Photocatalytic reforming of glucose under visible light over morphology controlled Cu$_2$O: efficient charge separation by crystal facet engineering

Longzhou Zhang, Jinwen Shi, Maochang Liu, Dengwei Jing* and Liejin Guo

International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China.

*Corresponding Author Information:

International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China.
Email: dwjing@mail.xjtu.edu.cn
Figure S1

Fig. S1. SEM images for Cu$_2$O prepared with different reaction times, (a) 30 min, (b) 60 min, (c) 90 min, and (d) 120 min. All scale bars are 1 µm. The inset in each image is the photo for the corresponding reacting solution.
Figure S2

Fig. S2. Diffuse reflectance spectra for Cu$_2$O prepared with different reaction times.
Fig. S3. The XRD patterns of Cu$_2$O prepared with different reaction times.
Figure S4

Fig. S4. The SEM image for Cu$_2$O prepared in the absence of oxygen. The sample was synthesized at 105 °C for 60 min, and the oxygen dissolved in the solution was evacuated initially. The scale bar is 1 μm.
Fig. S5. Particle size distributions for the four SEM images in Fig. S1. (a) Cu$_2$O prepared for 30 min, (b) 60 min, (c) 90 min, and (d) 120 min.