Supporting Information

CO₂ fixation employing an Iridium(I)- hydroxide complex

Byron J. Truscott, David J. Nelson, Alexandra M. Z. Slawin and Steven P. Nolan^{*} EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, U.K.

Table of Contents

Experimental procedures and characterization data	S1
General considerations	S3
Synthetic Procedures and Characterization data	S3
References	S22

Figure S 1 ¹ H NMR (500 MHz, C_6D_6) spectrum for [{ $Ir(cod)(I^iPr)$ } ₂ (μ - κ^1 : κ^2 -CO ₃)] 8	
Figure S 2 ¹³ C NMR (75 MHz, THF- d_8) spectrum for [{Ir(cod)(I ⁱ Pr)} ₂ (μ - κ ¹ : κ ² -CO ₃)] 8	S7
Figure S 3 ¹³ C NMR (75 MHz, THF- d_8) spectrum for [{Ir(cod)(I ⁱ Pr)} ₂ (μ - κ ¹ : κ ²⁻¹³ CO ₃)] 8	S8
Figure S 4 HSQC NMR (300 MHz, THF- d_8) spectrum for [{Ir(cod)(I ⁱ Pr)} ₂ (μ - κ^1 : κ^2 -CO ₃)] 8	S8
Figure S 5 HMBC NMR (300 MHz, THF- d_8) spectrum for [{Ir(cod)(I ⁱ Pr)} ₂ (μ - κ ¹ : κ ² -CO ₃)] 8	S9
Figure S 6 IR (ATR) spectrum for [{Ir(cod)(I ⁱ Pr)} ₂ (μ - κ ¹ : κ ² -CO ₃)] 8	S9
Figure S 7 ¹ H NMR (300 MHz, C ₆ D ₆) spectrum for [Ir(cod)(I ⁱ Pr)(OPh)] 11	S10
Figure S 8 ¹³ C NMR (75 MHz, C ₆ D ₆) spectrum for [Ir(cod)(I ⁱ Pr)(OPh)] 11	S10
Figure S 9 IR (ATR) spectrum for [Ir(cod)(I ⁱ Pr)(OPh)] 11	S11
Figure S 10 ¹ H NMR (300 MHz, C_6D_6) spectrum for [Ir(cod)(I ⁱ Pr)(OCO ₂ CH ₃)] 12	S11
Figure S 11 ¹³ C NMR (75 MHz, C_6D_6) spectrum for [Ir(cod)(I ⁱ Pr)(OCO ₂ CH ₃)] 12	S12
Figure S 12 ¹³ C NMR (500 MHz, C_6D_6) spectrum for [Ir(cod)(I ⁱ Pr)(OCO ₂ CH ₃)] 12	S12
Figure S 13 IR (ATR) spectrum for [Ir(cod)(I ⁱ Pr)(OCO ₂ CH ₃)] 12	S13
Figure S 14 ¹ H NMR (300 MHz, C_6D_6) spectrum for [Ir(cod)(I ⁱ Pr)(OCO_2Ph)] 13	S13
Figure S 15 ${}^{13}C{}^{1}H$ NMR (75 MHz, C ₆ D ₆) spectrum for [Ir(cod)(I ^{<i>i</i>} Pr)(OCO ₂ Ph)] 13	S14
Figure S 16 ¹³ C{ ¹ H} NMR (75 MHz, THF- d_8) spectrum for [Ir(cod)(I ⁱ Pr)(OCO ₂ Ph)] 13	S14
Figure S 17 IR (ATR) spectrum for [Ir(cod)(I ⁱ Pr)(OCO ₂ Ph)] 13	S15
Figure S 18 ¹ H NMR (300 MHz, C_6D_6) spectrum for [Ir(cod)(I ⁱ Pr)(NHBn)] 14	S15
Figure S 19 ¹³ C{ ¹ H} NMR (100 MHz, C_6D_6) spectrum for [Ir(cod)(I ⁱ Pr)(NHBn)] 14	S16
Figure S 20 HSQC NMR (400 MHz, C ₆ D ₆) spectrum for [Ir(cod)(I ⁱ Pr)(NHBn)] 14	S16
Figure S 21 IR (ATR) spectrum for [Ir(cod)(I ⁱ Pr)(NHBn)] 14	S17
Figure S 22 ¹ H NMR (300 MHz, C_6D_6) spectrum for [Ir(cod)(I ⁱ Pr)(O ₂ CNHBn)] 16	S17
Figure S 23 ¹³ C{ ¹ H} NMR (75 MHz, C_6D_6) spectrum for [Ir(cod)(I ^{<i>i</i>} Pr)(O ₂ CNHBn)] 16	S18
Figure S 24 ¹ H NMR (400 MHz, THF <i>d</i> ₈) spectrum for [Ir(cod)(I ^{<i>i</i>} Pr)(O ₂ CNHBn)] 16	S18
Figure S 25 ¹³ C{ ¹ H} NMR (100 MHz, THF d_8) spectrum for [Ir(cod)(I ^{<i>i</i>} Pr)(O ₂ CNHBn)] 16	S19
Figure S 26 HSQC NMR (300 MHz, C ₆ D ₆) spectrum for [Ir(cod)(I ⁱ Pr)(O ₂ CNHBn)] 16	S19
Figure S 27 HMBC NMR (300 MHz, C ₆ D ₆) spectrum for [Ir(cod)(I ⁱ Pr)(O ₂ CNHBn)] 16	S20
Figure S 28 IR (ATR) spectrum for [Ir(cod)(I ⁱ Pr)(O ₂ CNHBn)] 16	S20
Figure S 29 ¹ H NMR (300 MHz, C_6D_6) spectrum for [Ir(cod)(I ^{<i>i</i>} Pr)(O ₂ CNH(- <i>p</i> -BrC ₆ H ₄))] 17	S21
Figure S 30 ${}^{13}C{}^{1}H$ NMR (75 MHz, C ₆ D ₆) spectrum for [Ir(cod)(I ^{<i>i</i>} Pr)(O ₂ CNH(- <i>p</i> -BrC ₆ H ₄))] 17	S21

Experimental procedures and characterization data

General considerations

All manipulations and reactions were performed inside an Argon-filled MBraun glovebox unless stated otherwise. All reagents were supplied by Aldrich and used without further purification. [Ir(cod)Cl]₂ was provided by Umicore AG. Solvents were distilled and dried as required. NMR data was obtained using either a Bruker 300 MHz or 400 MHz (¹H observe frequency) spectrometer at 303 K in the specified deuterated solvent. All chemical shifts are given in ppm and coupling constants in Hz. Signals on the ¹³C{¹H} spectra are singlets unless otherwise stated. Spectra were referenced to residual protonated solvent signals (for ¹H) or solvent signals (for ¹³C): (C₆D₆: ¹H δ 7.16 ppm, ¹³C δ 128.06 ppm; THF-*d*₈: ¹H δ 1.72, 3.58 ppm, ¹³C δ 25.31, 67.21 ppm). Infrared spectra (v) were recorded on a Shimadzu Fourier transform IR Affinity-1 Infrared spectrophotometer using a MIRacleTM single reflection horizontal ATR (diamond). Samples were placed directly on the crystal (ATR) in the solid state. Only characteristic peaks have been quoted. Elemental analyses were performed at the London Metropolitan University. Known compounds 7, **10**, **15**, **18** – **22** were prepared following reported procedures.¹

Synthetic Procedures and Characterization data

 $[{\rm Ir(cod)(I^{i}Pr)}_{2}(\mu-\kappa^{1}:\kappa^{2}-{\rm CO}_{3})]$ 8

In solution: A J. Young NMR tube was charged with $[Ir(cod)(I^{i}Pr)(OH)]$ 7 (15.0 mg, 0.032 mmol) in C₆D₆ (0.6 mL). The sample was frozen in liquid N₂ and the Ar atmosphere was removed *in vacuo*. The sample was allowed to thaw before CO₂ (*ca.* 1 atm.) was added, a ppt. formed after a few minutes. The reaction mixture was allowed to mix for at least 10 mins before being placed under an Ar atmosphere *via* three vacuum-Ar purge cycles. ¹H NMR analysis revealed full conversion to the product. The product was dried *in vacuo* to give [{Ir(cod)(IⁱPr)}₂(μ - κ ¹: κ ²-CO₃)] **8** (15.2 mg, 98%) as a yellow solid.

Solid state: [Ir(cod)(I^{*i*}Pr)(OH)] **7** (5 mg, 0.011) was placed in a septum sealed vial and the Ar atmosphere was replaced with CO₂ (1 atm.) by purging the vial for approximately 2 mins. The sample was then placed back under an Ar atmosphere *via* three vacuum-Ar purge cycles before being analysed by IR (ATR) and dissolved in C₆D₆ for analysis by ¹H NMR, which indicated complete conversion to **8**. ^{*13}C NMR analysis was conducted in THF-*d*₈ due to insufficient solubility in C₆D₆.

¹**H** NMR (500 MHz, C₆D₆): δ 6.30 (s, 4H, N-(CH)₂-N), 5.88 (sept., J = 6.7, 4H, N-CH(CH₃)₂), 4.60 – 4.53 (m, 4H, cod-CH), 2.76 – 2.65 (m, 4H, cod-CH), 2.41 – 2.30 (m, 4H, cod-CH₂), 2.30 – 2.20 (m, 4H, cod-CH₂), 1.76 – 1.59 (m, 8H, cod-CH₂), 1.47 (d, J = 5.3, 12H, CH₃), 1.91 (d, J = 2.8, 12H, CH₃); ¹³C NMR (75 MHz, THF-*d*₈): δ 178.8 (Ir-C_{carbene}), 170.0 (CO), 116.9 (N-(CH)₂-N), 82.6 (cod-CH), 53.0 (N-CH(CH₃)₂), 38.8 (cod-CH), 35.3 (cod-CH₂), 30.1 (cod-CH₂), 24.3 (CH₃), 24.1 (CH₃). IR (ATR) v = 1610.56 (CO₃), 1411.89, 1207.44 cm⁻¹. Anal. Calcd. for C₃₅H₅₆Ir₂N₄O₃ (MW 965.28): C, 43.55; H, 5.85; N, 5.80. Found: C, 43.44; H, 5.86; N, 5.73.

 $[Ir(cod)(I^{i}Pr)(OPh)]$ 11

A vial was charged with $[Ir(cod)(I^{1}Pr)(OH)]$ 7 (20.0 mg, 0.043 mmol) and phenol (4.1 mg, 0.043 mmol) in PhMe (1 mL) and the reaction mixture was stirred at rt for 16 h. Once complete, the mixture was concentrated *in vacuo* and the resultant solid was washed with cold pentane (3 x 1 mL) and dried *in vacuo* to give $[Ir(cod)(I^{1}Pr)(OPh)]$ **11** (22.1 mg, 94%) as a yellow solid. ¹H NMR (300 MHz, C₆D₆): δ 7.24 (t, 2H, J = 7.8, *m*-ArH), 6.96 (d, 2H, J = 8.4, *o*-ArH), 6.74 (tt, 1H, J = 7.2, 1.0, *p*-ArH), 6.13 (s, 2H, N-(CH)₂-N), 5.77 (sept., 2H, J = 6.8, N-CH(CH₃)₂), 4.92– 4.82 (m, 2H, cod-CH), 2.96 – 2.84 (m, 2H, cod-CH), 2.41 – 2.21 (m, 4H, cod-CH₂), 1.81 – 1.57 (m, 4H, cod-CH₂), 1.12 (d, 6H, J = 6.7, CH₃), 1.09 (d, 6H, J = 6.8, CH₃). ¹³C NMR (75 MHz, C₆D₆): δ 179.4 (Ir-C_{carben}), 171.3 (ArC), 129.3 (ArCH), 121.4 (ArCH), 116.1 (N-(CH)₂-N), 115.6 (ArCH), 83.1 (cod-CH), 52.4 (N-CH(CH₃)₂), 45.9 (cod-CH), 34.5 (cod-CH₂), 29.6 (cod-CH₂), 23.7 (CH₃), 23.5 (CH₃). IR (ATR) v = 1583.56, 1479.40, 1294.24, 1209.37 cm⁻¹. Anal. Calcd. for C₂₄H₃₃IrN₂O (MW 545.74): C, 50.62; H, 6.09; N, 5.13. Found: C, 50.55; H, 5.93; N, 5.17.

 $[Ir(cod)(I^iPr)(OCO_2CH_3)]$ 12

A J. Young NMR tube was charged with $[Ir(cod)(I^{i}Pr)(OMe)]$ **10** (10.0 mg, 0.021 mmol, prepared following literature procedure¹) in C₆D₆ (0.6 mL). The sample was frozen in liquid N₂ and the Ar atmosphere was removed *in vacuo*. The sample was allowed to thaw before CO₂ (*ca.* 1 atm.) was added. The reaction mixture was mixed for at least 10 mins before NMR analysis was conducted. Once complete, the CO₂ atmosphere was removed *in vacuo* before the sample was returned to the glove-box where it was dried *in vacuo* to give [Ir(cod)(IⁱPr)(OCO₂CH₃)] **12** (11 mg, 99%) as a yellow solid. ¹H **NMR** (300 MHz, C₆D₆): δ 6.22 (s, 2H, N-(CH)₂-N), 5.84 (sept., 2H, *J* = 6.6, N-C*H*(CH₃)₂), 5.03 – 4.82 (m, 2H, cod), 3.58 (s, 3H, OCH₃), 3.00 – 2.83 (m, 2H, cod), 2.37 – 2.12 (m, 4H, cod), 1.71 – 1.51 (m, 4H, cod), 1.31 (d, 6H, *J* = 6.4, 6H, N-CH(CH₃)₂), 1.12 (d, 6H, *J* = 6.8, N-CH(CH₃)₂), 53.2 (cod-CH), 52.5 (OCH₃), 47.7 (cod-CH), 34.2 (cod-CH₂), 29.4 (cod-CH₂), 23.7 (N-CH(CH₃)₂), 23.6 (N-CH(CH₃)₂). IR (ATR) v = 1649.14 (CO₃), 1624.06 (CO₃), 1411.89, 1207.49 cm⁻¹. **Anal. Calcd.** for C₁₉H₃₁IrN₂O₃ (MW 527.68): C, 43.25; H, 5.92; N, 5.31. Found: C, 43.17; H, 6.01; N, 5.40.

$[Ir(cod)(I^iPr)(OCO_2Ph)]$ 13

A J. Young NMR tube was charged with [Ir(cod)(IⁱPr)(OPh)] 11 (16.9 mg, 0.031 mmol) in C₆D₆ (0.6 mL). The sample was frozen in liquid N₂ and the Ar atmosphere was removed *in vacuo*. The sample was allowed to thaw before CO₂ (ca. 1 atm.) was added. The reaction mixture was mixed for at least 10 mins before NMR analysis was conducted. Once complete, the CO₂ atmosphere was removed in vacuo before the sample was returned to the glove-box where it was dried in vacuo to give [Ir(cod)(IⁱPr)(OCO₂Ph)] 13 (18.4 mg, >99%) as a yellow solid. ¹H NMR (300 MHz, C_6D_6): δ 7.22 (t, 2H, J = 7.3, *m*-ArH), 7.09 – 6.94 (m, 2H, o-ArH), 6.75 (t, 1H, J = 7.2, p-ArH), 6.14 (s, 2H, N-(CH)₂-N), 5.76 (sept., 2H J = 6.7, N-CH(CH₃)₂), 4.92–4.82 (m, 2H, cod-CH), 2.95 – 2.83 (m, 2H, cod-CH), 2.39 – 2.18 (m, 4H, cod-CH₂), 1.77 - 1.57 (m, 4H, cod-CH₂), 1.13 (d, 6H, J = 6.7, CH₃), 1.09 (d, 6H, J = 6.8, CH₃). ¹³C NMR (75) MHz, C₆D₆): δ 179.2 (Ir-C_{carbene}), 129.1 (ArCH), 128.8 (ArCH), 124.8 (ArCH), 116.2 (N-(CH)₂-N), 83.1 (cod-CH), 52.4 (N-CH(CH₃)₂), 46.0 (cod-CH), 34.4 (cod-CH₂), 29.6 (cod-CH₂), 23.7 (CH₃), 23.5 (CH₃). ¹³C NMR (75 MHz, THF-d₈): δ 179.2 (Ir-C_{carbene}), 176.9 (ArC), 162.9 (br., CO), 128.5 (ArCH), 121.1 (ArCH), 117.2 (N-(CH)₂-N), 114.8 (ArCH), 82.2 (cod-CH), 52.9 (N-CH(CH₃)₂), 46.1 (cod-CH), 34.5 (cod-CH₂), 29.7 (cod-CH₂), 23.7 (CH₃), 23.5 (CH₃). IR (ATR) v = 1583.56, 1477.47, 1296.16, 1209.37 cm⁻¹. Anal. Calcd. for C₂₄H₃₃IrN₂O₃ (MW 589.75): C, 48.88; H, 5.64; N, 4.75. Found: C, 48.77; H, 5.68; N, 4.79.

[Ir(cod)(IⁱPr)(NHBn)] 14

A vial was charged with $[Ir(cod)(I^{l}Pr)(OH)]$ 7 (20.0 mg, 0.043 mmol) and benzylamine (4.7 mg, 0.043 mmol) in PhMe (1.0 mL) and the reaction mixture was stirred at rt for 16 h. Once complete, the mixture was concentrated *in vacuo*, washed with *n*-pentane (3 x 1 mL) and dried to give $[Ir(cod)(I^{l}Pr)(NHBn)]$ 14 (17.4 mg, 72%) as a yellow solid. ¹H NMR (300 MHz, C₆D₆): δ 7.61 (d, 2H, J = 7.4, *o*-ArH), 7.28 (t, 2H, J = 7.5, *m*-ArH), 7.19 – 7.08 (m, 1H, *p*-ArH), 6.17 (s, 2H, N-(CH)₂-N), 5.97 (sept., 2H, J = 6.7, N-CH(CH₃)₂), 4.50 (d, 2H, J = 7.8, NH-CH₂), 4.50 – 4.36 (m, 2H, cod-CH), 2.63 (br., 2H, cod-CH), 2.70 – 2.35 (m, 4H, cod-CH₂), 2.28 – 2.10 (m, 2H, cod-CH₂), 2.05 – 1.90 (m, 2H, cod-CH₂), 1.12 (d, 6H, J = 6.9, CH₃), 1.02 (d, 6H, J = 6.7, CH₃). ¹³C NMR (75 MHz, C₆D₆): δ 182.2 (Ir-C_{carbene}), 149.6 (ArC), 128.1 (*m*-ArCH), 127.4 (*o*-ArCH), 125.9 (*p*-ArCH), 115.8 (N-(CH)₂-N), 76.3 (cod-CH), 59.1 (NH-CH₂), 52.4 (N-CH(CH₃)₂), 45.4 (cod-CH), 35.0 (cod-CH₂), 31.2 (cod-CH₂), 23.6 (CH₃), 23.5 (CH₃). IR (ATR) v = 1409.96, 1209.37 cm⁻¹. **Anal. Calcd.** for C₂₄H₃₆IrN₃ (MW 558.78): C, 51.59; H, 6.49; N, 7.52. Found: C, 51.25; H, 6.37; N, 7.38.

 $[Ir(cod)(I^{i}Pr)(O_{2}CNHBn)]$ 16

A vial was charged with [Ir(cod)(I'Pr)(NHBn)] 14 (17.4 mg, 0.031 mmol) and in C₆D₆ (0.6 mL). The sample was frozen in liquid N₂ and the Ar atmosphere was removed *in vacuo*. The sample was allowed to thaw before CO₂ (ca. 1 atm.) was added. The reaction mixture was mixed for at least 10 mins before NMR analysis was conducted. Once complete, the CO₂ was removed in vacuo before the sample was returned to the glove-box and was dried in vacuo to give [Ir(cod)(1ⁱPr)(O₂CNHBn)] 16 (17.1 mg, 92%) as a yellow solid. ¹H NMR (300 MHz, C_6D_6): δ 7.15 – 7.00 (m, 5H, J = 7.2, *m*-ArH), 6.29 (s, 2H, N-(CH)₂-N), 5.74 (sept., 2H, J = 6.7, N-CH(CH₃)₂), 4.95 – 4.82 (m, 2H, cod-CH), 4.49 (t, 1H, J = 5.8, NH), 4.30 $(d, 2H, J = 5.6, NH-CH_2), 2.98 - 2.86 (m, 2H, cod-CH), 2.41 - 2.19 (m, 4H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 4H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 4H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 4H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 4H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 4H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 4H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 4H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 4H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 4H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 4H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 2H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 2H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 2H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 2H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 2H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 2H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 2H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 2H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 2H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 2H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 2H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 2H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 2H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 2H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 2H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 2H, cod-CH_2), 1.76 - 1.59 (m, 2H, cod-CH), 2.41 - 2.19 (m, 2H, cod-CH), 2.41 - 2.19 (m, 2H, cod-CH), 2.41 - 2.19 (m, 2H, cod-CH_2), 2.41 - 2.19 (m, 2H, cod-CH_2),$ 4H, cod-CH₂), 1.33 (d, 6H, J = 6.6, CH₃), 1.16 (d, 6H J = 6.8, CH₃). ¹³C NMR (75 MHz, C₆D₆): δ 179.0 (Ir-C_{carbene}), 163.2 (CO), 142.7 (ArC), 128.2 (ArCH, from HSQC and HMBC), 126.4 (ArCH), 116.1 (N-(CH)₂-N), 83.7 (cod-CH), 52.5 (N-CH(CH₃)₂), 47.0 (cod-CH), 46.5 (NH-CH₂), 34.4 (cod-CH₂), 29.5 (cod-CH₂), 23.9 (CH₃), 23.6 (CH₃). ¹**H** NMR (400 MHz, THF- d_8): δ 7.18 – 7.09 (m, 5H, J = 7.2, m-ArH), 7.06 (s, 2H, N-(CH)₂-N), 5.58 (sept., 2H, J = 6.7, N-CH(CH₃)₂), 4.91 (br., 1H, NH), 4.39 (br., 2H, cod-CH), 4.08 (d, 2H, J = 6.08, NH-CH₂), 2.70 (br., 2H, cod-CH), 2.27 - 2.07 (m, 4H, cod-CH₂), 1.64 -1.51 (m, 4H, cod-CH₂), 1.45 (d, 6H, J = 6.6, CH₃), 1.36 (d, 6H, J = 6.5, CH₃). ¹³C NMR (100 MHz, THF-d₈): δ 179.0 (Ir-C_{carbene}), 163.3 (CO), 143.6 (ArC), 128.3 (ArCH), 127.8 (ArCH), 126.4 (ArCH), 116.9 (N-(CH)₂-N), 82.9 (cod-CH), 52.9 (N-CH(CH₃)₂), 46.7 (cod-CH), 46.4 (NH-CH₂), 34.4 (cod-CH₂), 29.6 (cod-CH₂), 23.9 (CH₃), 23.4 (CH₃). IR (ATR) v = 2054.19, 1967.39 (CO₃), 1409.96, 1209.37 cm⁻¹. Anal. Calcd. for C₂₅H₃₆IrN₃O₂ (MW 602.79): C, 49.81; H, 6.02; N, 6.97. Found: C, 49.80; H, 5.87; N, 7.02.

 $[Ir(cod)(IⁱPr)(O_2CNH-(p-BrC_6H_4)]$ 17

A J. Young NMR tube was charged with $[Ir(cod)(I^{i}Pr)(NH-(p-BrC_6H_4)]$ **15** (20.0 mg, 0.032 mmol, prepared following literature procedure¹) in C₆D₆. The sample was frozen in liquid N₂ and the Ar atmosphere was removed *in vacuo*. The sample was allowed to thaw before CO₂ (*ca.* 1 atm.) was added. The reaction mixture was mixed for at least 10 mins before NMR analysis was conducted. Upon completion it was found that either bubbling Ar through the reaction mixture or concentrating the sample *in vacuo* converted the product back to **15**. ¹**H NMR** (300 MHz, C₆D₆): δ 7.27 – 7.18 (m, 4H, ArH), 6.24 (s, 2H, N-(CH)₂-N), 5.68 (sept., 2H, *J* = 6.7, N-C*H*(CH₃)₂), 4.96 – 4.86 (m, 2H, cod-CH), 2.98 – 2.4 (m, 2H, cod-CH), 2.38 – 2.16 (m, 4H, cod-CH₂), 1.74 – 1.55 (m, 4H, cod-CH₂), 1.25 (d, 6H, *J* = 6.7, CH₃), 1.11 (d, 6H, *J* = 6.8, CH₃). ¹³C NMR (75 MHz, C₆D₆): δ 178.1 (Ir-C_{carbene}), 159.7 (CO), 142.0 (N-ArC), 131.6 (ArCH), 126.4 (*m*-ArCH), 119.4 (*o*-ArCH), 116.3 (N-(CH)₂-N), 112.4 (*p*-ArCBr), 83.8 (cod-CH), 52.5 (N-CH(CH₃)₂), 47.7 (cod-CH), 34.3 (cod-CH₂), 29.4 (cod-CH₂), 23.7 (CH₃), 23.6 (CH₃).

Figure S 5 HMBC NMR (300 MHz, THF- d_8) spectrum for [{Ir(cod)(IⁱPr)}₂(μ - κ ¹: κ ²-CO₃)] 8

Figure S 6 IR (ATR) spectrum for [{ $Ir(cod)(I^{i}Pr)$ }₂(μ - κ ¹: κ ²-CO₃)] 8

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Figure S 12 HMBC NMR (500 MHz, C₆D₆) spectrum for [Ir(cod)(IⁱPr)(OCO₂CH₃)] 12

Figure S 14 ¹H NMR (300 MHz, C₆D₆) spectrum for [Ir(cod)(IⁱPr)(OCO₂Ph)] 13

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

Figure S 16 ¹³C{¹H} NMR (75 MHz, THF- d_8) spectrum for [Ir(cod)(I^{*i*}Pr)(OCO₂Ph)] **13**. Inset: expanded region showing CO signal after ¹³CO₂ insertion.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure S 19 ${}^{13}C{}^{1}H{}$ NMR (100 MHz, C₆D₆) spectrum for [Ir(cod)(I^{*i*}Pr)(NHBn)] 14

Figure S 22 ¹H NMR (300 MHz, C₆D₆) spectrum for [Ir(cod)(IⁱPr)(O₂CNHBn)] 16

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

Figure S 24 ¹H NMR (400 MHz, THF*d*₈) spectrum for [Ir(cod)(I^{*i*}Pr)(O₂CNHBn)] 16

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Figure S 27 HMBC NMR (300 MHz, C₆D₆) spectrum for [Ir(cod)(IⁱPr)(O₂CNHBn)] 16

Figure S 28 IR (ATR) spectrum for [Ir(cod)(IⁱPr)(O₂CNHBn)] 16

References

1. B. J. Truscott, D. J. Nelson, C. Lujan, A. M. Z. Slawin and S. P. Nolan, *Chem. Eur. J.*, 2013, **19**, 7904-7916.