflns_number_gt 3805 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'Bruker SMART' _computing_cell_refinement 'Bruker SMART' _computing_data_reduction 'Bruker SAINT' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'Bruker SHELXTL' _computing_publication_material 'Bruker SHELXTL' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0954P)^2^+4.1712P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens ? _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.34(5) _refine_ls_number_reflns 4739 _refine_ls_number_parameters 104 _refine_ls_number_restraints 7 _refine_ls_R_factor_all 0.0612 _refine_ls_R_factor_gt 0.0516 _refine_ls_wR_factor_ref 0.1586 _refine_ls_wR_factor_gt 0.1517 _refine_ls_goodness_of_fit_ref 1.087 _refine_ls_restrained_S_all 1.092 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Sn1 Sn -0.33604(5) 1.44733(5) 0.99901(3) 0.0452(2) Uani 1 1 d . . . Sn2 Sn -0.5000 1.5000 1.10121(4) 0.0466(3) Uani 1 2 d SU . . Sn3 Sn -0.38576(7) 1.28565(6) 1.10070(3) 0.0558(3) Uani 1 1 d . . . Ga1 Ga -0.41260(8) 1.08764(7) 1.19811(4) 0.0408(4) Uani 0.807(11) 1 d P . . Sn4 Sn -0.41260(8) 1.08764(7) 1.19811(4) 0.0408(4) Uani 0.193(11) 1 d P . . S1 S -0.3509(2) 1.5753(2) 1.07003(12) 0.0566(8) Uani 1 1 d U . . S2 S -0.3173(4) 1.0000 1.2500 0.0698(14) Uani 1 2 d SU . . S3 S -0.2570(2) 1.3334(2) 1.05029(14) 0.0589(9) Uani 1 1 d . . . S4 S -0.3124(3) 1.1689(3) 1.15144(14) 0.0661(10) Uani 1 1 d . . . S5 S -0.4421(3) 1.3898(2) 1.16635(12) 0.0582(9) Uani 1 1 d . . . S6 S -0.5036(3) 1.2061(2) 1.05412(12) 0.0564(8) Uani 1 1 d . . . S7 S -0.5000 1.1862(3) 1.2500 0.0571(12) Uani 1 2 d S . . S8 S -0.5000 1.0000 1.13899(18) 0.0684(15) Uani 1 2 d S . . O1 O -0.5466(6) 1.5914(5) 1.0431(3) 0.055(2) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Sn1 0.0468(4) 0.0503(5) 0.0384(4) 0.0067(4) -0.0010(4) 0.0022(4) Sn2 0.0551(7) 0.0525(7) 0.0323(5) 0.000 0.000 -0.0057(6) Sn3 0.0661(6) 0.0543(5) 0.0469(5) 0.0096(4) -0.0087(4) -0.0056(5) Ga1 0.0576(8) 0.0311(6) 0.0337(6) 0.0060(5) -0.0017(5) -0.0019(5) Sn4 0.0576(8) 0.0311(6) 0.0337(6) 0.0060(5) -0.0017(5) -0.0019(5) S1 0.0649(19) 0.063(2) 0.0421(16) 0.0047(15) 0.0100(15) 0.0054(16) S2 0.084(4) 0.056(3) 0.069(3) 0.023(3) 0.000 0.000 S3 0.0507(18) 0.057(2) 0.069(2) 0.0229(17) -0.0071(16) 0.0078(16) S4 0.071(2) 0.059(2) 0.068(2) 0.0247(18) -0.0187(19) -0.0071(19) S5 0.090(3) 0.0511(19) 0.0335(16) 0.0058(13) -0.0107(15) -0.0009(18) S6 0.077(2) 0.0308(15) 0.0619(19) 0.0081(14) -0.0243(18) 0.0046(17) S7 0.085(3) 0.043(2) 0.044(2) 0.000 -0.001(2) 0.000 S8 0.104(4) 0.057(3) 0.044(3) 0.000 0.000 -0.008(3) O1 0.065(5) 0.047(5) 0.053(5) -0.002(4) -0.002(4) -0.018(4) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Sn1 O1 2.087(8) 3_367 ? Sn1 O1 2.120(8) 2_485 ? Sn1 S3 2.403(3) . ? Sn1 S6 2.431(3) 4_677 ? Sn1 S1 2.581(3) 3_367 ? Sn1 S1 2.591(3) . ? Sn2 O1 2.090(8) . ? Sn2 O1 2.090(8) 2_485 ? Sn2 S5 2.445(3) 2_485 ? Sn2 S5 2.445(3) . ? Sn2 S1 2.570(3) 2_485 ? Sn2 S1 2.570(3) . ? Sn3 S3 2.375(4) . ? Sn3 S4 2.386(3) . ? Sn3 S6 2.387(4) . ? Sn3 S5 2.388(3) . ? Sn3 O1 2.511(8) 2_485 ? Ga1 S4 2.222(4) . ? Ga1 S2 2.299(4) . ? Ga1 S7 2.326(3) . ? Ga1 S8 2.339(3) . ? S1 Sn1 2.581(3) 4_677 ? S2 Sn4 2.299(4) 6_577 ? S2 Ga1 2.299(4) 6_577 ? S6 Sn1 2.431(3) 3_367 ? S7 Sn4 2.326(3) 5_457 ? S7 Ga1 2.326(3) 5_457 ? S8 Sn4 2.339(3) 2_475 ? S8 Ga1 2.339(3) 2_475 ? O1 Sn1 2.087(8) 4_677 ? O1 Sn1 2.120(8) 2_485 ? O1 Sn3 2.511(8) 2_485 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag O1 Sn1 O1 91.9(5) 3_367 2_485 ? O1 Sn1 S3 177.7(2) 3_367 . ? O1 Sn1 S3 85.9(3) 2_485 . ? O1 Sn1 S6 85.3(2) 3_367 4_677 ? O1 Sn1 S6 177.2(3) 2_485 4_677 ? S3 Sn1 S6 96.79(12) . 4_677 ? O1 Sn1 S1 77.8(2) 3_367 3_367 ? O1 Sn1 S1 77.9(2) 2_485 3_367 ? S3 Sn1 S1 102.58(12) . 3_367 ? S6 Sn1 S1 101.14(12) 4_677 3_367 ? O1 Sn1 S1 78.2(2) 3_367 . ? O1 Sn1 S1 76.7(2) 2_485 . ? S3 Sn1 S1 100.38(12) . . ? S6 Sn1 S1 102.99(12) 4_677 . ? S1 Sn1 S1 144.21(14) 3_367 . ? O1 Sn2 O1 92.1(5) . 2_485 ? O1 Sn2 S5 85.7(2) . 2_485 ? O1 Sn2 S5 177.7(3) 2_485 2_485 ? O1 Sn2 S5 177.7(3) . . ? O1 Sn2 S5 85.7(2) 2_485 . ? S5 Sn2 S5 96.63(16) 2_485 . ? O1 Sn2 S1 77.7(2) . 2_485 ? O1 Sn2 S1 78.0(2) 2_485 2_485 ? S5 Sn2 S1 100.94(12) 2_485 2_485 ? S5 Sn2 S1 102.31(12) . 2_485 ? O1 Sn2 S1 78.0(2) . . ? O1 Sn2 S1 77.7(2) 2_485 . ? S5 Sn2 S1 102.31(12) 2_485 . ? S5 Sn2 S1 100.94(12) . . ? S1 Sn2 S1 144.73(15) 2_485 . ? S3 Sn3 S4 97.70(13) . . ? S3 Sn3 S6 117.49(13) . . ? S4 Sn3 S6 103.55(12) . . ? S3 Sn3 S5 116.75(13) . . ? S4 Sn3 S5 104.52(12) . . ? S6 Sn3 S5 113.37(14) . . ? S3 Sn3 O1 78.4(2) . 2_485 ? S4 Sn3 O1 176.0(2) . 2_485 ? S6 Sn3 O1 77.65(19) . 2_485 ? S5 Sn3 O1 78.27(19) . 2_485 ? S4 Ga1 S2 101.13(15) . . ? S4 Ga1 S7 108.85(14) . . ? S2 Ga1 S7 111.64(8) . . ? S4 Ga1 S8 109.06(14) . . ? S2 Ga1 S8 112.43(8) . . ? S7 Ga1 S8 113.00(7) . . ? Sn2 S1 Sn1 87.30(11) . 4_677 ? Sn2 S1 Sn1 88.16(12) . . ? Sn1 S1 Sn1 87.39(10) 4_677 . ? Sn4 S2 Ga1 0.00(6) 6_577 6_577 ? Sn4 S2 Ga1 105.1(2) 6_577 . ? Ga1 S2 Ga1 105.1(2) 6_577 . ? Sn3 S3 Sn1 95.93(12) . . ? Ga1 S4 Sn3 111.40(16) . . ? Sn3 S5 Sn2 94.98(10) . . ? Sn3 S6 Sn1 95.56(11) . 3_367 ? Sn4 S7 Ga1 0.00(6) 5_457 5_457 ? Sn4 S7 Ga1 103.17(18) 5_457 . ? Ga1 S7 Ga1 103.17(18) 5_457 . ? Sn4 S8 Ga1 0.00(6) 2_475 2_475 ? Sn4 S8 Ga1 101.78(18) 2_475 . ? Ga1 S8 Ga1 101.78(18) 2_475 . ? Sn1 O1 Sn2 116.6(4) 4_677 . ? Sn1 O1 Sn1 116.2(4) 4_677 2_485 ? Sn2 O1 Sn1 117.0(3) . 2_485 ? Sn1 O1 Sn3 101.4(3) 4_677 2_485 ? Sn2 O1 Sn3 101.1(3) . 2_485 ? Sn1 O1 Sn3 99.7(3) 2_485 2_485 ? _diffrn_measured_fraction_theta_max 0.999 _diffrn_reflns_theta_full 24.99 _diffrn_measured_fraction_theta_full 0.999 _refine_diff_density_max 0.772 _refine_diff_density_min -1.046 _refine_diff_density_rms 0.163 # start Validation Reply Form _vrf_CHEMW03_1 ; PROBLEM: The ratio of given/expected molecular weight as calculated from the _atom_site* data lies outside the range 0.90 <> 1.10 From the CIF: _cell_formula_units_Z 8 From the CIF: _chemical_formula_weight 809.76 TEST: Calculate formula weight from _atom_site_* atom mass num sum O 16.00 1.00 16.00 S 32.07 6.50 208.43 Ga 69.72 0.81 56.27 Sn 118.71 2.69 319.69 C 12.01 0.00 0.00 N 14.01 0.00 0.00 H 1.01 0.00 0.00 Calculated formula weight 600.38 RESPONSE: The contribution of the disordered H+-DMMP(C6H14NO) molecules removed by the SQUEEZE process was included in the overall formula. ; #=== END of CIF