Electronic Supplementary Information (ESI)

Gated Access to α-Lithiated Phenyltetrahydrofuran: Functionalisation via Direct Lithiation of the Parent Oxygen Heterocycle

Rosmara Mansueto, Valentina Mallardo, Filippo Maria Perna, Antonio Salomone, and Vito Capriati*

Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari “A. Moro”, Consorzio Interuniversitario Nazionale “Metodologie e Processi Innovativi di Sintesi” C.I.N.M.P.I.S. Via E. Orabona 4, I-70125 Bari, Italy

Table of Contents

1. General Methods S2

2. Experimental procedures and characterization data S3

3. 1H and 13C NMR spectra S7
1. General Methods

Tetrahydrofuran (THF), diethyl ether, toluene and hexane were freshly distilled under a nitrogen atmosphere: THF and diethyl ether over sodium/benzophenone ketyl, toluene and hexane over calcium hydride. For the 1H and 13C NMR spectra (1H NMR 400 or 600 MHz; 13C NMR 101 or 151 MHz), CDCl$_3$ was used as the solvent. GC-MS spectrometry analyses were performed on a gas chromatograph (dimethylsilicon capillary column, 30 m, 0.25 mm i.d.) equipped with a mass selective detector operating at 70 eV (EI). Elemental analyses were performed by using a Carlo Erba CHNS-O EA1108-Elemental Analyzer. Analytical thin layer chromatography (TLC) was carried out on precoated 0.25 mm thick plates of Kieselgel 60 F254; visualization was accomplished by UV light (254 nm) or by spraying with a solution of 5 % (w/v) ammonium molybdate and 0.2 % (w/v) cerium(III) sulfate in 100 ml 17.6 % (w/v) aq. sulphuric acid and heating to 473 K for some time until blue spots appear. All reactions involving air-sensitive reagents were performed under nitrogen in oven-dried glassware using syringe-septum cap technique. Lithiation-electrophilic trapping reactions were performed in a methanol/liquid N$_2$ (−98 °C), acetone/liquid N$_2$ (−90 °C) or acetone/dry ice (−78 °C) cold bath. The enantiomeric ratios were measured by GC analysis employing a Chirasil-DEX CB (250-0.25 mm, column head pressure 26 psi, He flow 1.7 mL min$^{-1}$). In particular, for compounds (R)-3 and [D]-3: isothermal run at 110 °C (t_R = 12.4 min, t_R = 13.3 min); for compound 5d: isothermal run at 110 °C (t_R = 16.3 min, t_R = 17.1 min).

Compounds 21 and 32 have been synthesized as reported.

Spectroscopic data of compounds 23, 32 and 6a4 have been reported.

2. Experimental procedures and characterization data

Preparation of [D]-3 or 2-substituted-2-phenyltetrahydrofurans 5a–k – General procedure:

A solution of 3 (148 mg, 1.0 mmol) and TMEDA (0.23 mL, 1.5 mmol) in 5 mL of dry toluene was cooled to –78 °C and treated with s-BuLi (1.08 mL, 1.4 mmol, 1.4 M solution in cyclohexane) under N₂. The color of the mixture became green. After stirring for 2 min at the above temperature, MeOD (10 mmol) or the electrophile (2.0 mmol) (as pure liquid or as a solution in 1 mL of toluene if solid) was added all at once and the mixture was stirred for an additional 30 min at –78 °C. After this time, 5 mL of water was added and the reaction mixture was allowed to warm to room temperature and finally extracted with AcOEt (3 × 10 mL). The combined organic phases were dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash-chromatography (silica gel; hexane/AcOEt 9/1–95/5).

Preparation of γ-butyrolactone 6a

A suspension of RuO₂·H₂O (21 mg, 0.16 mmol) and NaIO₄ (1.04 g, 4.88 mmol) in H₂O (5 ml) was added to a solution of 5a (1.0 mmol) in CCl₄ (5 mL) at room temperature. After stirring for 24 h, additional water was added (5 mL), and the resulting mixture was extracted with CH₂Cl₂ (3 × 5 mL). The combined organic phases were dried over Na₂SO₄, passed through a pad of celite, and concentrated in vacuo. The crude product was purified by flash-chromatography (silica gel; hexane/AcOEt 9/1) to afford the lactone 6 in 70% yield.

2-Deuterio-2-phenyltetrahydrofuran ([D]-3): colorless oil, >98%. ¹H-NMR (600 MHz; CDCl₃): δ 1.80-1.85 (m, 1H), 1.98-2.08 (m, 2H), 2.32-2.36 (m, 1H), 3.94-3.98 (m, 1H), 4.10-4.12 (m, 1H), 7.25-7.28 (m, 1H), 7.35-7.36 (m, 4H); ¹³C-NMR (151 MHz; CDCl₃): δ 26.0, 34.5, 68.7, 80.2 (t, ¹JC-O = 23 Hz), 125.6, 127.1, 128.3, 143.4; GC-MS (70 eV) m/z (%): 149 (M⁺, 15), 148 (13), 123 (41), 105 (100), 77 (38);

2-Ethyl-2-phenyltetrahydrofuran (5a): colorless oil, 74%. ¹H-NMR (400 MHz; CDCl₃): δ 0.76 (t, J = 7.4 Hz, 3H), 1.86-1.74 (m, 3H), 1.98-1.90 (m, 1H), 2.07-2.00 (m, 1H), 2.21-2.14 (m, 1H), 3.88 (td, J = 8.0, 5.7 Hz, 1H), 4.00-3.94 (m, 1H), 7.23-7.19 (m, 1H), 7.37-7.29 (m, 4H). ¹³C-NMR (101 MHz; CDCl₃): δ 8.7, 25.6, 35.0, 37.7, 67.4, 77.4, 87.1, 125.3, 127.8, 146.5 GC-MS (70 eV) m/z (%): 176 (M⁺, 3), 147 (100), 105 (55), 77 (16); FT-IR (film, cm⁻¹) 3024, 2967, 2929, 1492, 1446, 1057, 758, 701. Anal. Calcd. for C₁₂H₁₆O: C, 81.77; H, 9.15; Found: C, 81.93; H, 9.27.
2-Allyl-2-phenyltetrahydrofuran (5b): colorless oil, >98%. 1H-NMR (400 MHz; CDCl$_3$): δ 1.77-1.66 (m, 1H), 1.92-1.82 (m, 1H), 2.10-2.03 (m, 2H), 2.48-2.42 (m, 1H), 2.57-2.52 (m, 1H), 3.83 (td, J = 8.0, 5.8 Hz, 1H), 3.96-3.90 (m, 1H), 4.97-4.91 (m, 2H), 5.67-5.57 (m, 1H), 7.17-7.13 (m, 1H), 7.32-7.24 (m, 4H). 13C-NMR (101 MHz; CDCl$_3$): δ 25.5, 37.2, 46.9, 67.7, 86.2, 117.4, 125.2, 126.3, 127.9, 146.6; GC-MS (70 eV) m/z (%): 188 (M$^+$, 2), 147 (100), 105 (70), 77 (21); FT-IR (film, cm$^{-1}$) 2976, 2872, 1446, 1055, 914, 762, 703. Anal. Calcd. for C$_{13}$H$_{16}$O: C, 82.94; H, 8.57; Found: C, 82.80; H, 8.68.

2-Benzyl-2-phenyltetrahydrofuran (5c): colorless oil, 90% yield. 1H-NMR (600 MHz; CDCl$_3$): δ 1.75-1.80 (m, 2H), 2.12-2.22 (m, 2H), 3.03 (d, J = 13.5 Hz, 1H), 3.12 (d, J = 13.5 Hz, 1H), 3.85-3.89 (m, 1H), 3.91-3.94 (m, 1H), 7.04-7.05 (m, 2H), 7.18-7.24 (m, 4H), 7.28-7.32 (m, 4H). 13C-NMR (101 MHz; CDCl$_3$): δ 25.5, 36.8, 48.6, 67.54, 87.0, 125.5, 126.0, 126.4, 127.6, 130.6, 137.6, 146.7. GC-MS (70 eV) m/z (%): 238 (M$^+$, 2), 147 (100), 105 (52), 77 (17); FT-IR (film, cm$^{-1}$) 2976, 1454, 1112, 1053, 909, 733, 701. Anal. Calcd. for C$_{17}$H$_{18}$O: C, 85.67; H, 7.61; Found: C, 85.57; H, 7.80.

2-Phenyl-2-trimethylsilyltetrahydrofuran (5d): colorless oil, 70%. 1H-NMR (400 MHz; CDCl$_3$): δ −0.11 (s, 9H), 1.58-1.65 (m, 1H), 1.71-1.79 (m, 1H), 2.01-2.09 (m, 1H), 2.15-2.22 (m, 1H); 13C-NMR (101 MHz; CDCl$_3$): δ -4.0, 26.1, 34.6, 67.3, 80.9, 124.5, 125.0, 127.7, 146.3; GC-MS (70 eV) m/z (%): 220 (M$^+$, 11), 219 (18), 192 (58), 191 (100), 177 (73), 147 (97), 105 (82), 77 (30); FT-IR (film, cm$^{-1}$) 2926, 1445, 1246, 1030, 838, 758, 702. Anal. Calcd. for C$_{13}$H$_{20}$OSi: C, 70.85; H, 9.15; Found: C, 70.97; H, 9.40.

2-Phenyl-2-tributylstannyltetrahydrofuran (5e): colorless oil, 40%. 1H-NMR (400 MHz; CDCl$_3$): δ 0.77-0.84 (m, 14H), 1.17-1.27 (m, 7H), 1.32-1.40 (m, 6H), 1.62-1.71 (m, 1H), 1.77-1.86 (m, 1H), 2.21-2.29 (m, 1H), 2.37-2.43 (m, 1H), 3.75-3.88 (m, 2H), 7.00-7.04 (m, 1H), 7.14-7.16 (m, 2H), 7.21-7.24 (m, 2H); 13C-NMR (151 MHz; CDCl$_3$): δ 9.5, 13.6, 25.0, 27.4, 28.9, 37.3, 66.3, 85.5, 122.8, 124.1, 128.0, 149.5; GC-MS (70 eV) m/z (%): 220 (M$^+$, 11), 219 (18), 192 (58), 191 (100), 177 (73), 147 (97), 105 (82), 77 (30); FT-IR (film, cm$^{-1}$) 2926, 1445, 1246, 1030, 838, 758, 702. Anal. Calcd. for C$_{22}$H$_{38}$OSn: C, 60.43; H, 8.76; Found: C, 60.67; H, 8.95.
2-Phenyl-2-(phenylthio)tetrahydrofuran (5f): colorless oil, 85%, 1H-NMR (400 MHz; CDCl$_3$): δ 1.92-2.00 (m, 1H), 2.11-2.21 (m, 1H), 2.55-2.61 (m, 1H), 4.11-4.17 (m, 1H), 4.26-4.31 (m, 1H), 7.09-7.31 (m, 8H), 7.37-7.39 (m, 2H). 13C-NMR (101 MHz; CDCl$_3$): δ 24.7, 40.2, 67.7, 98.2, 125.7, 126.7, 127.3, 127.9, 132.6, 135.5, 144.0. GC-MS (70 eV) m/z (%): 256 (M$^+$, 2), 147 (100), 105 (35), 77 (20); FT-IR (film, cm$^{-1}$) 2966, 1583, 1438, 1060, 1027, 748. Anal. Calcd. for C$_{16}$H$_{16}$OS: C, 74.96; H, 6.29; Found: C, 75.14; H, 6.33.

(4-Chlorophenyl)(2-phenyltetrahydrofuran-2-yl)methanol (5g): Inseparable mixture of diastereomers, colorless oil, 45 % overall yield (dr 60/40). 1H-NMR (600 MHz; CDCl$_3$): δ 1.69-1.95 (m, 2H major + 2H minor), 1.95-2.04 (m, 1H minor), 2.19-2.23 (m, 1H major), 2.33-2.38 (m, 1H minor), 2.48-2.53 (m, 1H major), 2.83 (br s, exchanges with D$_2$O, 1H major + 1H minor), 3.81-3.85 (m, 1H minor), 3.87-3.91 (m, 1H major), 3.98-4.02 (m, 1H minor), 4.03-4.07 (m, 1H major), 4.75 (s, 1H minor), 4.78 (s, 1H major), 6.95-6.98 (m, 2H major + 2H minor), 7.1-7.30 (m, 7H major + 7H minor). 13C-NMR (151 MHz; CDCl$_3$): δ 25.4, 25.9, 30.4, 34.9, 67.8, 68.3, 78.8, 78.9, 89.4, 90.0, 126.4, 126.7, 126.9, 127.5, 127.6, 128.9, 129.1, 133.0, 133.4, 137.5, 138.5, 142.3, 142.4. GC-MS (70 eV) m/z (%): 288 (M$^+$, 2), 270 (1), 147 (100), 15 (51), 77 (23). FT-IR (film, cm$^{-1}$) 3405, 2925, 1492, 1089, 1043, 1014, 829, 701. Anal. Calcd. for C$_{17}$H$_{17}$ClO$_2$: C, 70.71; H, 5.93; Found: C, 70.92; H, 6.11.

2-(2-Phenyltetrahydrofuran-2-yl)propan-2-ol (5h): white solid, 70%, mp 61-62 °C (from Et$_2$O), 1H-NMR (600 MHz; CDCl$_3$): δ 1.03 (s, 3H), 1.24 (s, 3H), 1.71-1.64 (m, 1H), 1.89-1.95 (m, 1H), 2.22-2.26 (m, 1H), 2.47-2.53 (m, 1H), 2.54 (br s, exchanges with D$_2$O, 1H), 3.80-3.84 (m, 1H), 3.97-4.00 (m, 1H), 7.24-7.27 (m, 1H), 7.31-7.34 (m, 2H), 7.46-7.47 (m, 2H). 13C-NMR (151 MHz; CDCl$_3$): δ 24.7, 25.8, 26.1, 32.4, 67.6, 73.9, 92.1, 126.8, 126.9, 127.6, 143.2. GC-MS (70 eV) m/z (%): 206 (M$^+$, 2), 191 (12), 147 (100), 148 (34), 105 (53), 77 (17); FT-IR (film, cm$^{-1}$) 3467, 2969, 1442, 1364, 1178, 1045, 758, 702. Anal. Calcd. for C$_{13}$H$_{18}$O$_2$: C, 75.69; H, 8.80; Found: C, 75.91; H, 9.02.

1-(2-Phenyltetrahydrofuran-2-yl)ethanol (5i): Inseparable mixture of diastereomers, colorless oil, 80 % overall yield (dr 60/40). 1H-NMR (400 MHz; CDCl$_3$): δ 0.91 (d, J = 6.5 Hz, 3H minor), 1.02 (d, J = 6.4 Hz, 3H major), 1.70-1.79 (m, 1H major + 1H minor), 1.87-1.97 (m, 1H major + 1H minor), 2.07-2.13 (m, 1H minor), 2.18-2.30 (m, 1H major + 1H minor), 2.38-2.45 (m, 1H major), 3.69-3.75 (m, 1H major), 3.79-4.01 (m, 2H major + 3H minor), 7.25-7.18 (m,
1H major + 1H minor), 7.32-7.28 (m, 2H major + 4H minor), 7.42-7.40 (m, 2H major). 13C-NMR (101 MHz; CDCl3): δ 17.1, 18.5, 25.6, 26.0, 29.8, 35.2, 67.4, 68.3, 72.7, 72.8, 89.3, 90.0, 125.7, 126.4, 126.6, 127.1, 128.0, 143.1, 144.0. GC-MS (70 eV) m/z (%): 192 (M+, 2), 147 (100), 105 (62), 77 (22). FT-IR (film, cm⁻¹) 2976, 2874, 1446, 1056, 760, 703. Anal. Calcd. for C12H16O2: C, 74.97; H, 8.39; Found: C, 75.12; H, 8.42.

2-Phenyltetrahydrofuran-2-carbaldehyde (5j): colorless oil, 90%. 1H-NMR (600 MHz; CDCl3): δ 2.05-1.91 (m, 3H), 2.78 (td, J = 9.9, 4.6 Hz, 1H), 4.12-4.05 (m, 2H), 7.33-7.30 (m, 1H), 7.40-7.37 (m, 2H), 7.45-7.43 (m, 2H), 9.53 (s, 1H). 13C-NMR (151 MHz; CDCl3): δ 25.9, 33.5, 69.0, 90.8, 125.7, 127.9, 128.6, 138.6, 199.5. GC-MS (70 eV) m/z (%): 176 (M+, 3), 147 (100), 105 (94), 77 (33). FT-IR (film, cm⁻¹) 3059, 2954, 1731, 1448, 1060, 7600, 701. Anal. Calcd. for C11H12O2: C, 74.98; H, 6.86; Found: C, 75.15; H, 7.08.

Diphenyl(2-phenyltetrahydrofuran-2-yl)phosphine (5k): colorless oil, 65 % yield. 1H-NMR (400 MHz; CDCl3): δ 1.41-1.49 (m, 1H), 1.58-1.66 (m, 1H), 2.33-2.41 (m, 1H), 2.52-2.63 (m, 1H), 3.62-3.68 (m, 1H), 3.95-4.01 (m, 1H), 7.14-7.23 (m, 5H), 7.41-7.51 (m, 6H), 7.70-7.75 (m, 2H), 8.05-8.10 (m, 2H). 13C-NMR (101 MHz; CDCl3): δ 25.0 (d, J = 5.1 Hz), 36.8 (d, J = 3.9 Hz), 69.7 (d, J = 6.7 Hz), 86.8 (d, J = 90.8 Hz), 126.3 (d, J = 3.0 Hz), 127.0 (d, J = 2.2 Hz), 127.6, 127.7, 128.1 (d, J = 10.9 Hz), 130.2 (br s), 131.2 (d, J = 2.4 Hz), 131.6 (d, J = 2.5 Hz), 131.8 (d, J = 8.6 Hz), 133.0 (d, J = 7.9 Hz), 141.0 (d, J = 6.6 Hz). GC-MS (70 eV) m/z (%): 332 (M+, 2), 105 (75), 77 (50). FT-IR (film, cm⁻¹) 3058, 2874, 1438, 1274, 1180, 1115, 756, 722. Anal. Calcd. for C22H21OP: C, 79.50; H, 6.37; Found: C, 79.72; H, 6.51.
3. 1H and 13C NMR spectra