Stimuli-responsive orthogonal supramolecular polymer network
formed by metal-ligand and host-guest interactions

Jianyi Zhan, Qi Li, Qiuyue Hu, Qianqian Wu, Cunmin Li, Huayu Qiu, Mingming Zhang, and Shouchun Yin

aCollege of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
Fax: (+86)57128867899; Tel: (+86)57128867899;
E-mail: yinsc@hznu.edu.cn

bDepartment of Biochemistry and Chemistry, University of Maryland, College Park, 20740, US. E-mail: mzhang12@umd.edu

Supporting Information (11 pages)

1. Materials and methods
2. Synthesis of compounds 1 and 2
 2.1 Synthesis of dibenzo-24-crown-8 diol 6
 2.2 Synthesis of monomer 1
 2.3 Synthesis of bisammonium cross-linker 2
3. Characterization of linear supramolecular polymer 3 and supramolecular polymer network 4
 3.1 UV/Vis titrations between Zn(OTf)2 and monomer 1
 3.2 1HNMR spectra of supramolecular polymer 3
 3.3 2D H-H COSY spectrum of supramolecular polymer 3
 3.4 NOESY spectrum of supramolecular polymer network 4
 3.5 The effect of the content of cross-linker 2 on reduced viscosity of supramolecular polymer network 4
 3.6 UV/Vis titrations of 1·Zn2+ with different amount of cyclen and 1·Zn2+, cyclen with different amount of Zn2+
References
1. Materials and methods

4′-Chloro-2,2′:6′,2″-terpyridine, 4-hydroxybenzaldehyde, 1,10-dibromodecane, benzylamine, \(\text{NH}_4\text{PF}_6 \) and zinc triflate \((\text{Zn(OTf)}_2) \) were purchased from Aldrich and used without further purification.

1D \((1H, 13C)\) and 2D \((^1H–^1H-\text{NOESY})\) nuclear magnetic resonance (NMR) spectra were recorded at room temperature on a Bruker Avance 400 or 500 operating at a frequency of 400 or 500 MHz for \(^1\text{H}\) and 125 MHz for \(^{13}\text{C}\). Mass spectra were recorded on a Hewlett-Packard 5989 A mass spectrometer (ESI mode). UV/Vis absorption spectra were recorded on a Perkin Elmer Lambda 750 UV/Vis spectrophotometer. Viscosity measurements were carried out with Ubbelohde dilution viscometers (Julabo Technology Corporation visco-170, 0.47 mm inner diameter) in \(\text{CHCl}_3/\text{CH}_3\text{CN} \) (1/1, v/v) containing 0.05 mol/L tetrabutylammonium hexafluorophosphate to exclude the polyelectrolyte effect.

2. Synthesis of compounds 1 and 2

![Scheme S1 Synthetic routes of monomer 1 and bisammonium cross-liker 2.](image)

2.1. Synthesis of dibenzo-24-crown-8 diol 6

Compound 6 was synthesized according to the literature procedures.\(^{S1}\) \(^1\text{H}\) NMR (500 MHz, \text{CDCl}_3, 293 K) \(\delta \) (ppm): 6.90 (2H, s), 6.81–6.83 (4H, m), 4.57 (4H, s), 4.12–4.16 (8H, m), 3.89–3.91 (8H, m), 3.81–3.83 (8H, m).
2.2. Synthesis of monomer 1

Compound 6 (1.02 g, 2.00 mmol) was added to a stirred suspension of powdered KOH (449 mg, 8.00 mmol) in dry DMSO (25.0 mL) at 60 °C. After being stirred for 15 min, 4′-chloro-2,2′:6′,2″-terpyridine (1.17 g, 4.40 mmol) was added to the mixture and stirred for 24 h at 60 °C. Then the reaction solution was poured into 500 mL of cold water and the resulting precipitate was collected by filtration. The crude product was purified by flash column chromatography (1:1 dichloromethane/ethyl acetate, v/v) to give compound 1 as a white solid (1.01 g, 50.0%). ¹H NMR (500 MHz, CDCl₃, 293 K) δ (ppm): 8.67 (4H, J = 4.0 Hz, d), 8.61 (4H, J = 7.5 Hz, d), 8.09 (4H, s), 7.82–7.85 (4H, m), 7.30–7.33 (4H, m), 6.99–7.02 (4H, m), 6.87 (2H, J = 8.5 Hz, d), 5.21 (4H, s), 4.15–4.20 (8H, m), 3.90–3.93 (8H, m), 3.82–3.83 (8H, m).¹³C NMR (125 MHz, CDCl₃, 293 K), δ (ppm): 166.9, 157.2, 156.1, 149.2, 149.1, 149.0, 136.9, 129.2, 123.9, 121.4, 120.8, 114.0, 113.6, 107.8, 71.4, 70.0, 69.9, 69.6, 69.5. ESI–MS: m/z 993.3 [M+Na]+.
Fig. S2 1H NMR spectrum of monomer 1.

Fig. S3 13C NMR spectrum of monomer 1.
Fig. S4 Electro spray ionization mass spectrum of monomer 1.

2.3. Synthesis of bisammonium cross-linker 2

Bisammonium cross-linker 2 was synthesized according to the literature procedures.52 1H NMR (500 MHz, CD\textsubscript{3}CN, 293 K) \(\delta\) (ppm): 7.46 (10H, s), 7.37 (4H, \(J = 8.5\) Hz, d), 6.96 (4H, \(J = 8.5\) Hz, d), 4.20 (4H, s), 4.17 (4H, s), 3.99 (4H, \(J = 6.5\) Hz, t), 2.10–2.30 (4H, br), 1.72–1.78 (4H, m), 1.42–1.44 (4H, m), 1.32–1.36 (8H, m). 13C NMR (125 MHz, CD\textsubscript{3}CN, 293 K) \(\delta\) (ppm): 161.3, 133.0, 132.8, 131.5, 131.3, 131.1, 130.2, 130.1, 130.0, 123.0, 115.9, 69.1, 52.2, 52.1, 30.3, 30.1, 29.9, 26.7.

Fig. S5 1H NMR spectrum of compound 2.
3. Characterization of linear supramolecular polymer 3 and supramolecular polymer network 4

3.1. UV/Vis titrations between Zn(OTf)$_2$ and monomer 1

Fig. S7 Shows the UV/Vis titration spectra between Zn(OTf)$_2$ and monomer 1. It was performed by stepwise addition of Zn(OTf)$_2$ (320 μM in CH$_3$CN) to a 16.0 μM solution of the monomer 1 in 1:1 CHCl$_3$/CH$_3$CN (2.0 mL).
Fig. S7 UV/Vis titration curve of monomer 1 with increasing amount of Zn(OTf)$_2$; Inset: Plot of the absorbance intensity at 312 nm versus the amount of Zn(OTf)$_2$.

3.2. 1H NMR spectra of supramolecular polymer 3 at the monomer concentration of 25.0 mM

Fig. S8 1H NMR spectra (500 MHz, 1:1 CDCl$_3$/CD$_3$CN, 293K) of (a) monomer 1 and supramolecular polymer 3 constructed by mixing equimolar Zn(OTf)$_2$ and 1 at different concentrations: (b) 1.00; (c) 3.00; (d) 5.00; (e) 8.00; (f) 10.0; (g) 15.0; (h)
20.0; (i) 25.0 mM. Here “l” and “c” denote the linear and cyclic species, respectively.

3.3. 2D H-H COSY spectrum of supramolecular polymer 3 at the monomer concentration of 25.0 mM

![2D H-H COSY spectrum](image)

Fig. S9 Partial 2D H-H COSY spectrum (400 MHz, 1:1 CDCl$_3$/CD$_3$CN, 293K) of supramolecular polymer 3.

3.4. NOESY spectrum of supramolecular polymer network 4 at the monomer concentration of 25.0 mM
3.5 The effect of the content of cross-linker 2 on reduced viscosity of supramolecular polymer network 4.
Fig. S11 Reduced viscosity of supramolecular polymer network 4 (25.0 mM linear supramolecular polymer 3 with different ratio of cross-linker 2) (1:1 CHCl₃/CH₃CN, 298 K).

3.6. UV/Vis titrations of 1·Zn²⁺ with different amount of cyclen and 1·Zn²⁺, cyclen with different amount of Zn²⁺

Fig. S12 UV/Vis titration curve of 1·Zn²⁺ with increasing amount of cyclen.
Fig. S13 UV/Vis titration curve of 1·Zn2+ with cyclen (32.0 μM), then addition of different amounts of Zn2+.

References:
