Supplementary Information for

A novel approach towards white photoluminescence and electroluminescence by controllably protonating a blue fluorophore

* Dong Liu, Zhenyu Zhang, Hongyu Zhang and Yue Wang

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China. Email: hongyuzhang@jlu.edu.cn
Experimental section

General information

All solvents and materials were used as received from commercial suppliers without further purification. 1H NMR spectra were measured on Varian Mercury 300 MHz spectrometer with tetramethylsilane as the internal standard. Mass spectra were recorded on a Shimadzu AXIMA-CFR MALDITOF mass spectrometer. Elemental analyses were performed on a flash EA 1112 spectrometer. UV-vis absorption spectra were recorded by a Shimadzu UV-2550 spectrophotometer. The emission spectra were recorded by a Shimadzu RF-5301 PC spectrometer. The absolute fluorescence quantum yields of films were measured on Edinburgh FLS920 steady state fluorimeter. The single crystal of 1 (CCDC: 937726) suitable for X-ray structural analysis was obtained by vacuum sublimation. Diffraction data were collected on a Rigaku RAXIS-PRID diffractometer using the ω-scan mode with graphite-monochromator Mo·Kα radiation. The structure was solved with direct methods using the SHELXTL programs and refined with full-matrix least-squares on F^2. Non-hydrogen atoms were refined anisotropically. The positions of hydrogen atoms were calculated and refined isotropically.

Device fabrication and measurement

Before device fabrication, the ITO glass substrates were pre-cleaned carefully and treated by UV/O$_3$ for 2 min. Then the sample was transferred to the deposition system. The devices were prepared in vacuum at a pressure of 5×10^{-6} Torr. The hole-transporting material NPB and exciton blocking material TCTA were commercially available and thermally evaporated at a rate of 1.0 Å s$^{-1}$. **Before device fabrication, compounds 1 and 2 are purified by the train sublimation method.** After the organic film deposition, 1 nm of LiF and 100 nm of aluminum were thermally evaporated onto the organic surface. The thicknesses of
the organic materials and the cathode layers were controlled using a quartz crystal thickness monitor. The electrical characteristics of the devices were measured with a Keithley 2400 source meter. The EL spectra and luminance of the devices were obtained on a PR650 spectrometer. All measurements were carried out at room temperature under ambient conditions.

Synthesis of 2-(4-bromophenyl)-4-phenylquinazoline

A 500 mL three neck flask was charged with 2.4 g (100 mmol) of magnesium and 100 mL of dried tetrahydrofuran, and 100 mL of a tetrahydrofuran solution of 17.2 g (110 mmol) of 1-bromobenzene was added thereto to prepare a Grignard reagent. A dried tetrahydrofuran 50 mL solution of 5.91 g (50 mmol) of 2-cyanoaniline was dropwise added in 30 minutes to the above solution heated on an oil bath of 45 °C. The solution was further heated for 1.5 hour to carry out reaction and then cooled down to 0 °C in an ice and water bath. Next, a dried ether 100 mL solution of 13.2 g (60 mmol) of 4-bromobenzoic chloride was dropwise added thereto in 10 minutes, and the solution was heated on an oil bath of 45 °C for another 2 hours. After finishing the reaction, the solution was cooled down to 0 °C in an ice and water bath, and a saturated ammonium chloride aqueous solution was added thereto. The deposit was filtered, washed with a small amount of methanol and then dried under vacuum to obtain 2-(4-bromophenyl)-4-phenylquinazoline (yield: 50 %).

Synthesis of 9-(4-(4-phenylquinazolin-2-yl)phenyl)-9H-carbazole (1)

Under the nitrogen atmosphere, Pd(OAc)$_2$ (25 mg) and P(tBu)$_3$ (0.1 mL) was added to the mixture of 2-(4-bromophenyl)-4-phenylquinazoline (180 mg, 0.5 mmol), carbazole (100 mg, 0.6 mmol), KOtBu (168 mg, 1.5 mmol), and xylene (25 mL), then refluxed for 4 h. After cooling and removal of the solvent, the residue was purified by column chromatography on silica gel using dichloromethane as the eluent to give the product 9-(4-(4-phenylquinazolin-2-yl)phenyl)-9H-carbazole (1). Yield: 156 mg, 70%. 1H NMR
(300 MHz; CDCl₃): δ 8.93 (d, J = 8.4 Hz, 2 H), 8.27 (d, J = 8.7 Hz, 1 H), 8.18 (m, 3 H), 7.91–7.98 (m, 3 H), 7.74–7.78 (m, 2 H), 7.59–7.66 (m, 4 H), 7.54 (d, J = 8.4 Hz, 2 H), 7.41–7.47 (m, 2 H), 7.28–7.34 (m, 2 H).

1 + TFA: δ 8.90 (d, J = 8.1 Hz, 2 H), 8.58 (d, J = 8.4 Hz, 1 H), 8.33 (d, J = 8.1 Hz, 1 H), 8.14–8.17 (m, 3 H), 7.97–8.02 (d, J = 7.2 Hz, 2 H), 7.88 (d, J = 7.5 Hz, 2 H), 7.82 (t, J = 7.5 Hz, 1 H) 7.67–7.75 (m, 3 H), 7.58 (d, J = 8.1 Hz, 2 H), 7.46 (t, J = 7.5 Hz, 2 H), 7.34 (t, J = 6.9 Hz, 2 H). Ms m/z: 447.43 [M]+ (calcd: 447.53). Anal. Calcd (%) for C₃₂H₂₁N₃: C, 85.88; H, 4.73; N, 9.39. Found: C, 85.99; H, 4.61; N, 9.33.

Synthesis of 9-(4-(4-phenylquinazolin-2-yl)phenyl)-9H-diphenylamine (2)

The compound 2 was prepared according to the same procedure as the compound 1 but using diphenylamine instead of carbazole. Yield: 167 mg, 75%. ¹H NMR (300 MHz; CDCl₃): δ 8.54 (d, J = 7.8 Hz, 2 H), 8.12 (d, J = 8.7 Hz, 2 H), 7.85–7.89 (m, 3 H), 7.75–7.60 (m, 3 H), 7.50–7.55 (m, 1 H), 7.25–7.31 (m, 4 H), 7.18 (d, J = 8.7 Hz, 6 H), 7.05–7.10 (m, 2 H). 2 + TFA: δ 8.33 (d, J = 8.1 Hz, 2 H), 8.28 (d, J = 8.4 Hz, 1 H), 8.12–8.18 (m, 2 H), 7.94 (d, J = 8.4 Hz, 2 H), 7.73–7.81 (m, 2 H), 7.65–7.70 (m, 2 H), 7.39–7.44 (t, J = 7.5 Hz, 4 H), 7.24–7.29 (t, J = 7.5 Hz, 6 H), 7.06 (d, J = 8.7 Hz, 2 H). Ms m/z: 449.10 [M]+ (calcd: 449.19). Anal. Calcd (%) for C₃₂H₂₃N₃: C, 85.50; H, 5.16; N, 9.35. Found: C, 85.67; H, 5.02; N, 9.25.
Scheme S1. The synthetic route for compounds of 1 and 2.

\[
\text{CN} \quad \text{NH}_2 \\
\text{i) phenylmagnesium bromide} \\
\text{ii) 4-bromobenzoyl chloride} \\
\text{THF, 45 °C} \\
\text{carbazole for 1} \\
\text{diphenylamine for 2} \\
Pd(OAc)$_2$; P(tBu)$_3$ \\
KO/tBu \\
xylene, reflux
\]
Fig. S1 Absorption and fluorescence spectra of 1 (a) and 2 (b) in different solutions
Fig. S2 Twist angles between aromatic units and a spacefill image of geometrical configuration showing the free space of N1 and N2 atoms.
Fig. S3 Abs and PL spectra of 1 (a) and 2 (b) before and after adding TFA.
Fig. S4 Absorption and emission spectra of neat and doped (1wt%) films (a) and emission spectra of 1wt% doped film excited at different wavelength (b).
Fig. S5 PL spectra of 2 with different CSA concentrations in thin films.
Fig. S6 EL spectra of devices employing 1 (a) or 2 (b) as an emitting material.
Fig. S7 EL spectra (a) and photographic images (b) of WOLEDs based on 1 under different driving voltages.
Fig. S8 External electroluminescence quantum efficiency as a function of current density (a) and the current density – voltage – luminance characteristics (b) of the white OLEDs based on 1 and 2.
Fig. S9 NMR chart of CSA before and after vacuum sublimation.