The cross-selective titanium(III)-catalysed acyloin reaction

Markus Feurer, Georg Frey, Hieu-Trinh Luu, Daniel Kratzert^b and Jan Streuff*^a

^a Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany

^b Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany

Supporting Information

Table of Contents

Materials and Methods	2
Full Reference 15	2
Extended Screening Results for the Cross-Coupling of 1a and 2a	3
Screening Results for the Cross-Coupling of 5a and 2a	3
General Procedure for the Catalytic Intermolecular Acyloin Reaction	4
General Procedure for the Catalytic Intermolecular Imine-Nitrile Coupling	4
Representative Stoichiometric Procedure for Scheme 4	4
Purification and Analytical Data of New Compounds	5
X-ray Analysis of Compound 3a	11
Computational Details	13
Optimized Structures and Data of the Catalytic Cycle in Scheme 5	14
References	26
NMR Spectra of New Compounds	27

Materials and Methods

All reactions have been carried out in flame-dried Schlenk-tubes under argon atmosphere (argon 5.0) using dry solvents unless noticed otherwise. Absolute THF was dried over potassium under argon atmosphere and freshly distilled prior to use. Ethyl Acetate for column chromatography was purchased in technical quality and purified by destillation with a rotary evaporator. Dichloromethane was purchased in p.a. guality from Aldrich. Zinc powder was purchased from Merck and used without further activation. Chlorotrimethylsilane was purchased from Acros and used as received. Triethylamine hydrochloride was purchased from Aldrich and purified by crystallization from chloroform. All other chemicals were purchased from Aldrich and used without further purification. An IKAmag temperature modulator in combination with an oil bath or stainless steel heating block were used to control the reaction temperatures. Thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm) and visualized by UV fluorescence quenching or p-Anisaldehyde staining. In general, Macherey-Nagel Silica gel 60 (particle size 0.04-0.063 mm) was used for flash chromatography. Florisil (60–100 mesh) by Roth was used as described. ¹H and ¹³C NMR spectra were recorded on a Bruker DRX 500 (500 MHz and 125 MHz), a Bruker Avance II 400 (400 MHz and 100 MHz), a Bruker DRX 250 (250 MHz or 62.5 MHz) or a Varian Mercury 300 HFCP (300 MHz, ¹H only) spectrometer and reported to CDCl₃ (δ = 7.26 ppm and δ = 77.00 ppm, respectively) or C_6D_6 (δ = 7.16 ppm and δ = 128.00 ppm, respectively). The following abbreviations were used: s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, br = broad signal, ps = pseudo. IR spectra were recorded on a Perkin Elmer Spectrum 65 FT-IR-spectrometer and are reported in frequency of absorption. Low and high resolution mass analyses were performed by the service department at the Institute for Organic Chemistry and Biochemistry, Freiburg University using a Thermo Finnigan TSQ 700 for electron impact ionization (EI) at 70 eV, 200 °C. High resolution mass analyses (HRMS) were carried out on a Thermo Exactive with Orbitrap-Analyzer using atmospheric pressure chemical ionization (APCI or ESI).

All ketones and nitriles were commercially available and purchased from Sigma-Aldrich. Imine **5a** was synthesized according to a literature procedure.¹ Imine **5b** was synthesized according to a literature procedure.²

Titanocene catalyst **4a** was purchased from AlfaAesar.

Titanocene catalyst **4b** was purchased from AlfaAesar.

Titanocene catalyst **4c** was purchased from AlfaAesar.

Titanocene catalyst 4d was purchased from mcat, Konstanz, Germany (www.mcat.de).

Titanocene catalyst 4e was synthesized following a literature procedure.³

Titanocene catalyst **4f** was synthesized following the same literature procedure starting from 8-phenylmenthol.^{3,4}

Full Reference 15

Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2010**.

Extended Screening Results for the Cross-Coupling of 1a and 2a

Table S1. Selected screening results.^a

^a Conditions: **1a** (0.5 mmol), **2a** (1.5–5 equiv), **4** (10 mol%), zinc (2 equiv), TMSCI (3.0 equiv), Et₃N•HCI (1.3–2.0 equiv), absolute THF (c = 0.2-1M); TBAF (1M in THF) then H₂O. ^b Isolated Yield. ^c Only 1.5 equiv of TMSCI were added. ^d With 1.5 equiv **2a**. ^e With 5 mol% **4b**. ^f With 1.5 equiv **2a**; imidazole (1 equiv) was added, see ref. 12 in the main manuscript.

Screening Results for the Cross-Coupling of 5a and 2a

Table S2. Selected screening results.^a

N C Ph		4a,b (10 mol%) Zn, TMSCI	O BnHN , ↓ ,Ph
Ph Me	'NC Ph	Et ₃ N•HCI THF	Ph Me
5a	2a		6a

Entry	Catalyst	Equiv Et₃N•HCl	T (°C)	с (М)	Yield (%) ^b	
1	4b	2	35	0.4	31	
2	4b	2	35	1.0	34	
3	4a	2	35	1.0	38	
4	4b	2	23	1.0	28	
5	4a	2	23	1.0	49	
6	4b	1.1	35	1.0	49	
7	4b	0.5	35	1.0	77	
8	4a	0.5	35	1.0	76	

^a Conditions: **5a** (0.5 mmol), **2a** (5 equiv), **4** (10 mol%), zinc (2 equiv), TMSCI (3.0 equiv), Et₃N•HCI (0–2 equiv), THF (c = 0.2-2.0M), 24 h; workup: 1N HCI. ^b Isolated Yield.

General Procedure for the Catalytic Intermolecular Acyloin Reaction

A flame-dried and argon-filled 10 ml Schlenk-tube equipped with a magnetic stir bar was charged under argon atmosphere with Et₃N•HCl (137.7 mg, 1.0 mmol, 2 equiv), zinc dust (65.4 mg, 1.0 mmol, 2 equiv) and **4a** (15.3 mg, 0.05 mmol, 10 mol%). The tube was evacuated and back-filled with argon. Absolute, deoxygenated THF (0.5 ml) was added and the mixture was stirred for about one minute to allow for the color to change from red to lime green. At this point nitrile **2** was added (2.5 mmol, 5.0 equiv) and the color of the reaction mixture changed to blue. Ketone **1** (0.5 mmol) was added followed by slow addition of TMSCI (95.2 μ l, 0.75 mmol, 1.5 equiv), which led again to a color change to green. The reaction vessel was sealed and stirred for 48 hours at 35 °C. The reaction was cooled to room temperature. Then, TBAF (2.5 ml, 1M in THF, 5 equiv) was added and the mixture was stirred for 60 minutes. At this time, water (5 ml) was added and the mixture stirred for additional 5 minutes. The reaction mixture was transferred to a separation funnel with dichloromethane. Additional water (20 ml) was added and the aqueous phase extracted with dichloromethane (5 x 15 ml). The combined organic phase was dried (Na₂SO₄), filtered and concentrated under reduced pressure. The crude product was purified by column chromatography using dichloromethane as eluent (unless noted otherwise).

General Procedure for the Catalytic Intermolecular Imine-Nitrile Coupling

A flame-dried and argon-filled 10 ml Schlenk-tube equipped with a magnetic stir bar was charged under argon atmosphere with Et_3N ·HCl (34.4 mg, 0.25 mmol, 0.5 equiv), zinc dust (65.4 mg, 1.0 mmol, 2 equiv) and **4b** (12.5 mg, 0.05 mmol, 10 mol%). The tube was evacuated and back-filled with argon. Absolute, deoxygenated THF (0.5 ml) was added and the mixture was stirred for about one minute to allow for the color to change from red to lime green. At this point nitrile **2** was added (2.5 mmol, 5.0 equiv) and the color of the reaction mixture changed to blue. Imine **5** (0.5 mmol) was added followed by slow addition of TMSCI (190.8 μ l, 1.50 mmol, 3.0 equiv). The reaction vessel was sealed and stirred for 48 hours at 35 °C. After the reaction was cooled to room temperature, the mixture was transferred with 3–5 ml CH₂Cl₂ to a separating funnel containing ice-cold aq. 1M HCI (20 ml) and ice-cold aq. 1M HCI (20 ml each) and the aqueous phases were collected and carefully neutralized (pH 8) with sat. aqueous NaHCO₃ solution. The aqueous phase (total volume about 300 ml) was extracted with CH₂Cl₂ (3 x 30 ml) and the CH₂Cl₂-phase was dried (Na₂SO₄), filtered and concentrated. The crude product was purified by column chromatography as described.

Representative Stoichiometric Procedure for Scheme 4

A flame-dried and argon-filled 10 ml Schlenk-tube equipped with a magnetic stir bar was charged under argon atmosphere with **4b** (50 mg, 1 equiv), zinc powder (65 mg, 5 equiv) and Et₃N•HCl (55 mg, 2 equiv). Absolute THF (1 mL) was added and the reaction stirred until the color had changed to green. Then benzyl cyanide and acetophenone were added in the way described in the manuscript text. The reactions were stirred overnight (14 h) and quenched by addition of sat. aq. NH₄Cl solution (5 ml). The mixture was transferred to a separation funnel, water (10 ml) was added and the aqueous layer extracted with dichloromethane (3 x 15 ml). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated to give the crude product, which was analyzed by NMR. Flash chromatography gave the desired product and the pinacol products⁵ (elute with 10:1 CH₂Cl₂:EtOAc) in the reported yields.

Purification and Analytical Data of New Compounds

Ph Мe Ph 3a

3-hydroxy-1,3-diphenylbutane-2-one. This compound was previously isolated and characterized by ¹H and ¹³C NMR.⁶ Synthesized according to the general procedure with 10 mol% (EtCp)₂TiCl₂ and 24 h reaction time. After extraction, the product was purified by flash chromatography (CH₂Cl₂, R_f = 0.18) and isolated in 81% yield. The analytical data matched the literature data. ¹H NMR (400.1 MHz, CDCl₃/TMS): δ = 1.72 (s, 3H), 3.58 (s, 2H), 4.30 (s, 1H, OH), 6.83-6.85 (m, 2H), 7.08-7.16 (m, 3H), 7.21-7.32 (m, 3H), 7.35-7.39 (m, 2H). ¹³C NMR (100.6 MHz, CDCl₃/TMS): δ = 24.42, 42.56, 80.52, 126.48, 128.20, 128.50, 128.71, 129.06, 129.62, 134.01, 141.33, 203.39. MS (EI, 70 eV): m/z (%) = 240.2 [M]⁺ (1), 122.1 (8), 121.1 (100.00), 91.1 (8), 43.2 (23). HRMS (APCI, MeOH/NH₄) calcd for C₁₆H₂₀NO₂⁺ [M+NH₄]⁺: 258.14940, found: 258.14930. IR (NaCl): ν [cm⁻¹] = 3087, 3062, 3030, 2980, 2933, 1955, 1885, 1809, 1714, 1601, 1584, 1496, 1447, 1404, 1370, 1329, 1315, 1221, 1161, 1118, 1104, 1069, 1035, 1002, 940, 915, 825, 759, 724, 698.

3-hydroxy-1-(4-methoxyphenyl)-3-phenylbutan-2-one. Synthesized according to the general procedure. After extraction, the product was purified by flash chromatography (CH₂Cl₂, R_f = 0.2) and isolated in 85% yield as colorless oil. ¹H NMR (400.1 MHz, CDCl₃): δ = 1.82 (s, 3H), 3.62 (s, 2H), 3.76 (s, 3H), 4.41 (br. s, 1H, OH), 6.75-6.87 (m, 4H), 7.32-7.42 (m, 3H), 7.44-7.48 (m, 2H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 24.12, 41.44, 55.29, 80.20, 113.99, 125.73, 126.31, 128.29, 128.85, 130.39, 141.16, 158.67, 209.59. MS (EI, 70 eV): m/z (%) = 270.1 [M]⁺ (1), 150.0 (23), 122.1 (66), 121.0 (100), 105 (4), 91.1 (5), 77.1 (8), 43.6 (27). HRMS (APCI, MeOH): calcd for C₁₇H₁₇O₃⁻ [M-H]⁻: 269.11777, found: 269.11790. HRMS (APCI, MeOH): calcd for C₁₇H₁₈O₃Cl⁻ [M+Cl]⁻: 305.09445, found: 305.09450. IR (NaCl): v [cm⁻¹] = 3464, 3060, 3032, 2997, 2935, 2909, 2836, 1713, 1612, 1585, 1513, 1493, 1447, 1422, 1403, 1370, 1325, 1301, 1248, 1178, 1106, 1068, 1035, 941, 915, 861, 821, 789, 758, 701.

1-(4-chlorophenyl)-3-hydroxy-3-phenylbutan-2-one. Synthesized according to the general procedure. After extraction, the product was purified by flash chromatography (CH₂Cl₂, R_f = 0.4) and isolated in 79% yield as colorless oil. ¹H NMR (400.1 MHz, CDCl₃): δ = 1.82 (s, 3H), 3.65 (d, *J* = 2.3 Hz, 2H), 4.27 (br. s, 1H, OH), 6.82-6.87 (m, 2H), 7.17-7.22 (m, 2H), 7.32-7.47 (m, 5H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 24.18, 41.62, 80.31, 126.18, 128.38, 128.60, 128.89, 130.73, 132.23, 132.98, 140.90, 208.72. MS (EI, 70 eV): m/z (%) = 231.1 [M-CH₃CO]⁺ (6), 169.1 (7), 139.0 (7), 121.1 (100), 105.1 (17), 43.2 (25). HRMS (APCI, MeOH): calcd for C₁₆H₁₄O₂Cl⁻ [M-H]⁻: 273.06823, found: 273.06840. HRMS (APCI, MeOH): calcd for C₁₆H₁₅O₂Cl₂⁻ [M+Cl]⁻: 309.04491, found: 309.04510. IR (NaCl): ν [cm⁻¹] = 3458, 3060, 2980, 2933, 1714, 1599, 1492, 1446, 1409, 1370, 1321, 1270, 1220, 1152, 1118, 1092, 1069, 1033, 1016, 938, 915, 830, 805, 776, 755, 701, 672.

1-(4-fluorophenyl)-3-hydroxy-3-phenylbutan-2-one. Synthesized according to the general procedure. After extraction, the product was purified by flash chromatography (CH_2Cl_2 , $R_f = 0.26$) and

isolated in 79% yield as colorless oil. ¹H NMR (400.1 MHz, CDCl₃): δ = 1.82 (s, 3H), 3.66 (s, 2H), 4.29 (br. s, 1H, OH), 6.85-6.95 (m, 4H), 7.32-7.48 (m, 5H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 24.18, 41.44, 80.27, 115.35 (d, *J* = 23 Hz), 126.22, 128.37, 128.89, 129.45 (d, *J* = 4 Hz), 130.91 (d, *J* = 8 Hz), 140.98, 162.20 (d, *J* = 248 Hz), 209.04. ¹⁹F NMR (235.3 MHz, CDCl₃): δ = -115.65- -115.85 (m, 1F). MS (EI, 70 eV): m/z (%) = 215.0 [M-CH₃CO]⁺ (3), 122.1 (9), 121.1 (100), 109.0 (14), 105.0 (6), 43.2 (19). HRMS (APCI, MeOH): calcd for C₁₆H₁₄O₂F⁻ [M-H]⁻: 257.09778, found: 257.09810. IR (NaCl): *v* [cm⁻¹] = 3463, 3060, 2981, 2933, 1714, 1601, 1510, 1494, 1447, 1418, 1322, 1222, 1158, 1118, 1095, 1069, 1033, 915, 864, 845, 825, 790, 759, 740, 701.

3-hydroxy-1,1,3-triphenylbutan-2-one. Synthesized according to the general procedure. After the addition of TBAF, HCl (1 M, 4 mL) was added instead of water and the reactionmixture was stirred for 10 min. After extraction, the product was purified by flash chromatography (CH₂Cl₂, R_f = 0.6) and isolated in 80% yield as colorless oil. ¹H NMR (400.1 MHz, CDCl₃/TMS): δ = 1.61 (s, 3H), 4.23 (s, 1H), 5.29 (s, 1H, OH), 6.67-6.72 (m, 2H), 7.00-7.05 (m, 3H), 7.06-7.30 (m, 8H), 7.32-7.38 (m, 2H). ¹³C NMR (100.6 MHz, CDCl₃/TMS): δ = 24.65, 57.16, 81.35, 126.62, 126.98, 127.29, 127.66, 128.61, 128.65, 128.84, 128.96, 129.10, 138.44, 138.97, 140.73, 209.90. MS (EI, 70 eV): m/z (%) = 316.3 [M]⁺ (1), 168.1 (15), 167.1 (21), 166.1 (7), 165.1 (20), 152.1 (7), 122.1 (9), 121.1 (100.00), 105.0 (10), 43.2 (18). HRMS (APCI, MeOH/NH₄) calcd for C₂₂H₁₉O₂⁻ [M-H]⁻: 315.13850, found: 315.13870. IR (NaCl): ν [cm⁻¹] = 3087, 3062, 3028, 3003, 2981, 2934, 1954, 1886, 1808, 1713, 1599, 1584, 1495, 1449, 1372, 1343, 1302, 1279, 1219, 1186, 1176, 1158, 1117, 1102, 1068, 1037, 1002, 934, 911, 877, 865, 768, 735, 698.

2-Hydroxy-1,2-diphenylpropan-1-one. This compound is literature-known.⁷ Synthesized according to the general procedure. After extraction, the product was purified by flash chromatography (CH₂Cl₂, $R_f = 0.38$) and isolated in 46% yield as colorless oil. ¹H NMR (300.1 MHz, CDCl₃/TMS): $\delta = 1.90$ (s, 3H), 4.71 (s, 1H, OH), 7.26-7.48 (m, 8H), 7.66-7.72 (m, 2H).

2-hydroxy-2-phenylhexan-3-one. Synthesized according to the general procedure. After extraction, the product was purified by flash chromatography (CH₂Cl₂, R_f = 0.43) and isolated in 66% yield as colorless oil. ¹H NMR (400.1 MHz, CDCl₃): δ = 0.75 (t, *J* = 7.4 Hz, 3H), 1.40-1.61 (m, 2H), 1.77 (s, 3H), 2.24-2.32 (dddd, *J* = 6.8, 6.8, 6.8, 6.4 Hz, 1H), 2.38-2.46 (dddd, *J* = 6.4, 6.4, 6.4, 6.4 Hz, 1H), 4.63 (s, 1H), 7.28-7.32 (m, 1H), 7.34-7.39 (m, 2H), 7.41-7.44 (m, 2H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 13.58, 17.53, 24.13, 37.55, 79.84, 126.21, 128.10, 128.74, 144.65, 212.00.MS (EI, 70 eV): m/z (%) = 121.1 [M-C_4H_7O]⁺ (100), 105.0 (5), 91.1 (3), 77.1 (5), 43.6 (20). HRMS (APCI, MeOH/NH₄) calcd. for C₁₂H₂₀NO₂⁺ [M+NH₄]⁺: 210.14940, found: 210.14930. IR (NaCl): ν [cm⁻¹] = 3459, 3088, 3061, 3028, 2965, 2935, 2904, 2876, 1956, 1884, 1811, 1708, 1601, 1584, 1494, 1447, 1405, 1369. 1356, 1288, 1266, 1228, 1215, 1161, 1129, 1069, 1028, 931, 915, 896, 843, 761, 700.

1-cyclopropyl-2-hydroxy-2-phenylpropan-1-one. Synthesized according to the general procedure. After extraction, the product was purified by flash chromatography (CH₂Cl₂, R_f = 0.23) and isolated in 67% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 0.75-0.82 (m, 1H), 0.94-1.09 (m, 3H), 1.85

(s, 3H), 1.89-1.96 (m, 1H), 4.68 (s, 1H), 7.28-7.33 (m, 1H), 7.35-7.40 (m, 2H), 7.44-7.47 (m, 2H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 12.15, 13.15, 16.25, 24.37, 79.95, 126.41, 128.07, 128.71, 141.79, 212.20. MS (EI, 70 eV): m/z (%) = 121.0 [M-C₄H₅O]⁺ (100), 105.0 (5), 77.1 (5), 43.6 (31). HRMS (APCI, MeOH) calcd. for C₁₂H₁₅O₂⁺ [M–H]⁺: 191.10720, found: 191.10700. IR (NaCl): ν [cm⁻¹] = 3453, 3088, 3061, 3008, 2980, 2934, 2875, 1956, 1886, 1811, 1692, 1601, 1494, 1447, 1420, 1377, 1361, 1222, 1195, 1176, 1119, 1102, 1069, 1048, 1028, 1015, 935, 915, 871, 837, 818, 795, 773, 736, 715, 699.

3-hydroxy-1,3-diphenylpentan-2-one. Synthesized according to the general procedure. After extraction, the product was purified by flash chromatography (CH₂Cl₂, R_f = 0.55) and isolated in 74% yield as yellow oil. ¹H NMR (400.1 MHz, CDCl₃): δ = 0.93 (t, *J* = 7.4 Hz, 3H), 2.22-2.39 (m, 2H), 3.68 (d, *J* = 7.2 Hz, 2H), 4.37 (br. s, 1H, OH), 6.90-6.95 (m, 2H), 7.18-7.27 (m, 3H), 7.32-7.37 (m, 1H), 7.38-7.43 (m, 2H), 7.48-7.53 (m, 2H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 7.63, 29.20, 42.42, 83.21, 126.61, 127.05, 128.18, 128.49, 128.83, 129.49, 133.63, 140.47, 209.13. MS (EI, 70 eV): m/z (%) = 254.1 [M]⁺ (1), 197.0 [M-CH₃CH₂CO]⁺ (4), 136.1 (9), 135.1 (100), 105.0 (7), 91.1 (12), 77.3 (6), 57.3 (25). HRMS (APCI, MeOH): calcd for C₁₇H₂₄O₂Cl⁻ [M+CI]⁻: 289.09953, found: 289.09940. IR (NaCI): *v* [cm⁻¹] = 3468, 3087, 3062, 3029, 2970, 2937, 2879, 1711, 1601, 1496, 1454, 1448, 1382, 1313, 1270, 1154, 1120, 1051, 1031, 986, 915, 785, 757, 722, 697.

3-hydroxy-3-(4-methoxyphenyl)-1-phenylbutan-2-one. Synthesized according to the general procedure. After extraction, the product was purified by flash chromatography (CH₂Cl₂, R_f = 0.2) and isolated in 74% yield as colorless oil. ¹H NMR (400.1 MHz, CDCl₃): δ = 1.81 (s, 3H), 3.67 (s, 2H), 3.83 (s, 3H), 4.38 (br. s, 1H, OH), 6.90-6.98 (m, 4H), 7.18-7.28 (m, 3H), 7.37 (m_c, 2H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 24.16, 42.28, 55.44, 79.86, 114.22, 127.04, 127.62, 128.52, 129.41, 133.16, 133.87, 159.61, 209.40. MS (EI, 70 eV): m/z (%) = 270.3 [M]⁺ (1), 151.1 [M-C₈H₇O]⁺ (100), 135.0 (9), 133.1 (6), 91.1 (6), 43.6 (19). HRMS (APCI, MeOH): calcd for C₁₇H₁₇O₃⁻ [M-H]⁻: 269.11777, found: 269.11770. HRMS (APCI, MeOH): calcd for C₁₇H₁₈O₃Cl⁻ [M+Cl]⁻: 305.09445, found: 305.09440. IR (NaCl): ν [cm⁻¹] = 3463, 3063, 3029, 2934, 2837, 1713, 1609, 1583, 1511, 1497, 1454, 1413, 1369, 1302, 1252, 1180, 1125, 1093, 1077, 1033, 932, 837, 795, 723, 696.

3-hydroxy-1-phenyl-3-(*p***-tolyl)butan-2-one.** Synthesized according to the general procedure. After extraction, the product was purified by flash chromatography (CH₂Cl₂, R_f = 0.27) and isolated as a colorless oil in 61% yield. ¹H NMR (400 MHz, CDCl₃) δ = 1.83 (s, 3H), 2.40 (s, 3H), 3.70 (s, 2H), 4.39 (br s, 1H), 6.97-6.99 (m, 2H), 7.21-7.28 (m, 5H), 7.35-7.38 (m, 2H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 21.20, 24.20, 42.34, 80.16, 126.22, 1247.05, 128.53, 129.46, 129.58, 133.90, 138.14, 138.20, 209.39. MS (EI, 70 eV): m/z (%) = 254.3 [M]⁺ (1), 211.0 (4), 135.1 (100), 119.0 (6), 91.1 (12), 43.6 (31). HRMS (APCI, MeOH) calcd. for C₁₇H₁₈O₂C⁻I [M+CI]⁻: 289.09953, found: 289.09860. IR (NaCI): ν [cm⁻¹] = 3466, 3088, 3063, 3029, 2979, 2924, 1911, 1714, 1603, 1511, 1497, 1454, 1406, 1369, 1329, 1314, 1211, 1187, 1154, 1109, 1096, 1077, 1066, 1035, 1019, 1002, 935, 834, 817, 750, 723, 696.

3-(4-chlorophenyl)-3-hydroxy-1-phenylbutan-2-one. Synthesized according to the general procedure. After extraction, the product was purified by flash chromatography (CH₂Cl₂, R_f = 0.28) and isolated as a pale yellow powder in 58% yield. ¹H NMR (400 MHz, CDCl₃) δ = 1.81 (s, 3H), 3.68 (d, *J* = 16.0 Hz, 2H), 4.33 (s, 1H), 6.95-6.97 (dd, *J* = 7.6, 2.0 Hz, 2H), 7.21-7.28 (m, 3H), 7.35-7.43 (m, 4 H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 24.43, 42.45, 80.01, 127.22, 127.82, 128.65, 129.03, 129.38, 133.51, 134.42, 139.78, 208.79. MS (EI, 70 eV): m/z (%) = 274.7 [M]⁺ (1), 155.0 (100), 119.0 (5), 91.0 (10), 43.6 (24). HRMS (APCI, MeOH) calcd. for C₁₆H₁₅O₂Cl₂⁻ [M+Cl]⁻: 309.04491, found: 309.04380. IR (NaCl): *v* [cm⁻¹] = 3461, 3088, 3064, 3030, 2981, 2934, 1949, 1908, 1716, 1600, 1586, 1495, 1454, 1400, 1371, 1329, 1220, 1155, 1121, 1094, 1034, 1013, 1003, 966, 936, 838, 817, 769, 734, 721, 700.

3-(4-bromophenyl)-3-hydroxy-1-phenylbutan-2-one. Synthesized according to the general procedure. After extraction, the product was purified by flash chromatography (CH₂Cl₂, R_f = 0.27) and isolated as a pale yellow powder in 68% yield. ¹H NMR (400 MHz, CDCl₃) δ = 1.80 (s, 3H), 3.68 (d, *J* = 16.0 Hz, 2H), 4.31 (s, 1H), 6.94-6.97 (dd, *J* = 7.6, 2.0 Hz, 2H), 7.22-7.28 (m, 3H), 7.32-7.36 (dt, J = 9.1, 2.2 Hz, 2H), 7.50-7.54 (dt, J = 8.7, 2.4 Hz, 2H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 24.41, 42.48, 80.07, 122.63, 127.22, 128.14, 128.66, 129.39, 132.00, 133.48, 140.31, 208.72. MS (EI, 70 eV): m/z (%) = 318.0 [M, ⁷⁹Br]⁺ (1), 200.9 [M-119.1, ⁸¹Br] (94), 189.9 [M-119.1, ⁷⁹Br]⁺ (100), 184.9 (7), 182.9 (8), 135.1 (5), 91.1 (16), 43.6 (39). HRMS (APCI, MeOH) calcd. for C₁₆H₁₅O₂ClBr⁻ [M+Cl]⁻: 352.99439, found: 352.99330. IR (NaCl): *v* [cm⁻¹] = 3458, 3087, 3063, 3030, 2980, 2933, 1907, 1716, 1602, 1589, 1496, 1488, 1454, 1396, 1370, 1329, 1210, 1153, 1120, 1089, 1076, 1034, 1009, 936, 835, 764, 730, 698.

4-(2-hydroxy-3-oxo-4-phenylbutan-2-yl)phenyl acetate. Synthesized according to the general procedure. After quenching with TBAF, 5 mL aqueous HCl (1N) was added. After 1 h further workup (extraction/neutralization) was carried out as described in the general procedure. Purification of the crude mixture via flash chromatography (CH₂Cl₂/ ethyl acetate, 20:1, $R_f = 0.17$) gave **3n** in 74% yield as pale yellow powder. ¹H-NMR (400 MHz, CDCl₃) $\delta = 1.81$ (s, 3H), 2.31 (s, 3H), 3.70 (s, 2H), 4.30 (s, 1H), 6.94-6.97 (m, 2H), 7.11-7.14 (m, 2H) 7.21-7.27 (m, 3H), 7.46-7.49 (m, 2H). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.26$, 24.56, 42.50, 80.11, 121.98, 127.14, 127.55, 128.63, 129.45, 133.69, 138.74, 150.75, 169.31, 209.00. MS (EI, 70 eV): m/z (%) = 298.0 [M]⁺ (1), 179.0 (87), 137.0 (100), 121.0 (8), 91.0 (14), 65.0 (5), 43.1 (22). HRMS (APCI, MeOH) calcd. for C₁₈H₁₉O₄⁺ [M+H]⁺: 299.12833, found: 299.12810. IR (NaCl): ν [cm⁻¹] = 3062, 3029, 2979, 2932, 1756, 1716, 1602, 1504, 1454, 1410, 1370, 1329, 1203, 1169, 1121, 1092, 1077, 1066, 1034, 1016, 913, 825, 723, 697, 680.

3-(benzo[*d*]**[1,3]dioxol-5-yl)-3-hydroxy-1-phenylbutan-2-one.** Synthesized according to the general procedure. After extraction, the product was purified by flash chromatography (CH₂Cl₂, R_f = 0.15) and isolated in 62% yield as colorless oil. ¹H-NMR (400 MHz, CDCl₃) δ = 1.77 (s, 3H), 3.69 (s, 2H), 4.32 (s, 1H), 5.97-5.98 (d, *J* = 1.6 Hz, 2H), 6.82 (d, *J* = 8.4 Hz, 1H), 6.91-7.00 (m, 4H), 7.19-7.28 (m, 3H). ¹³C-

NMR (100.6 MHz, CDCl₃): δ = 24.43, 42.33, 80.05, 101.44, 107.11, 108.44, 119.97, 127.13, 128.59, 129.45, 133.86, 135.24, 147.72, 148.34, 20914. MS (EI, 70 eV): m/z (%) = 284.1 [M]⁺ (1), 165.0 (100), 148.9 (4), 147.0 (3), 117.0 (5), 91.0 (13). HRMS (APCI, MeOH) calcd. for C₁₇H₁₇O₄⁺ [M+H]⁺: 285.11268, found: 285.11260. IR (NaCl): ν [cm⁻¹] = 3063, 3029, 2981, 2900, 1714, 1605, 1504, 1487, 1454, 1436, 1403, 1341, 1244, 1156, 1096, 1076, 1038, 1003, 935, 866, 813, 756, 727, 715, 697, 670, 638, 572.

3-hydroxy-1-phenyl-3-(thiophen-2-yl)butan-2-one. Synthesized according to the general procedure. After extraction, the product was purified by flash chromatography (CH₂Cl₂, R_f = 0.39) and isolated in 61% yield as yellow oil. ¹H NMR (400.1 MHz, CDCl₃): δ = 1.87 (s, 3H), 3.83 (d, *J* = 8.7 Hz, 2H), 4.63 (br. s, 1H, OH), 6.99-7.03 (m, 2H), 7.04 (dd, *J* = 5.1, 3.5 Hz, 1H), 7.11 (dd, *J* = 3.6, 1.2 Hz, 1H), 7.21-7.30 (m, 3H), 7.33 (dd, *J* = 5.1, 1.1 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 25.65, 41.82, 78.76, 125.43, 126.37, 127.17, 127.43, 128.60, 129.40, 133.61, 146.31, 207.76. MS (EI, 70 eV): m/z (%) = 246.0 [M]⁺ (2), 203.0 (13), 135.0 (15), 127.0 (100), 111.0 (12), 91.1 (13), 44.1 (18), 43.2 (25). HRMS (APCI, MeOH): calcd for C₁₄H₁₃O₂S⁻ [M-H]⁻: 245.06363, found: 245.06370. IR (NaCl): *v* [cm⁻¹] = 3456, 3106, 3088, 3064, 3030, 2982, 2932, 1715, 1603, 1497, 1454, 1432, 1403, 1370, 1328, 1239, 1199, 1148, 1102, 1075, 1038, 1023, 1002, 933, 855, 838, 761, 709, 696.

3-(furan-2-yl)-3-hydroxy-1-phenylbutan-2-one. Synthesized according to the general procedure. After extraction, the product was purified by flash chromatography (CH₂Cl₂, R_f = 0.25) and isolated in 68% yield as yellow oil. ¹H NMR (400.1 MHz, CDCl₃): δ = 1.78 (s, 3H), 3.67 (d, *J* = 3.4 Hz, 2H), 4.44 (br. s, 1H, OH), 6.44 (ddd, *J* = 19.6, 3.3, 1.3 Hz, 2H), 7.04-7.08 (m, 2H), 7.22-7.32 (m, 3H), 7.41 (dd, *J* = 1.8, 0.9 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 23.06, 42.53, 76.70, 108.21, 110.90, 127.18, 128.59, 129.46, 133.38, 143.08, 153.94, 207.17. MS (EI, 70 eV): m/z (%) = 230.0 [M]⁺ (2), 202.0 (6), 183.0 (14), 112.0 (13), 111.0 (100), 95.0 (6), 91.0 (16), 43.2 (26). HRMS (APCI, MeOH): calcd for C₁₄H₁₃O₃⁻ [M-H]⁻: 229.08647, found: 229.08650. IR (NaCl): ν [cm⁻¹] = 3465, 3063, 3030, 2986, 2935, 1720, 1603, 1498, 1455, 1331, 1240, 1158, 1107, 1070, 1035, 1014, 946, 922, 884, 822, 729, 697.

3-(benzylamino)-1,3-diphenylbutan-2-one. Synthesized according to the general procedure for the imine-nitrile coupling. After extraction, the product was purified by flash chromatography (CH₂Cl₂,/ethyl acetate = 40:1, R_f = 0.26) and isolated as pale yellow oil in 77% yield. ¹H NMR (400.1 MHz, CDCl₃): δ = 1.79 (s, 3H), 2.36 (br s, 1H), 3.56 (d, *J* = 12.8 Hz, 2H), 3.65 (d, *J* = 16.0 Hz, 2H), 6.94-6.97 (dd, *J* = 7.8, 1.8 Hz, 2H),7.17-7.27 (m, 4H), 7.30-7.37 (m, 5H), 7.39-7.44 (m, 2H), 7.48-7.51 (m, 2H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 21.67, 43.59, 47.44, 69.86, 126.77, 126.88, 127.12, 127.93, 128.25, 128.40, 128.50, 128.98, 129.54, 134.73, 140.16, 144.41, 208.11. MS (EI, 70 eV): m/z (%) = 210.1 [M-C₈H₇O]⁺ (100), 105.0 (11), 91.1 (58), 77.1 (4), 65.1 (4). HRMS (APCI, MeOH) calcd. for C₂₃H₂₄ON⁺ [M+H]⁺: 330.18579, found: 330.18550. IR (NaCl): *v* [cm⁻¹] = 3336, 3086, 3062, 3028, 2984, 2848, 1952, 1881, 1809, 1716, 1602, 1584. 1495, 1453, 1447, 1373, 1310, 1207, 1156, 1075, 1029, 1001, 916, 844, 761, 724, 698.

2-(benzylamino)-1,2-diphenylpropan-1-one. Synthesized according to the general procedure for the imine-nitrile coupling. After extraction, the product was purified by flash chromatography (CH₂Cl₂,/ethyl acetate = 40:1, R_f = 0.29) and isolated as pale yellow powder in 66% yield. ¹H NMR (400.1 MHz, CDCl₃): δ = 1.78 (s, 3H), 2.32 (br s, 1H), 3.56 (d, *J* = 12.0 Hz, 2H), 7.13-7.15 (m, 2H), 7.19-7.34 (m, 6H), 7.37-7.44 (m, 3H), 7.51-7.54 (m, 2H), 7.58-7.61 (m, 2H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 25.07, 47.70, 69.17, 126.01, 127.12, 127.73, 128.29, 128.42, 128.48, 129.08, 129.39, 132.08, 136.43, 140.46, 143.50, 202.93. MS (EI, 70 eV): m/z (%) = 210.1 [M-C₈H₇O]⁺ (100), 105.0 (5), 91.1 (43), 77.1 (3), 65.1 (3). HRMS (APCI, MeOH) calcd. for C₂₂H₂₂ON⁺ [M+H]⁺: 316.17014, found: 316.17090. IR (NaCl): *v* [cm⁻¹] = 3336, 3062, 3027, 2988, 2936, 2843, 1958, 1678, 1597, 1577, 1495, 1446, 1371, 1234, 1181, 1076, 1028, 1002, 985, 964, 848, 760, 714, 700.

2-(benzylamino)-2-phenylhexan-3-one. Synthesized according to the general procedure for the imine-nitrile coupling. After extraction, the product was purified by flash chromatography (CH₂Cl₂,/ethyl acetate = 40:1, R_f = 0.21) and isolated as a colorless oil in 47% yield. ¹H NMR (400.1 MHz, CDCl₃): δ = 0.75 (t, *J* = 7.6 Hz, 3H), 1.42-1.58 (m, 2H), 1.74 (s, 3H), 2.20-2.28 (dddd, *J* = 6.8, 6.8, 6.4, 6.4 Hz, 1H), 2.31-2.39 (dddd, *J* = 6.8, 6.8, 6.4, 6.4 Hz, 1H), 2.42 (br s, 1H), 3.45-3.56 (d, *J* = 12.6 Hz, 2H), 7.22-7.26 (m, 1H), 7.28-7.40 (m, 7H), 7.43-7.46 (m, 2H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 13.74, 17.70, 21.51, 38.95, 47.33, 69.30, 126.82, 127.04, 127.65, 128.27, 128.48, 128.80, 140.85, 141.75, 211.07. MS (EI, 70 eV): m/z (%) = 210.1 [M-C₈H₇O]⁺ (100),104.1 (3), 91.1 (69), 65.2 (3). HRMS (APCI, MeOH) calcd. for C₁₉H₂₄ON⁺ [M+H]⁺: 282.18579, found: 282.18560. IR (NaCl): *v* [cm⁻¹] = 3339, 3086, 3062, 3028, 2964, 2933, 2874, 1951, 1710, 1600, 1494, 1452, 1447, 1373, 1264, 1117, 1073, 1028, 896, 761, 735, 700.

1-(benzylamino)-1,3-diphenylpropan-2-one. Synthesized according to the general procedure for the imine-nitrile coupling. After extraction, the product was purified by flash chromatography (CH₂Cl₂,/ethyl acetate = 40:1, R_f = 0.21) and isolated as yellow powder in 61% yield. ¹H NMR (400.1 MHz, CDCl₃): δ = 2.61 (br s, 1H), 3.56-3.66 (m, 4H), 4.49 (s 1H), 6.99-7.01 (m, 2H), 7.21-7.32 (m, 10H), 7.35-7.41 (m 3H). ¹³C NMR (100.6 MHz, CDCl₃): δ = 46.80, 51.03, 70.67, 127.05, 127.15, 127.15, 128.36, 128.46, 128.50, 128.67, 129.19, 129.57, 133.88, 137.70, 139.80, 206.27. MS (EI, 70 eV): m/z (%) = 196.1 [M-C₈H₇O]⁺ (100), 165.1 (2), 120.0 (3), 105.0 (4), 91.0 (75). HRMS (APCI, MeOH) calcd. for C₂₂H₂₂ON⁺ [M+H]⁺: 316.17014, found: 316.16980. IR (NaCl): *v* [cm⁻¹] = 3086, 3062, 3029, 2920, 1953, 1718, 1645, 1602, 1539, 1495, 1453, 1311, 1074, 1029, 1002, 754, 732, 698.

X-ray Analysis of Compound 3a

Figure S1. Molecular structure of compound **3a**. Anisotropic displacement parameters are depicted at the 50 % probability level.

Crystallographic data for the structure reported in this paper has been deposited with the Cambridge Crystallographic Data Centre (**CCDC 948380**). Copies of the data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

The data for **3a** was collected from shock-cooled crystals at 100 K on a Bruker smart APEX II with INCOATEC mirror optics as radiation monochromator. The diffractometer was equipped with a low-temperature device and used MoK_a radiation, $\lambda = 0.71073$ Å. The data of **3a** was integrated with SAINT,⁸ and an empirical absorption correction (SADABS) was applied.⁹ The structure was solved by direct methods (SHELXT-2013)¹⁰ and refined by full-matrix least-squares methods against F^2 (SHELXL-2013).¹⁰ All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were refined isotropically on calculated positions using a riding model with their $U_{\rm iso}$ values constrained to 1.5 times the $U_{\rm eq}$ of their pivot atoms for terminal sp³ carbon atoms and 1.2 times for all other carbon atoms. The hydrogen atom H1 at O2 was found via difference Fourier analysis and was allowed to refine only with a distance restraint set to 0.84 Å. The $U_{\rm iso}$ value of H1 was also constrained to 1.5 times of its adjacent carbon atom.

CCDC number	948380	
Empirical formula	$C_{16}H_{16}O_2$	
Formula weight	240.29	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	Pc	
Unit cell dimensions	a = 6.4499(11) Å	<i>α</i> =90°.
	b = 13.834(2) Å	β=90.240(3)°.
	c = 7.0464(12) Å	$\gamma = 90^{\circ}$.
Volume	628.74(18) Å ³	
Ζ	2	
Density (calculated)	1.269 Mg/m ³	
Absorption coefficient	0.082 mm ⁻¹	
<i>F</i> (000)	256	
Crystal size	0.556 x 0.328 x 0.173 mm ³	
Theta range for data collection	2.945 to 27.150°.	
Index ranges	-8<=h<=8, -17<=k<=17, -9<=	l<=9
Reflections collected	19964	
Independent reflections	2806 [<i>R</i> (int) = 0.0354]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equivale	nts
Max. and min. transmission	0.7455 and 0.6820	
Refinement method	Full-matrix least-squares on F	2
Data / restraints / parameters	2806 / 3 / 167	
Goodness-of-fit on F^2	1.058	
Final R indices [I > 2sigma(I)]	R1 = 0.0308, w $R2 = 0.0810$	
R indices (all data)	R1 = 0.0318, w $R2 = 0.0817$	
Absolute structure parameter	-0.1(3)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.254 and -0.173 eÅ ⁻³	

Table S3. Crystal data and structure refinement for JS_III_132, 3a.

Computational Details

All structures were fully optimized by using Density Functional Theory (DFT) with the BP86 functional.¹¹ Open-shell systems were treated with the unrestricted formalism (UBP86). Structure optimizations were carried out with the def2-SV(P) basis set.¹² Thermodynamic corrections were calculated at the same level of theory from a harmonic vibrational analysis. Transition states and minimum structures were identified by the presence or absence of one imaginary frequency. In order to obtain accurate energies, single point energy calculations were calculated using the PBE0 (PBE1PBE) functional¹³ and the larger triple- ζ def2-TZVPP basis set.¹⁴ Before, we tested the BP86, B3LYP,¹⁵ PBE0 and M06¹⁶ functionals in benchmark calculations against CCSD(T)/aug-cc-pVTZ and found the PBE0 functional to give the best results. Solvation effects were estimated using the SMD model¹⁷ with the default settings for tetrahydrofuran ($\Sigma = 7.4257$) as solvent and using the def2-SV(P) basis set for H, C, N, O, Cl and a Stuttgart-Dresden core potential (SDD) for Ti and Zn.¹⁸ The combination of the BP86 functional with the def2-SVP basis set was previously found to give reliable results for the structure optimization of titanium complexes.¹⁹ We tested the def2-SV(P), def2-SVP,¹² and def2-TZVP²⁰ basis sets and found that the def2-SV(P) basis set provided sufficient results (Table S4). The Gibbs free Energy for the sublimation of metallic zinc was calculated for T = 298.15K to be $\Delta G = +22.66$ kcal/mol using literature values for the sublimation enthalpy and entropy.²¹ This value was used to calculate the reduction step with zinc in Scheme 5.²² All electronic structure calculations were carried out using the Gaussian 09 suite of programs with the grid=ultrafine option.²³ Avogadro 1.1.0 was used for visualization of the results.²⁴

Table S4. taken from	Geometrica reference 1	al parameters 9.	of titanium complexes	in the gas	phase. Literature	values were
Compd.	Symm.	Parameter	Exp.	def2-SV(P)	def2-SVP	def2-TZVP
			Value ^a			

Compa.	Symm.	Farameter	Exp.	ueiz-3v(P)	ueiz-SVP	
			Value ^a			
TiCl ₄	T _d	Ti-Cl bond length	216.9 pm	218.6 pm	217.7 pm	218.4 pm
TiMeCI ₃	C _{3V}	Ti-C bond length	204.7 pm	204.2 pm	204.0 pm	205.0 pm
		Ti-Cl bond length	218.5 pm	219.7 pm	218.7 pm	219.4 pm
		CI-Ti-C angle	105.6 deg	105.1 deg	105.1 deg	105.5 deg
$TiMe_2Cl_2$	C_{2V}	Ti-C bond length	205.8 pm	205.2 pm	205.0 pm	205.9 pm
		Ti-Cl bond length	219.6 pm	220.9 pm	219.8 pm	220.6 pm
		C-Ti-C angle	102.8 deg	104.9 deg	104.9 deg	105.4 deg
		CI-Ti-CI angle	117.3 deg	117.7 deg	117.7 deg	117.1 deg

^a Determined by gas phase electron diffraction. See ref. 19.

Optimized Structures and Data of the Catalytic Cycle in Scheme 5

All energy values are given in Hartree if not specified otherwise.

A:

Cartesian Coordinates:

С	-2.28580	0.29307	-0.71541	
С	-1.78294	-0.96768	-1.15965	
С	-1.49238	-1.74906	0.00556	
С	-1.78203	-0.95816	1.16456	
Н	-1.67808	-1.29446	-2.20429	
С	-2.28542	0.29884	0.71035	
Н	-2.56313	1.14160	-1.35624	
Н	-2.56234	1.15254	1.34440	
Ti	0.00005	0.09294	-0.00206	
С	1.78930	-0.94445	-1.16807	
С	2.28933	0.30772	-0.69658	
С	1.49331	-1.74836	-0.01971	
С	1.77681	-0.97994	1.15583	
С	2.28155	0.28587	0.72901	
Н	1.14107	-2.78749	-0.03787	
Н	1.69124	-1.25137	-2.21936	
Н	2.56954	1.16859	-1.31932	
Н	1.66528	-1.31831	2.19609	
Н	2.55477	1.12725	1.38101	
Cl	-0.00076	2.41498	0.00022	
Н	-1.13963	-2.78817	0.01007	
Н	-1.67708	-1.27666	2.21173	
Thermal c	orrection t	o Gibbs Free Energ	dÀ=	0.124705
NUMBER OF	IllayIllary	rrequencies – 0		

Solvation Energy Calculation: SCF Done: E(UB-P86) = -905.377407577 SCF Done: E(UB-P86) = -905.396255053 (SMD, THF)

Single-point Calculation: SCF Done: E(UPBE1PBE) = -1696.20503225

Cartesian Coordinates:

С	-1.00393	-2.24987	0.70434	
С	-2.10752	-1.64025	0.04748	
С	-1.73030	-1.39613	-1.31591	
С	-0.38370	-1.82601	-1.49002	
Н	-3.08194	-1.41226	0.50292	
С	0.06615	-2.35054	-0.22882	
Н	-0.95266	-2.51488	1.76744	
Н	1.06611	-2.74782	-0.00815	
Ti	-0.32649	0.00152	0.02634	
С	-1.42595	1.97796	0.78313	
С	-0.10625	2.34758	0.36999	
С	-2.13594	1.54479	-0.37291	
С	-1.26189	1.64974	-1.50358	
С	-0.01553	2.15794	-1.04458	
Н	-3.17626	1.19007	-0.39494	
Н	-1.79848	1.98397	1.81572	
Н	0.69952	2.67962	1.03700	
Н	-1.50868	1.39115	-2.54292	
Н	0.86812	2.35001	-1.66924	
Cl	0.43352	-0.07611	2.32653	
N	1.76311	-0.00361	-0.38640	
Н	-2.37373	-0.96013	-2.09211	
Н	0.19685	-1.78212	-2.42260	
С	2.92867	-0.00758	-0.52330	
С	4.37998	-0.01478	-0.65207	
Н	4.86187	-0.10245	0.34873	
Н	4.73444	0.92561	-1.13085	
Н	4.71332	-0.87215	-1.27905	
Thermal	correction	to Gibbs Free E	nergy=	0.162329

Number of imaginary frequencies = 0

Solvation Energy Calculation: SCF Done: E(UB-P86) = -1038.03870107 SCF Done: E(UB-P86) = -1038.06462057 (SMD, THF)

Single-point Calculation: SCF Done: E(UPBE1PBE) = -1828.85634335

Cartesian Coordinates:

С	0.99926	-1.98009	-1.20431
С	2.20220	-1.22151	-1.14689
С	2.61429	-1.14022	0.22379
С	1.67804	-1.87073	1.00695
Н	2.72480	-0.77709	-2.00516
С	0.67089	-2.37482	0.13400
Н	0.41592	-2.20492	-2.10794
Н	-0.21971	-2.93682	0.44491
Ti	0.48507	0.01382	0.02079
С	-0.26673	1.99900	-1.18881
С	-0.06922	2.36075	0.17353
С	0.99076	1.60920	-1.73480
С	1.97618	1.76605	-0.70764
С	1.32349	2.21343	0.47583
Н	1.17082	1.27220	-2.76550
Н	-1.22346	1.99140	-1.73019
Н	-0.84166	2.67243	0.88681
Н	3.05211	1.57080	-0.81397
Н	1.79058	2.40011	1.45215
0	-1.43648	-0.59900	-0.50145
Cl	-0.30167	0.08600	2.31271
Н	3.50114	-0.61508	0.60657
Н	1.68758	-1.96866	2.09951
С	-2.66776	-0.37152	-0.38155
С	-3.19980	0.77136	0.44512
С	-3.64868	-1.27502	-1.09206
Н	-4.34745	-0.68168	-1.72924
Н	-4.28544	-1.81419	-0.34977
Н	-3.11543	-2.01862	-1.71987
Н	-2.54851	0.89787	1.34003
Н	-4.25507	0.59911	0.75011
Н	-3.17476	1.72380	-0.13947

Thermal correction to Gibbs Free Energy= 0.200507 Number of imaginary frequencies = 0

Solvation Energy Calculation: SCF Done: E(UB-P86) = -1098.38947603SCF Done: E(UB-P86) = -1098.41026215 (SMD, THF)

Single-point Calculation: SCF Done: E(UPBE1PBE) = -1889.21488502

Cartesian Coordinates:

Ті	-3.53006	0.08897	-0.03024
Ti	3.43232	0.09878	0.05799
Ν	-1.70166	-0.27224	0.27771
0	1.79960	-0.67517	-0.12462
С	0.49691	-1.09666	-0.46773
С	-0.51751	-0.57727	0.61678
С	-0.04109	-0.57559	2.05797
Н	0.93828	-0.05990	2.17476
Н	0.13536	-1.62260	2.40114
Н	-0.80619	-0.11405	2.71689
Cl	-3.54869	-0.47993	-2.37880
С	0.44640	-2,64518	-0.44062
H	1.12603	-3.06299	-1.21633
Н	-0.58542	-3.00053	-0.65497
Н	0.76792	-3.03804	0.54845
C	0.12225	-0.57223	-1.86402
H	0.16621	0.53742	-1.89283
H	-0.91526	-0.86624	-2.13683
H	0.83607	-0.97378	-2.61771
C	-2 84899	2 19876	0 92595
C	-2 61937	2 29078	-0 48683
C	-4 24998	2 07535	1 13155
C	-4 88972	2.07955	-0 15345
C	-3 87997	2.00002	-1 14374
н	-5 96954	2.21323	-0 34408
н	-4 03865	2.01275	-2 22844
н	-1 64302	2.2000	-0 98249
н	-2 08001	2.30013	1 70995
н	-4 75553	2 00213	2 10377
C	-5 58734	-0 74260	0 98249
C	-4 53480	-0 87276	1 94826
C	-3 61153	-1 84150	1 45709
C	-1 05651	-2 26802	0 17//5
C	-5 28616	-1 59282	-0 11354
ч	-3 53980	-2 96558	-0 /9725
п п	-5 86501	-1 68799	-1 0/093
п п	-6 16922	-0 09335	1 07202
п ц	-0.40922	-0.09555	2 91601
н н	-2 69908	-0.33040 -2.17257	1 96989
C C	2.0JJ00 1 13702	-2 1/391	-0 02872
C	4.45702	-1 80968	-1 35710
C	4.00002	-0 68478	-1 76736
C	5 74085	-0.00470	-1.70730
C	5 18763	-1 25468	0.70120
ч	6 19251	0 13889	-0.70518
н	5 98200	-1 2/585	1 2/221
ц П	J. 20200 3 00170	-1.24000 -2.01010	1.340ZL 0 60101
и П	3 26820	-2 28030 -2 28030	_1 Q/607
и П	J.200JU A 77889	-2.2093U -0 10304	-1.94097 -2 7/000
C	ч.,,оэс Д 1765/	0.19304 2 16276	2./4000 _1 05250
C	7.1004 1 26000	2 30301 2 30301	-1.03230 0 31507
<u> </u>	20J00	2.55504	0.54507

С	2.93676	2.38776	0.87818
С	2.03730	2.13400	-0.18361
С	2.80110	1.94661	-1.37883
Н	0.94868	2.02341	-0.08910
Н	2.39988	1.72142	-2.37711
Н	5.01385	2.14174	-1.76227
Н	5.18940	2.55198	0.92523
Н	2.67289	2.51934	1.93459
Cl	3.57617	-0.12126	2.42427

Thermal correction to Gibbs Free Energy= 0.393562 Number of imaginary frequencies = 0

Solvation Energy Calculation: SCF Done: E(RB-P86) = -2136.47898684 SCF Done: E(RB-P86) = -2136.51211231 (SMD, THF)

Single-point Calculation: SCF Done: E(RPBE1PBE) = -3718.10279406

F:

Cartesian Coordinates:

Ti	0.83630	0.05164	0.03399
Ν	-3.66085	1.17126	-0.46675
0	-0.84845	-0.58910	-0.17822
С	-2.21923	-0.79477	-0.48726
С	-3.02832	0.31011	0.25046
С	-2.96500	0.30323	1.76344
H	-1.90585	0.27716	2.11516
H	-3.47168	-0.59562	2.18411
H	-3.46332	1.20640	2.18032
С	-2.61777	-2.19596	0.03402
H	-2.08116	-2.98036	-0.54445
H	-3.71255	-2.36547	-0.08076
Н	-2.34644	-2.31421	1.10470
С	-2.41764	-0.72403	-2.01111
H	-2.15340	0.27763	-2.40541
Н	-3.48027	-0.91241	-2.27478
Н	-1.78069	-1.49282	-2.50224
С	1.50134	-2.27994	0.51049
С	1.35614	-2.16770	-0.89812
С	2.33633	-1.24773	-1.37284
С	3.13061	-0.83249	-0.25020
С	2.60740	-1.46211	0.90650
H	3.98758	-0.14581	-0.27427
H	2.96272	-1.32057	1.93485
H	0.85461	-2.85321	1.18806
H	0.58020	-2.64788	-1.50929
H	2.48812	-0.95474	-2.42134
С	2.02932	1.75687	-1.26512
С	1.84556	2.28003	0.04092

С	0.43642	2.47543	0.23949
С	-0.23897	2.06011	-0.93234
С	0.73784	1.56198	-1.85139
Н	-1.32847	2.05307	-1.07810
Н	0.53439	1.15435	-2.85216
Н	2.99132	1.52482	-1.74036
Н	2.63266	2.49673	0.77655
Н	-0.03080	2.84605	1.16028
Cl	0.70083	0.35334	2.39850
Н	-4.14011	1.85985	0.14826

Thermal correction to Gibbs Free Energy= 0.257898 Number of imaginary frequencies = 0

```
Solvation Energy Calculation:
SCF Done: E(RB-P86) = -1231.66484783
SCF Done: E(RB-P86) = -1231.68388923 (SMD, THF)
```

Single-point Calculation: SCF Done: E(RPBE1PBE) = -2022.48420136

G:

Cartesian Coordinates:

С	-2.18394	0.22719	1.06919
С	-1.54994	1.49974	0.95655
С	-1.44947	1.81635	-0.43980
С	-1.97480	0.72125	-1.17596
Н	-1.23822	2.13772	1.79529
С	-2.42175	-0.26723	-0.24063
Н	-2.38861	-0.30673	2.00495
Н	-2.83009	-1.25411	-0.49451
Ti	0.0000	-0.06263	-0.00000
С	1.97456	0.72188	1.17590
С	2.42173	-0.26709	0.24118
С	1.44940	1.81659	0.43904
С	1.55011	1.49922	-0.95712
С	2.18416	0.22661	-1.06895
Н	1.04403	2.74483	0.86371
Н	1.99876	0.62801	2.26964
Н	2.83004	-1.25382	0.49567
Н	1.23851	2.13672	-1.79625
Н	2.38901	-0.30782	-2.00437
Cl	0.06101	-1.60236	1.75320
Cl	-0.06103	-1.60264	-1.75295
Н	-1.04416	2.74434	-0.86506
Н	-1.99921	0.62679	-2.26965

Thermal correction to Gibbs Free Energy= 0.126614 Number of imaginary frequencies = 0

Solvation Energy Calculation:

SCF Done: E(RB-P86) = -1365.53428575 SCF Done: E(RB-P86) = -1365.55404693 (SMD, THF)

```
Single-point Calculation:
SCF Done: E(RPBE1PBE) = -2156.31240222
```


Cartesian Coordinates:

-1.71617	0.12539	-0.00275
-2.17144	0.21936	1.83824
-1.74813	1.13721	2.30660
-1.80412	-0.65790	2.41664
-3.27922	0.26002	1.95970
-2.47072	1.59537	-0.91999
-3.58100	1.60087	-0.82523
-2.21896	1.56389	-2.00424
-2.08886	2.55875	-0.51233
-2.36472	-1.50145	-0.73958
-3.47519	-1.54240	-0.64371
-1.95733	-2.40042	-0.22337
-2.11861	-1.58633	-1.82240
-0.04717	0.33233	-0.23784
1.11567	-0.47532	-0.05163
1.27215	-1.41745	-1.26711
2.21330	-2.00800	-1.20704
1.29224	-0.82489	-2.20783
0.42026	-2.13115	-1.31814
1.03377	-1.27623	1.26655
0.89020	-0.59237	2.13160
1.96490	-1.85967	1.44033
0.18504	-1.99672	1.23703
2.35102	0.47867	0.01362
3.56518	0.07213	0.14223
2.08725	1.96212	-0.08266
1.41714	2.30142	0.73900
1.56008	2.21088	-1.03057
3.05411	2.50435	-0.02984
3.60372	-0.96695	0.19471
	$\begin{array}{c} -1.71617\\ -2.17144\\ -1.74813\\ -1.80412\\ -3.27922\\ -2.47072\\ -3.58100\\ -2.21896\\ -2.08886\\ -2.36472\\ -3.47519\\ -1.95733\\ -2.11861\\ -0.04717\\ 1.11567\\ 1.27215\\ 2.21330\\ 1.29224\\ 0.42026\\ 1.03377\\ 0.89020\\ 1.96490\\ 0.18504\\ 2.35102\\ 3.56518\\ 2.08725\\ 1.41714\\ 1.56008\\ 3.05411\\ 3.60372\end{array}$	-1.71617 0.12539 -2.17144 0.21936 -1.74813 1.13721 -1.80412 -0.65790 -3.27922 0.26002 -2.47072 1.59537 -3.58100 1.60087 -2.21896 1.56389 -2.08886 2.55875 -2.36472 -1.50145 -3.47519 -1.54240 -1.95733 -2.40042 -2.11861 -1.58633 -0.04717 0.33233 1.11567 -0.47532 1.27215 -1.41745 2.21330 -2.00800 1.29224 -0.82489 0.42026 -2.13115 1.03377 -1.27623 0.89020 -0.59237 1.96490 -1.85967 0.18504 -1.99672 2.35102 0.47867 3.56518 0.07213 2.08725 1.96212 1.41714 2.30142 1.56008 2.21088 3.05411 2.50435 3.60372 -0.96695

Thermal correction to Gibbs Free Energy= Number of imaginary frequencies = 0

0.206887

Solvation Energy Calculation: SCF Done: E(RB-P86) = -735.367696658 SCF Done: E(RB-P86) = -735.375998849 (SMD, THF)

Single-point Calculation: SCF Done: E(RPBE1PBE) = -735.347360685

Acetonitrile, MeCN:

Cartesian Coordinates:

N	0.00000	0.0000	1.45045	
С	0.00000	0.0000	0.27897	
С	0.00000	0.0000	-1.18387	
Н	0.00000	1.04159	-1.57459	
Н	-0.90204	-0.52079	-1.57459	
Н	0.90204	-0.52079	-1.57459	
Thermal c Number of	correction to imaginary f	Gibbs Free Energ requencies = 0	у=	0.020755
Solvation SCF Done: SCF Done:	n Energy Calc E (RB-P86) E (RB-P86)	<pre>ulation: = -132.645052836 = -132.652324207</pre>	(SMD, THF))

Single-point Calculation: SCF Done: E(RPBE1PBE) = -132.640211298

Acetone, OCMe₂:

Cartesian Coordinates:

С	-1.29695	-0.61852	0.00200
С	-0.00001	0.18879	0.00000
Н	-1.30611	-1.36343	0.83105
Н	-1.39072	-1.19590	-0.94773
Н	-2.16539	0.06518	0.10020
С	1.29698	-0.61852	-0.00201
Н	1.39102	-1.19527	0.94807
Н	2.16536	0.06515	-0.10094
Н	1.30579	-1.36394	-0.83060
0	-0.00001	1.40972	0.00000

Thermal correction to Gibbs Free Energy= 0.052002 Number of imaginary frequencies = 0

Solvation Energy Calculation: SCF Done: E(RB-P86) = -192.995498719 SCF Done: E(RB-P86) = -193.000144374 (SMD, THF)

Single-point Calculation: SCF Done: E(RPBE1PBE) = -193.002201334

Zn:			
CODATA Key Values for	Thermodynamics	(298.15	K):

State	D _f H⁰ [kJ•mol ^{−1}]	Sº [J•K ⁻¹ •mol ⁻¹]	calcd ∆G ^{298.15} [kJ•mol ⁻¹]
cr	0	41.63±15	-12.41
g	130.40±0.40	160.990±0.004	82.42

 $\Delta G_{sublim} = \Delta G_g - \Delta G_{cr} = 22.66 \text{ kcal/mol}$

Thermal correction to Gibbs Free Energy= -0.015877

Single-point Calculation: SCF Done: E(RPBE1PBE) = -1779.14416957

TMSCI:

Cartesian Coordinates:

Si	0.00000	0.00000	-0.33760
С	0.0000	1.80362	-0.90358
Н	0.89978	2.34108	-0.52824
Н	-0.89978	2.34108	-0.52824
Н	0.0000	1.86692	-2.01683
С	1.56198	-0.90181	-0.90358
Н	1.61680	-0.93346	-2.01683
Н	1.57754	-1.94977	-0.52824
Н	2.47732	-0.39131	-0.52824
С	-1.56198	-0.90181	-0.90358
Н	-1.61680	-0.93346	-2.01683
Н	-2.47732	-0.39131	-0.52824
Н	-1.57754	-1.94977	-0.52824
Cl	0.00000	0.00000	1.77711
CT	0.00000	0.00000	1.///11

Thermal correction to Gibbs Free Energy= 0.077262 Number of imaginary frequencies = 0

Solvation Energy Calculation: SCF Done: E(RB-P86) = -869.237860696 SCF Done: E(RB-P86) = -869.242224501 (SMD, THF)

Single-point Calculation: SCF Done: E(RPBE1PBE) = -869.169476304

Et₃N•HCI:

Cartesian Coordinates:

С	-1.18287	-0.35962	-1.08394
С	-0.59963	-0.29627	1.36479
N	-0.32649	0.22152	-0.00859
Н	0.17440	0.15577	2.01945
С	-0.50501	-1.82021	1.47091
Н	-1.59004	0.08381	1.71523
С	-0.24438	1.71214	-0.06918
Н	-0.13124	1.96534	-1.14620
С	0.94143	2.29235	0.70942
Н	-1.20952	2.15442	0.27719
Н	-0.98038	-1.45146	-1.09522
Н	-0.77161	0.03052	-2.04073
С	-2.68412	-0.07981	-0.97782
Н	1.87611	1.75428	0.43439
Н	0.80418	2.23642	1.81157
Н	1.05765	3.36693	0.44668
Н	0.45401	-2.16665	1.02445
Н	-1.34954	-2.34272	0.96993
Н	-0.52224	-2.11346	2.54361
Н	-3.12929	-0.50756	-0.05189
Н	-3.20550	-0.54949	-1.84123
Н	-2.91582	1.00821	-1.00376
Н	0.84545	-0.21285	-0.31583
Cl	2.26625	-0.80316	-0.71604

Thermal correction to Gibbs Free Energy= 0.172107 Number of imaginary frequencies = 0

Solvation Energy Calculation: SCF Done: E(RB-P86) = -752.874405029 SCF Done: E(RB-P86) = -752.893275272 (SMD, THF)

Single-point Calculation: SCF Done: E(RPBE1PBE) = -752.843106109

THF:

Cartesian Coordinates:

С	0.09262	1.01805	0.77934
C	0.09262	-0.49353	1.12910
0	-0.47101	-1.14935	0.00000
С	0.09262	-0.49353	-1.12910
С	0.09262	1.01805	-0.77934
Н	0.97133	1.54452	1.21124

Н	-0.82027	1.51372	1.17442
Н	-0.51996	-0.75528	2.01851
Н	1.14149	-0.85271	1.30813
Н	-0.51996	-0.75528	-2.01851
Н	1.14149	-0.85271	-1.30813
Н	-0.82027	1.51372	-1.17442
Н	0.97133	1.54452	-1.21124

Thermal correction to Gibbs Free Energy= 0.084589 Number of imaginary frequencies = 0

```
Solvation Energy Calculation:
SCF Done: E(RB-P86) = -232.256734788
SCF Done: E(RB-P86) = -232.262345022 (SMD, THF)
```

```
Single-point Calculation:
SCF Done: E(RPBE1PBE) = -232.265041681
```


Cartesian Coordinates:

С	0.70530	0.20520	2.50068
С	0.70530	-0.62992	1.21372
Н	1.10854	-0.39900	3.34407
Н	-0.31354	0.54047	2.79772
Н	1.34513	1.10826	2.37896
N	0.40822	0.13359	0.0000
Н	0.02108	-1.51709	1.35009
Н	1.72425	-1.06144	1.07680
С	0.70530	-0.62992	-1.21372
С	0.70530	0.20520	-2.50068
Н	0.02108	-1.51709	-1.35009
Н	1.72425	-1.06144	-1.07680
Н	-0.31354	0.54047	-2.79772
Н	1.10854	-0.39900	-3.34407
Н	1.34513	1.10826	-2.37896
С	-0.88515	0.82565	0.0000
С	-2.15616	-0.05240	0.0000
Н	-0.90923	1.50245	-0.88353
Н	-0.90923	1.50245	0.88353
Н	-2.21166	-0.70779	-0.89866
Н	-3.06601	0.59021	0.00000
Н	-2.21166	-0.70779	0.89866

Thermal correction to Gibbs Free Energy= 0.164826 Number of imaginary frequencies = 0

Solvation Energy Calculation: SCF Done: E(RB-P86) = -292.154208860 SCF Done: E(RB-P86) = -292.159691352 (SMD, THF)

Single-point Calculation: SCF Done: E(RPBE1PBE) = -292.152791023

ZnCl₂•2THF:

Cartesian Coordinates:

Zn	0.00000	0.0000	0.31509
Cl	0.00000	2.03489	1.19013
Cl	0.00000	-2.03489	1.19013
0	-1.62155	0.00000	-1.05343
0	1.62155	0.00000	-1.05343
С	2.50203	-1.15486	-1.02094
С	3.60383	-0.78071	-0.01049
Н	2.90565	-1.30407	-2.05036
H	1.88145	-2.02385	-0.72213
С	3.60383	0.78071	-0.01049
Н	4.58598	-1.21301	-0.29827
Н	3.33849	-1.17371	0.99385
С	2.50203	1.15486	-1.02094
Н	4.58598	1.21301	-0.29827
Н	3.33849	1.17371	0.99385
Н	2.90565	1.30407	-2.05036
Н	1.88145	2.02385	-0.72213
С	-2.50203	1.15486	-1.02094
С	-3.60383	0.78071	-0.01049
Н	-2.90565	1.30407	-2.05036
Н	-1.88145	2.02385	-0.72213
С	-3.60383	-0.78071	-0.01049
Н	-4.58598	1.21301	-0.29827
Н	-3.33849	1.17371	0.99385
С	-2.50203	-1.15486	-1.02094
Н	-4.58598	-1.21301	-0.29827
Н	-3.33849	-1.17371	0.99385
H	-2.90565	-1.30407	-2.05036
Н	-1.88145	-2.02385	-0.72213

Thermal correction to Gibbs Free Energy= 0.185518 Number of imaginary frequencies = 0

Solvation Energy Calculation: SCF Done: E(RB-P86) = -1612.10986864 SCF Done: E(RB-P86) = -1612.12857015 (SMD, THF)

Single-point Calculation: SCF Done: E(RPBE1PBE) = -3163.96488343

References

- 1. P. Schnider, G. Koch, R. Prétôt, G. Wang, F. M. Bohnen, C. Krüger, A. Pfaltz, *Chem. Eur. J.* **1997**, *3*, 887–892.
- 2. D. J. Vyas, R. Fröhlich, M. Oestreich, Org. Lett. 2011, 13, 2094–2097.
- 3. A. Gansäuer, S. Narayan, N. Schiffer-Ndene, H. Bluhm, J. E. Oltra, J. M. Cuerva, A. Rosales, M. Nieger, *J. Organomet. Chem.* **2006**, *691*, 2327–2331.
- 4. O. Ort, Org. Synth. 1993, 65, 203–210.
- 5. M. Paradas, A. G. Campaña, R. E. Estévez, L. Á. de Cienfuegos, T. Jiménez, R. Robles, J. M. Cuerva, J. E. Oltra, *J. Org. Chem.* **2009**, *74*, 3616–3619.
- 6. F. Cadoret, Y. Six, Tetrahedron Lett. 2007, 48, 5491-5495.
- 7. G. J. Chuang, W. Wang, E. Lee, T. Ritter, *J. Am. Chem. Soc.* **2011**, *133*, 1760-1762.
- 8. Bruker, SAINT V8.30C, Bruker AXS Inc., Madison (WI, USA), 2013.
- 9. G. M. Sheldrick, SADABS-2012/1, Göttingen, 2012.
- 10. G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112–122.
- 11. a) A. D. Becke, *J. Chem. Phys.* **1993**, *98*, 5648. b) J. P. Perdew, *Phys. Rev. B.* **1986**, *33*, 8822–8824.
- 12. A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571–2577.
- 13. C. Adamo and V. Barone, J. Chem. Phys. 1999, 110, 6158-6169.
- 14. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- a) P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, *J. Phys. Chem.* **1994**, *98*, 11623-11627. b) A. D. Becke, J.Chem.Phys. **1993** *98*, 5648-5652. c) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* **1988**, *37*, 785-789. d) S. H. Vosko, L. Wilk, M. Nusair, *Can. J. Phys.* **1980**, *58*, 1200-1211.
- 16. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241.
- 17. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.
- 18. M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 1987, 86, 866.
- 19. M. Bühl, H. Kabrede, J. Chem. Theory Comput. 2006, 2, 1282–1290.
- 20. A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829–5835.
- 21. http://www.codata.org/resources/databases/key1.html
- 22. Y. Zhang, J. R. G. Evans, S. Yang, J. Chem. Eng. Data. 2011, 56, 328–337.
- Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2010**.
- 24. a) Avogadro: an open-source molecular builder and visualization tool. Version 1.1.0. http://avogadro.openmolecules.net/. b) M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, *J. Cheminform.* **2012**, *4*, 17.

NMR Spectra of New Compounds

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 ppm

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

