Figure S1. CID spectrum of mass-selected M/z 125, putative $[H_2NC_2D_4NH_2-H+CO_2+H_2O]^-$ from a solution containing 1,2-diamino-1,1,2,2-d_4-ethane and NaHCO$_3$. For the CID spectrum of the carbamate derivative of 1,2-diaminoethane, see Ref. 7. Collision energy = 1 V; cone voltage = 24 V; desolvation gas flow = 600 L/hr.
Figure S2. CID spectrum of mass-selected M/z 148 (putative bis(2-hydroxyethyl)carbamate) from a solution containing diethanolamine and NaHCO₃. M/z 74/72 and M/z 56/54 probably arise from losses of CH₂O from M/z 104/102 and M/z 86/84, respectively. Note there are no peaks at M/z 61, 104, 122 (seen in CID spectrum of [amine-H+CO₂+H₂O]⁻, amine = diethanolamine, M/z 166). Collision energy = 10 V; cone voltage = 23 V; desolvation gas flow = 650 L/hr. For further information, see the text and Ref. 7.
Figure S3. CID spectrum of mass-selected M/z 205 [(d_{12}-3)-H+CO_{2}]^{-} from a solution containing tris(2-hydroxy-1,1,2,2-d_{4}-ethyl)amine - d_{12}-3 - and Na_{2}^{13}CO_{3}. Only peaks central to the arguments presented in the paper (and critical to positive identification of the parent ion) are assigned. Collision energy = 1 V. For further information, see the text.
Figure S4. CID spectrum of mass-selected M/z 222 [(\textit{d}_{12}-3)-H+CO_2+H_2O]^- from a solution containing tris(2-hydroxy-1,1,2,2-\textit{d}_4-ethyl)amine – \textit{d}_{12}-3 – and NaHCO_3. Only peaks central to the arguments presented in the paper (and critical to positive identification of the parent ion) are assigned. Collision energy = 1 V. For further information, see the text.