Supporting Information

Boron-trihalide-promoted Regioselective Ring-opening Reactions of \(\text{gem}\)-Difluorocyclopropyl Ketones

Tang-Po Yang, Qiang Li, Jin-Hong Lin and Ji-Chang Xiao*

Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

Contents

1. General Information……………………………………………………………S2
2. General Procedure for the Synthesis of Aryl vinyl ketones……………S2
3. General Procedure for the Synthesis of \(\text{gem}\)-Difluorocyclopropyl Ketones……………………………………………………………S5
4. General Procedure for the Ring-opening of \(\text{gem}\)-Difluorocyclopropyl Ketones Promoted by Boron Trifluoride…………………………..S10
5. General Procedure for the Ring-opening of \(\text{gem}\)-Difluorocyclopropyl Ketones Promoted by Boron Trichloride………………………………..S15
6. General Procedure for the Ring-opening of \(\text{gem}\)-Difluorocyclopropyl Ketones Promoted by Boron Tribromide…………………………..S19
7. Copies of \(^1\text{H}\) NMR, \(^{19}\text{F}\) NMR and \(^{13}\text{C}\) NMR Spectra……………..S24
General Information
Reagents and solvents were purchased from commercial sources and used as received. Tetramethylsilane or residual proton signals were used as internal standards for 1H NMR, 13C NMR and 19F NMR spectra. Data for 1H NMR, 13C NMR and 19F NMR were recorded as follows: chemical shift (δ, ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, brs = broad singlet, coupling constant(s) in Hz, integration).

General Procedure for the Synthesis of Aryl vinyl ketones:
Into the solution of paraformaldehyde (0.3 mol) and TAMA (N-methylanilinium trifluoroacetate, 50 mmol) in THF (50 mL) was added aryl methyl ketone (50 mmol) under N$_2$ atmosphere. The mixture was refluxed for 10 h. After being cooled to room temperature, the solvent was removed by concentration. The residue was dissolved with ethyl acetate. Hydrochloric acid solution was added to neutralize the mixture. The organic solution was separated and dried over Na$_2$SO$_4$. The solvent was removed by concentration, and the residue was subjected to silica-gel column chromatography with hexane/ethyl acetate to afford the aryl vinyl ketones product.

1-phenylprop-2-en-1-one1

![5a](image)

Colorless liquid (55%). 1H NMR (300 MHz, CDCl$_3$): δ 7.95 (d, $J = 7.7$ Hz, 2 H), 7.58 (t, $J = 7.4$ Hz, 1 H), 7.48 (t, $J = 7.7$ Hz, 2 H), 7.16 (dd, $J = 17.1$, 10.7 Hz, 1 H), 6.44 (d, $J = 17.1$ Hz, 1 H), 5.94 (d, $J = 10.6$ Hz, 1 H) ppm.

1-(p-tolyl)prop-2-en-1-one1

![5b](image)

Colorless liquid (42%). 1H NMR (300 MHz, CDCl$_3$): δ 7.87 (d, $J = 8.3$ Hz, 2 H), 7.28 (d, $J = 8.3$ Hz, 2 H), 7.17 (dd, $J = 17.1$, 10.5 Hz, 1 H), 6.43 (dd, $J = 17.1$, 1.7 Hz, 1 H), 5.90 (dd, $J = 10.5$, 1.7 Hz, 1 H).
Hz, 1 H), 2.42 (s, 3 H) ppm.

1-(4-methoxyphenyl)prop-2-en-1-one

Colorless liquid (40%). 1H NMR (300 MHz, CDCl$_3$): δ 7.97 (d, $J = 8.9$ Hz, 2 H), 7.18 (dd, $J = 17.1$, 10.5 Hz, 1 H), 6.96 (d, $J = 8.9$ Hz, 2 H), 6.43 (dd, $J = 17.1$, 1.5 Hz, 1 H), 5.88 (dd, $J = 10.5$ Hz, $J = 1.5$ Hz, 1 H), 3.88 (s, 3 H) ppm.

1-(3-methoxyphenyl)prop-2-en-1-one

Colorless liquid (71%). 1H NMR (300 MHz, CDCl$_3$): δ 7.56-7.47 (m, 2 H), 7.39 (t, $J = 7.8$ Hz, 1 H), 7.19-7.10 (m, 2 H), 6.44 (d, $J = 17.0$ Hz, 1 H), 5.93 (d, $J = 10.5$ Hz, 1 H), 3.87 (s, 3 H) ppm.

1-(4-fluorophenyl)prop-2-en-1-one

Colorless liquid (37%). 1H NMR (300 MHz, CDCl$_3$): δ 7.99 (m, 2 H), 7.14 (m, 3 H), 6.44 (dd, $J = 17.0$ Hz, $J = 1.5$ Hz, 1 H), 5.94 (dd, $J = 10.6$, 1.5 Hz, 1 H) ppm; 19F NMR (282 MHz, CDCl$_3$): δ = -105.55 - -105.64 (m, 1 F) ppm.

1-(4-chlorophenyl)prop-2-en-1-one
Colorless liquid (72%). 1H NMR (300 MHz, CDCl$_3$): δ 7.90 (d, $J = 8.4$ Hz, 2 H), 7.46 (d, $J = 8.4$ Hz, 2 H), 7.12 (dd, $J = 17.1$, 10.5 Hz, 1 H), 6.45 (dd, $J = 17.1$, 1.1 Hz, 1 H), 5.96 (dd, $J = 10.5$ Hz, $J = 1.1$ Hz, 1 H) ppm.

1-(4-bromophenyl)prop-2-en-1-one1

Colorless liquid (59%). 1H NMR (300 MHz, CDCl$_3$): $\delta = 7.82$ (d, $J = 8.5$ Hz, 2 H), 7.63 (d, $J = 8.5$ Hz, 2 H), 7.11 (dd, $J = 17.2$, 10.5 Hz, 1 H), 6.45 (d, $J = 17.2$ Hz, 1 H), 5.96 (d, $J = 10.5$ Hz, 1 H) ppm.

1-(3-chlorophenyl)prop-2-en-1-one2

Colorless liquid (32%). 1H NMR (300 MHz, CDCl$_3$): $\delta = 7.92$ (t, $J = 1.4$ Hz, 1 H), 7.82 (d, $J = 7.9$ Hz, 1 H), 7.55 (d, $J = 7.9$ Hz, 1 H), 7.43 (t, $J = 7.9$ Hz, 1 H), 7.11 (dd, $J = 17.3$, 10.6 Hz, 1 H), 6.46 (dd, $J = 17.2$, 1.7 Hz, 1 H), 5.98 (dd, $J = 10.6$, 1.7 Hz, 1 H) ppm.

1-(3-bromophenyl)prop-2-en-1-one1
Colorless liquid (51%). 1H NMR (300 MHz, CDCl₃): δ 8.07 (t, $J = 1.8$ Hz, 1 H), 7.86 (dt, $J = 7.9$, 1.2 Hz, 1 H), 7.73-7.69 (m, 1 H), 7.37 (t, $J = 7.9$ Hz, 1 H), 7.11 (dd, $J = 17.3$, 10.5 Hz, 1 H), 6.46 (dd, $J = 17.3$, 1.5 Hz, 1 H), 5.98 (dd, $J = 10.5$, 1.5 Hz, 1 H) ppm.

1-(4-nitrophenyl)prop-2-en-1-one

![Structure](5j)

White solid (27%) 1H NMR (300 MHz, CDCl₃): δ 8.34 (d, $J = 8.7$ Hz, 2 H), 8.08 (d, $J = 8.7$ Hz, 2 H), 7.13 (dd, $J = 17.2$, 10.5 Hz, 1 H), 6.49 (d, $J = 17.2$ Hz, 1 H), 6.08 (d, $J = 10.5$ Hz, 1 H) ppm.

1-(naphthalen-2-yl)prop-2-en-1-one

![Structure](5k)

White solid (45%) 1H NMR (300 MHz, CDCl₃): δ 8.47 (s, 1 H), 8.05 (dd, $J = 8.6$, 1.5 Hz, 1 H), 7.99-7.88 (m, 3 H), 7.65-7.54 (m, 2 H), 7.33 (dd, $J = 17.2$, 10.5 Hz, 1 H), 6.51 (dd, $J = 17.2$, 1.5 Hz, 1 H), 5.99 (dd, $J = 10.5$, 1.5 Hz, 1 H) ppm.

1-cyclohexylprop-2-en-1-one

![Structure](5l)

Colorless liquid (16%) 1H NMR (400 MHz, CDCl₃) δ = 6.41 (dd, $J = 17.5$, 10.5 Hz, 1 H), 6.24 (dd, $J = 17.5$, 1.4 Hz, 1 H), 5.76 – 5.71 (m, 1 H), 2.60 (ddd, $J = 11.3$ Hz, $J = 7.3$ Hz, 1 H), 1.86 – 1.74 (m, 4 H), 1.68 (d, $J = 10.5$ Hz, 1 H), 1.42 – 1.17 (m, 5 H) ppm.

General Procedure for the Synthesis of gem-Difluorocyclopropyl Ketones:

Into the mixture of aryl vinyl ketones (20 mmol) and anhydrous sodium fluoride (2 mmol) was added m-xylene (1 mL) under N₂. The mixture was heated to 110°C and stirred for 5 min. TFDA
(FSO₂CF₂CO₂SiMe₃, 40 mmol) was added dropwise in 30 min. Then the mixture was stirred for further 30 min at 110°C. When the substrate was completely conversed detected by TLC, the mixture was cooled to room temperature. After removal of the solvent under reduced pressure, the residue was subjected to column chromatography to afford the pure product (Hexane : Et₂O = 20 : 1).

(2,2-difluorocyclopropyl)(phenyl)methanone⁶

![Image of molecule 1a]

Colorless liquid (77%). ¹H NMR (300 MHz, CDCl₃): δ 8.01 (d, J = 7.3 Hz, 2 H), 7.63 (t, J = 7.3 Hz, 1 H), 7.52 (t, J = 7.3 Hz, 2 H), 3.39 (m, 1 H), 2.43 (m, 1 H), 1.81 (m, 1 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ: -124.16 (dtd, J = 149.0, 13.0, 6.0 Hz, 1 F), -140.04 (ddd, J = 149.0, 12.2, 4.8 Hz, 1 F) ppm;

(2,2-difluorocyclopropyl)(p-tolyl)methanone⁷

![Image of molecule 1b]

White solid (38%) ¹H NMR (300 MHz, CDCl₃): δ 7.91 (d, J = 8.0 Hz, 2 H), 7.31 (d, J = 8.0 Hz, 2 H), 3.37 (m, 1 H), 2.41 (m, 1 H), 2.44 (s, 3 H), 1.78 (m, 1 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ = -124.18 (dtd, J = 149.0, 12.4, 5.9 Hz 1 F), -140.13 (ddd, J = 149.0, 12.1, 4.7 Hz, 1 F) ppm

(2,2-difluorocyclopropyl)(4-methoxyphenyl)methanone⁷

![Image of molecule 1c]

Slightly yellow liquid (41%) ¹H NMR (300 MHz, CDCl₃): δ 8.00 (d, J = 8.7 Hz, 2 H), 6.98 (d, J = 8.7 Hz, 2 H), 3.89 (s, 3 H), 3.34 (m, 1 H), 2.40 (m, 1 H), 1.77 (m, 1 H) ppm; ¹⁹F NMR (282 MHz,
CDCl₃): δ = -124.39 (dtd, J = 149.0, 13.0, 5.8 Hz, 1 F), -140.35 (ddd, J = 149.0, 12.2, 4.6 Hz, 1 F) ppm

(2,2-difluorocyclopropyl)(3-methoxyphenyl)methanone⁷

Colorless liquid (71%) ¹H NMR (300 MHz, CDCl₃): δ 7.60 (d, J = 7.9 Hz, 1 H), 7.52 (s, 1 H), 7.43 (t, J = 7.9 Hz, 1 H), 7.17 (dd, J = 7.9, 2.6 Hz, 1 H), 3.87 (s, 3 H), 3.38 (m, 1 H), 2.43 (m, 1 H), 1.81 (m, 1 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ = -124.73 (dm, J = 148.0 Hz, 1 F), -140.65 (dm, J = 148.0 Hz, 1 F) ppm

(2,2-difluorocyclopropyl)(4-fluorophenyl)methanone⁷

Colorless liquid (28%) ¹H NMR (300 MHz, CDCl₃): δ 8.08-8.02 (m, 2 H), 7.23-7.16 (m, 2 H), 3.35 (m, 1 H), 2.43 (m, 1 H), 1.82 (m, 1 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ = -103.89 (m, 1 F), -124.28 (dtd, J = 148.5, 12.7, 5.9 Hz, 1 F), -140.07 (ddm, J = 148.5, 12.0 Hz, 1 F) ppm

(4-chlorophenyl)(2,2-difluorocyclopropyl)methanone⁶

Slightly yellow solid (22%) ¹H NMR (300 MHz, CDCl₃): δ 7.95 (d, J = 8.4 Hz, 2 H), 7.49 (d, J = 8.4 Hz, 2 H), 3.34(m, 1 H), 2.43 (m, 1 H), 1.82 (m, 1 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -124.07 (dtd, J = 149.0, 12.3, 5.7 Hz, 1 F), -139.90 (ddd, J = 149.0, 12.2, 4.9 Hz, 1 F) ppm

(4-bromophenyl)(2,2-difluorocyclopropyl)methanone
White solid (m.p. 67-69°C, 32%) 1H NMR (300 MHz, CDCl$_3$): δ 7.87 (d, $J = 8.8$ Hz, 2 H), 7.66 (d, $J = 8.8$ Hz, 2 H), 3.35 (m, 1 H), 2.43 (m, 1 H), 1.84 (m, 1 H) ppm; 19F NMR (282 MHz, CDCl$_3$): δ -124.56 (dt, $J = 148.3$, 12.3, 5.9 Hz, 1 F), -140.36 (ddd, $J = 148.3$, 12.1, 4.7 Hz, 1 F) ppm; 13C NMR (CDCl$_3$, 100 MHz): δ 189.5, 135.7, 132.3, 129.9, 129.1, 111.5 (t, $J = 287.6$ Hz), 29.7 (dd, $J = 11.7$, 9.6 Hz), 15.8 (dd, $J = 11.0$, 8.8 Hz) ppm; EI-MS (m/z, %): 183 (100), 185 (92.6), 76 (54.0), 155 (50.2), 157 (49.6), 75 (47.3), 50 (44.1), 133 (39.2). IR (KBr): 3117, 3095, 3075, 3060, 1671, 1582, 1453, 1400, 1381, 1319, 1247, 1180, 1008, 846, 703, 658, 515, 479 cm$^{-1}$. HRMS for C$_{10}$H$_7$OF$_2$Br: 259.9648; Found: 259.9649.

(3-chlorophenyl)(2,2-difluorocyclopropyl)methanone

White solid (70%) 1H NMR (300 MHz, CDCl$_3$): δ 7.97 (t, $J = 1.8$ Hz, 1 H), 7.89 (dt, $J = 7.9$, 1.8 Hz, 1 H), 7.60 (dt, $J = 7.9$, 1.8 Hz, 1 H), 7.47 (t, $J = 7.9$ Hz, 1 H), 3.36 (m, 1 H), 2.45 (m, 1 H), 1.84 (m, 1 H) ppm; 19F NMR (282 MHz, CDCl$_3$): $\delta = -124.52$ (dm, $J = 148.4$ Hz, 1 F), -140.36 (dm, $J = 148.1$ Hz, 1 F) ppm.

(3-bromophenyl)(2,2-difluorocyclopropyl)methanone

White solid (m.p. 32-33°C, 62%) 1H NMR (300 MHz, CDCl$_3$): δ 8.12 (s, 1 H), 7.93 (d, $J = 7.9$ Hz, 1 H), 7.75 (d, $J = 7.9$ Hz, 1 H), 7.41 (t, $J = 7.9$ Hz, 1 H), 3.37 (m, 1 H), 2.44 (m, 1 H), 1.85 (m, 1 H) ppm; 19F NMR (282 MHz, CDCl$_3$): $\delta = -124.48$ (dt, $J = 148.5$, 12.2, 6.0 Hz, 1 F), -140.28 (ddd, $J = 148.5$, 12.1, 4.8 Hz, 1 F) ppm; 13C NMR (100 MHz, CDCl$_3$): δ 189.3, 138.7, 136.6,
131.4, 130.4, 127.0, 123.2, 111.5 (dd, \(J = 288.4, 286.9 \) Hz), 29.8 (dd, \(J = 11.7, 10.3 \) Hz), 15.9 (dd, \(J = 11.0, 8.8 \) Hz) ppm; EI-MS (m/z, %): 183 (100), 185 (99), 155 (48.6), 157 (47.7), 133 (28.6), 76 (28.0), 181 (26.6), 75 (22.9). IR (KBr): 3116, 3062, 3026, 1669, 1566, 1459, 1374, 1316, 1247, 1203, 1055, 1008, 929, 919, 908, 817, 773, 704, 679, 667, 478 cm\(^{-1}\). HRMS for C\(_{10}\)H\(_7\)OF\(_2\)Br: 259.9648; Found: 259.9651.

(2,2-difluorocyclopropyl)(4-nitrophenyl)methanone

\[
\begin{figure}[h]
\centering
\includegraphics[width=0.2\textwidth]{image}
\caption{1j}
\end{figure}
\]

White solid (m.p. 62-64°C, 44%) \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta \) 8.38 (d, \(J = 8.5 \) Hz, 2 H), 8.18 (d, \(J = 8.5 \) Hz, 2 H), 3.44 (m, 1 H), 2.50 (m, 1 H), 1.94 (m, 1 H) ppm; \(^{19}\)F NMR (282 MHz, CDCl\(_3\)): \(\delta \) = -123.66 (dt, \(J = 148.1, 12.2, 6.0 \) Hz, 1 F), -139.32 (ddd, \(J = 148.1, 12.0, 4.7 \) Hz, 1 F) ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta \) 189.3, 150.7, 141.3, 129.4, 124.1, 111.4 (t, \(J = 288.5 \) Hz), 30.2 (dd, \(J = 11.8, 10.3 \) Hz), 16.3 (dd, \(J = 11.4, 9.1 \) Hz) ppm; EI-MS (m/z, %): 150 (100), 104 (58.4), 76 (54.2), 133 (41.3), 50 (37.8), 51 (26.3), 75 (25.6), 77 (25.5). IR (KBr): 3113, 3087, 3052, 1677, 1607, 1451, 1413, 1321, 1298, 1208, 1052, 963, 923, 856, 729, 703, 685, 479 cm\(^{-1}\). HRMS for C\(_{10}\)H\(_7\)NO\(_3\)F\(_2\): 227.0394; Found: 227.0397.

(2,2-difluorocyclopropyl)(naphthalen-2-yl)methanone

\[
\begin{figure}[h]
\centering
\includegraphics[width=0.2\textwidth]{image}
\caption{1k}
\end{figure}
\]

White solid (m.p. 91-93 °C, 57%) \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta \) 8.52 (s, 1 H), 8.07-7.98 (m, 2 H), 7.91 (t, \(J = 8.8 \) Hz, 2 H), 7.65-7.55 (m, 2 H), 3.56 (m, 1 H), 2.49 (m, 1 H), 1.86 (m, 1 H) ppm; \(^{19}\)F NMR (282 MHz, CDCl\(_3\)): \(\delta \) = -124.51 (dt, \(J = 148.1, 12.5, 5.9 \) Hz, 1 F), -140.43 (ddd, \(J = 148.1, 12.3, 5.1 \) Hz, 1 F) ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta \) 190.4, 135.9, 134.5, 132.5, 130.5, 129.7, 128.9, 128.8, 127.9, 127.1, 123.8, 111.7 (dd, \(J = 288.1, 286.6 \) Hz), 29.84 (dd, \(J = 11.8, 9.6 \) Hz), 15.76 (dd, \(J = 11.0, 9.0 \) Hz) ppm; EI-MS (m/z, %): 127 (100), 155 (75.2), 232 (46.3), 128
Colorless liquid (21%) 1H NMR (400 MHz, CDCl$_3$) $\delta = 2.79$ (ddd, $J = 14.0$, 10.3, 8.0 Hz, 1H), 2.47 (tt, $J = 11.1$, 3.4 Hz, 1H), 2.18 (m, 1H), 2.02 – 1.95 (m, 1H), 1.87 (dd, $J = 10.0$, 4.4, 1H), 1.83 – 1.75 (m, 2H), 1.73 – 1.57 (m, 2H), 1.45 – 1.16 (m, 5H), 19F NMR (282 MHz, CDCl$_3$): $\delta = -124.7$ – -125.2 (m, 1 F), -139.9 – -140.4 (m, 1 F) ppm; 13C NMR (101 MHz, CDCl$_3$) $\delta = 203.36$, 111.38 (dd, $J = 288.0$, 285.3 Hz), 51.65, 31.02 (dd, $J = 12.0$, 9.0 Hz), 27.85, 27.52, 25.68, 25.50, 25.22, 15.54 (dd, $J = 11.1$, 9.0 Hz). IR (KBr): 2933, 2857, 1709, 1451, 1374, 1317, 1241, 1044, 1022, 1005, 955, 911, 893, 669; GC-MS : 108.1; HRMS: 108.1014; Found:108.1013.

General procedure for the ring-opening of gem-difluorocyclopropyl ketones promoted by boron trifluoride:

Into the solution of gem-difluorocyclopropyl ketone (0.2 mmol) in CHCl$_3$ (1 mL) was added BF$_3$•Et$_2$O (0.4 mmol). The mixture was stirred at 60 °C until the reaction was complete determined by 19F NMR. After being cooled to room temperature, saturated NaHCO$_3$ solution was added to quench the reaction. After extraction with CH$_2$Cl$_2$ (10 mL x 3), the organic solution was dried over Na$_2$SO$_4$. The solvent was removed by concentration, and the residue was subjected to column chromatography to afford the β-trifluoromethyl ketones.

4,4,4-trifluoro-1-phenylbutan-1-one

White solid (95%) 1H NMR (300 MHz, CDCl$_3$): $\delta = 7.98$ (d, $J = 7.3$ Hz, 2 H), 7.61 (t, $J = 7.3$ Hz, 1 H), 7.49 (t, $J = 7.3$ Hz, 2 H), 3.27 (t, $J = 7.7$ Hz, 2 H), 2.68-2.52 (m, 2 H) ppm; 19F NMR (282 MHz, CDCl$_3$): $\delta = -66.39$ (t, $J = 10.3$ Hz, 3 F) ppm.
4,4,4-Trifluoro-1-(p-tolyl)butan-1-one.

\[
\begin{align*}
\text{O} & \quad \text{CF}_3 \\
\text{2b}
\end{align*}
\]

White solid (m.p. 83-84°C, 85%) \(^1\)H NMR (300 MHz, CDCl\(_3\)): δ 7.87 (d, \(J = 8.1\) Hz, 2 H), 7.28 (d, \(J = 8.1\) Hz, 2 H), 3.23 (t, \(J = 7.5\) Hz, 2 H), 2.66-2.50 (m, 2 H), 2.42 (s, 3 H) ppm.; \(^{19}\)F NMR (282 MHz, CDCl\(_3\)): δ -66.21 (t, \(J = 10.3\) Hz, 3 F) ppm.; \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): δ 195.9, 144.5, 133.8, 129.5, 128.1, 127.2 (q, \(J = 275.9\) Hz), 31.05 (t, \(J = 2.9\) Hz), 28.42 (q, \(J = 29.3\) Hz), 21.63 ppm.; EI-MS (m/z, %): 119 (100), 91 (37.2), 65 (11.6), 120 (9.03), 89 (7.71), 77 (6.04), 216 (5.99), 90 (5.20).; IR(KBr): 3115, 2994, 1680, 1609, 1439, 1337, 1309, 1259, 1227, 1147, 1098, 983, 976, 824, 781, 641, 570, 459 cm\(^{-1}\).; HRMS for C\(_{11}\)H\(_{11}\)OF\(_3\): 216.0762; Found: 216.0760.

4,4,4-Trifluoro-1-(4-methoxyphenyl)butan-1-one.

\[
\begin{align*}
\text{O} & \quad \text{CF}_3 \\
\text{MeO} & \\
\text{2c}
\end{align*}
\]

White solid (m.p. 65-67°C, 76%) \(^1\)H NMR (300 MHz, CDCl\(_3\)): δ 7.95 (d, \(J = 8.8\) Hz, 2 H), 6.95 (d, \(J = 8.8\) Hz, 2 H), 3.88 (s, 3 H), 3.21 (t, \(J = 7.6\) Hz, 2 H), 2.66-2.50 (m, 2 H) ppm; \(^{19}\)F NMR (282 MHz, CDCl\(_3\)): δ -66.80 (t, \(J = 11.9\) Hz, 3 F); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): δ 194.8, 163.9, 130.3, 129.3, 127.3 (q, \(J = 275.9\) Hz), 113.9, 55.5, 30.78 (d, \(J = 2.9\) Hz), 28.47 (q, \(J = 30\) Hz) ppm.

4,4,4-Trifluoro-1-(3-methoxyphenyl)butan-1-one.

\[
\begin{align*}
\text{O} & \quad \text{CF}_3 \\
\text{OMe} & \\
\text{2d}
\end{align*}
\]

Colorless liquid (84%) \(^1\)H NMR (300 MHz, CDCl\(_3\)): δ 7.54 (d, \(J = 7.8\) Hz, 1 H), 7.48 (s, 1 H), 7.39 (t, \(J = 7.8\) Hz, 1 H), 7.14 (d, \(J = 7.8\) Hz, 1 H), 3.86 (s, 3 H), 3.24 (t, \(J = 7.5\) Hz, 2 H), 2.66-2.50 (m, 2 H) ppm; \(^{19}\)F NMR (282 MHz, CDCl\(_3\)): δ -66.14 (t, \(J = 10.3\) Hz, 3 F) ppm; \(^{13}\)C
NMR (CDCl3, 100 MHz): δ 196.2, 160.0, 137.5, 129.8, 127.2 (q, J = 275.9 Hz), 120.6, 120.0, 112.4, 55.45, 31.31 (q, J = 2.2 Hz), 28.40 (q, J = 30.1 Hz) ppm; EI-MS (m/z, %): 135 (100), 232 (36.33), 107 (28.69), 77 (17.48), 92 (11.55), 136 (9.33), 64 (4.73), 233 (4.61); IR (KBr): 3078, 3008, 2963, 2840, 1682, 1600, 1585, 1487, 1447, 1388, 1365, 1259, 1146, 1099, 1070, 977, 874, 778, 686, 619, 556 cm⁻¹; HRMS for C11H11O2F3: 232.0711; Found: 232.0712.

4,4,4-Trifluoro-1-(4-fluorophenyl)butan-1-one.

Slightly yellow liquid (95%) ¹H NMR (300 MHz, CDCl₃): δ 8.02 (dd, J = 8.8 Hz, J = 5.2 Hz, 2 H), 7.17 (t, J = 8.8 Hz, 2 H), 3.25 (t, J = 7.3 Hz, 2H), 2.68-2.52 (m, 2 H) ppm.; ¹⁹F NMR (282 MHz, CDCl₃): δ -66.85 (t, J = 9.9 Hz, 3 F), -104.57 (m, 1 F) ppm.; ¹³C NMR (CDCl₃, 100 MHz): δ 194.7, 166.1 (d, J = 255.3 Hz), 132.6 (d, J = 3 Hz), 130.7 (d, J = 9.5 Hz), 127.1 (q, J = 275.9 Hz), 115.9 (d, J = 22Hz), 31.14 (d, J = 2.2 Hz), 28.35 (q, J = 30.1 Hz) ppm.; EI-MS (m/z, %): 123 (100), 95 (37.0), 75 (11.7), 124 (9.68), 220 (4.75), 69 (4.07), 201 (3.85), 96 (3.18); IR (KBr): 3077, 2964, 2924, 1693, 1600, 1511, 1447, 1413, 1333, 1262, 1226, 1154, 1101, 980, 843, 642, 590, 569, 492, 418 cm⁻¹; HRMS for C₁₀H₈OF₄: 220.0511; Found: 220.0510.

1-(4-Chlorophenyl)-4,4,4-trifluorobutan-1-one.

White solid (m.p. 68-70°C, 75%) ¹H NMR (300 MHz, CDCl₃): δ 7.92 (d, J = 8.5 Hz, 2 H), 7.47 (d, J = 8.5 Hz, 2 H), 3.23 (t, J = 7.5 Hz, 2 H), 2.64-2.55 (m, 2 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -66.19 (t, J = 10.3 Hz, 3 F) ppm; ¹³C NMR (CDCl₃, 100MHz): δ 195.1, 140.2, 134.5, 129.4, 129.1, 127.1 (q, J = 275.8 Hz), 31.22 (d, J = 2.2 Hz), 28.31 (q, J = 30.0 Hz) ppm; EI (m/z, %): 139 (100), 141 (35.1), 111 (31.7), 75 (14.7), 113 (10.5), 140 (9.39), 236 (6.36), 76 (4.40); IR(KBr): 1686, 1651, 1593, 1489, 1441, 1403, 1335, 1260, 1144, 1096, 979, 840, 827, 782, 629, 526 cm⁻¹; HRMS for C₁₀H₈OF₃Cl: 236.0216; Found: 236.0218.
1-(4-Bromophenyl)-4,4,4-trifluorobutan-1-one.

White solid (m.p. 82-84°C, 93%) \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 7.83 (d, \(J = 8.7\) Hz, 2 H), 7.63 (d, \(J = 8.7\) Hz, 2 H), 3.22 (t, \(J = 7.5\) Hz, 2H), 2.67-2.51 (m, 2 H) ppm; \(^{19}\)F NMR (282 MHz, CDCl\(_3\)): \(\delta\) -66.21 (t, \(J = 10.3\) Hz, 3 F) ppm; \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta\) 195.3, 134.9, 132.1, 129.5, 128.9, 127.1 (q, \(J = 275.8\) Hz), 31.20 (d, \(J = 2.9\) Hz), 28.29 (q, \(J = 29.3\) Hz) ppm; EI-MS (m/z, %): 183 (100), 185 (82.34), 157 (32.36), 155 (31.20), 76 (26.45), 75 (21.29), 50 (17.32), 193 (16.11); IR (KBr): 2966.3, 2922.8, 1686.4, 1588.6, 1560.8, 1388.4, 1259.3, 1010.9, 780.7, 626.4 cm\(^{-1}\). HRMS for C\(_{10}\)H\(_8\)OF\(_3\)Br: 279.9711; Found: 279.9715.

1-(3-Chlorophenyl)-4,4,4-trifluorobutan-1-one.

Slightly yellow liquid (70%) \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 7.94 (t, \(J = 1.8\) Hz, 1 H), 7.85 (dt, \(J = 7.9\) Hz, \(J = 1.8\)Hz, 1 H), 7.58 (dm, \(J = 7.9\) Hz, 1 H), 7.44 (t, \(J = 7.9\) Hz, 1 H), 3.25 (t, \(J = 7.6\) Hz, 2 H), 2.68-2.52 (m, 2 H) ppm; \(^{19}\)F NMR (282 MHz, CDCl\(_3\)): \(\delta\) -66.82 (t, \(J = 9.9\) Hz, 3 F) ppm; \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta\) 195.1, 137.6, 135.2, 133.6, 130.1, 128.2, 127.0 (q, \(J = 275.8\) Hz), 126.1, 31.38 (q, \(J = 2.9\) Hz), 28.26 (q, \(J = 30.1\) Hz) ppm; EI-MS (m/z, %): 139 (100), 141 (35.4), 111 (35.0), 75 (13.8), 113 (11.7), 236 (9.94), 140 (9.37), 76 (4.71); IR (KBr): 3071, 2963, 2923, 1573, 1473, 1451, 1422, 1389, 1322, 1272, 1224, 1145, 1001, 999, 978, 977, 903, 805, 776, 720, 681, 660, 620, 570 cm\(^{-1}\). HRMS for C\(_{10}\)H\(_8\)OF\(_3\)Cl: 236.0216; Found: 236.0215.

1-(3-Bromophenyl)-4,4,4-trifluorobutan-1-one.\(^{10}\)
Slightly yellow liquid (89%) \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 8.09 (s, 1 H), 7.89 (d, \(J = 7.9\) Hz, 1 H), 7.73 (d, \(J = 7.9\) Hz, 1 H), 7.38 (t, \(J = 7.9\) Hz, 1 H), 3.24 (t, \(J = 7.3\) Hz, 2 H), 2.67-2.51 (m, 2 H) ppm; \(^{19}\)F NMR (282 MHz, CDCl\(_3\)): \(\delta\) -66.28 (t, \(J = 10.4\) Hz, 3 F) ppm; \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta\) = 195.0, 137.8, 136.5, 131.2, 130.4, 127.0 (q, \(J = 275.9\) Hz), 126.5, 31.36 (q, \(J = 2.9\) Hz), 28.27 (q, \(J = 29.3\) Hz) ppm; EI-MS (m/z, %): 183 (100), 185 (93.62), 76 (41.18), 155 (38.88), 157 (37.76), 75 (33.12), 50 (28.50), 77 (19.49); IR (KBr): 3067.6, 2962.0, 2922.0, 1696.5, 1568.2, 1388.5, 1331.1, 1100.2, 976.4, 774.1, 679.9 cm\(^{-1}\). HRMS for C\(_{10}\)H\(_8\)OF\(_3\)Br: 279.9711; Found: 279.9716.

4,4,4-Trifluoro-1-(4-nitrophenyl)butan-1-one.

White solid (m.p. 69-71°C, 77%) \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 8.36 (d, \(J = 8.5\) Hz, 2 H), 8.16 (d, \(J = 8.5\) Hz, 2 H), 3.34 (t, \(J = 7.3\) Hz, 2 H), 2.72-2.56 (m, 2 H) ppm.; \(^{19}\)F NMR (282 MHz, CDCl\(_3\)): \(\delta\) -66.82 (t, \(J = 11.9\) Hz, 3 F); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta\) 194.8, 150.7, 140.4, 129.1, 126.9 (q, \(J = 275.8\) Hz), 124.0, 31.88 (d, \(J = 2.9\) Hz), 28.20 (q, \(J = 30.1\) Hz) ppm.; EI-MS (m/z, %): 150 (100), 104 (23.8), 76 (14.2), 92 (10.8), 77 (8.60), 151 (8.34), 50 (7.03), 75 (6.17); IR (KBr): 3114, 2931, 1691, 1604, 1513, 1444, 1337, 1264, 1225, 1151, 1095, 978, 966, 781, 744, 688, 628, 571, 507 cm\(^{-1}\); HRMS for C\(_{10}\)H\(_8\)N\(_2\)O\(_3\)F\(_3\): 247.0456; Found: 247.0452.

4,4,4-Trifluoro-1-(naphthalen-2-yl)butan-1-one.
White solid (m.p. 92-94°C, 83%) 1H NMR (300 MHz, CDCl$_3$): δ 8.45 (s, 1 H), 8.02-7.95 (m, 2 H), 7.91-7.86 (m, 2 H), 7.64-7.54 (m, 2 H), 3.38 (t, $J = 7.9$ Hz, 2 H), 2.72-2.56 (m, 2 H) ppm. 19F NMR (282 MHz, CDCl$_3$): δ -66.66 (t, $J = 10.0$ Hz, 3 F) ppm.; 13C NMR (CDCl$_3$, 100 MHz): δ 196.2, 135.8, 133.5, 132.5, 129.8, 129.6, 128.8, 128.7, 127.9, 127.3 (q, $J = 275.1$ Hz), 127.0, 123.6, 31.28 (d, $J = 2.9$ Hz), 28.50 (q, $J = 29.4$ Hz) ppm; EI-MS (m/z, %): 155 (100), 127 (72.5), 252 (26.6), 126 (16.8), 156 (13.1), 77 (11.1), 128 (8.71), 101 (4.94); IR (KBr): 2964, 1683, 1626, 1436, 1420, 1358, 1323, 1262, 1225, 1138, 979, 918, 869, 748, 643, 563, 485, 461 cm$^{-1}$; HRMS for C$_{14}$H$_{11}$OF$_3$: 252.0762; Found: 252.0768.

1-Cyclohexyl-4,4,4-trifluorobutan-1-one

Slightly yellow liquid (74%) 1H NMR (400 MHz, CDCl$_3$) δ = 2.71 – 2.66 (m, 2H), 2.44 – 2.30 (m, 3H), 1.88 – 1.73 (m, 4H), 1.70 – 1.62 (m, 1H), 1.40 – 1.15 (m, 5H). 19F NMR (376 MHz, CDCl$_3$) δ = -66.72 (t, $J = 10.9$ Hz, 3F). 13C NMR (101MHz, CDCl$_3$) δ = 210.09, 126.97 (q, $J = 275.7$ Hz), 50.68, 32.69 (dd, $J = 5.0, 2.4$ Hz), 28.32, 27.82 (dd, $J = 59.4, 29.7$ Hz), 25.63, 25.44. IR (KBr): 2934, 2858, 1714, 1450, 1374, 1326, 1257, 1221, 1141, 997, 969, 624; GC-Ms: 208.1. HRMS: 208.1076; Found: 208.1075.

General Procedure for the ring-opening of gem-difluorocyclopropyl ketones promoted by boron trichloride:

Into the solution of gem-difluorocyclopropyl ketone (0.2 mmol) in CHCl$_3$ (1.0 mL) was added BCl$_3$ (0.4 mL, 1 M in CH$_2$Cl$_2$) slowly at room temperature. The mixture was stirred at the same temperature until the reaction was complete determined by 19F NMR. Saturated NaHCO$_3$ solution was added to quench the reaction. After extraction with CH$_2$Cl$_2$ (10 mL x 3), the organic solution was dried over Na$_2$SO$_4$. The solvent was removed by concentration, and the residue was subjected to column chromatography to afford the β-chlorodifluoromethyl ketones.

4-Chloro-4,4-difluoro-1-phenylbutan-1-one11
Colorless liquid (63%) 1H NMR (400 MHz, CDCl$_3$) δ = 8.00 – 7.96 (m, 2H), 7.63 – 7.58 (m, 1H), 7.51 – 7.46 (m, 2H), 3.34 – 3.29 (m, 2H), 2.86 – 2.75 (m, 2H). 19F NMR (376 MHz, CDCl$_3$) δ = -51.05 (t, J = 12.9 Hz, 2F).

4-Chloro-4,4-difluoro-1-(p-tolyl)butan-1-one

Yellow liquid (82%) 1H NMR (400 MHz, CDCl$_3$) δ = 8.01 (dd, J = 8.2, 5.6 Hz, 2H), 7.16 (t, J = 8.2, 2H), 3.32 – 3.24 (m, 2H), 2.86-2.72 (m, 2H). 19F NMR (376 MHz, CDCl$_3$) δ = -51.12 (t, J = 12.8 Hz, 2F), -104.20 – -104.30 (m, 1F). 13C NMR (101 MHz, CDCl$_3$) δ = 194.69, 165.97 (d, J = 255.7 Hz), 132.53 (d, J = 3.1Hz), 130.67 (d, J = 9.4 Hz), 129.55 (t, J = 291.1 Hz), 115.89 (d, J = 22.0 Hz), 36.24 (t, J = 25.2 Hz), 32.44 (t, J = 2.7 Hz). IR (KBr): 2962, 1692, 1601, 1508, 1436, 1412, 1317, 1231, 1208, 1184, 1158, 1102, 1047, 997, 931, 842, 815, 669, 604, 562, 522, 490; GC-MS: 236.0. HRMS: 236.0214; Found: 236.0216.

4-Chloro-1-(4-chlorophenyl)-4,4-difluorobutan-1-one.
Yellow solid (m.p. 52-54 °C, 77%). 1H NMR (400 MHz, CDCl$_3$) δ = 7.90 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 3.34 – 3.27 (m, 2H), 2.86-2.78 (m, 2H). 19F NMR (376 MHz, CDCl$_3$) δ = -51.00 (t, J = 12.9 Hz, 2F). 13C NMR (101MHz, CDCl$_3$) δ = 195.09, 140.08, 134.37, 129.51 (t, J = 291.2 Hz), 129.40, 129.07, 36.19 (t, J = 25.2 Hz), 32.52 (t, J = 2.8 Hz). IR (KBr): 2959, 2925, 1692, 1591, 1572, 1489, 1435, 1401, 1315, 1299, 1209, 1185, 1094, 1047, 1014, 994, 932, 838, 785, 757, 662, 560, 530, 463; GC-MS: 252.0; HRMS: 251.9919; Found:251.9920.

1-(4-Bromophenyl)-4-chloro-4,4-difluorobutan-1-one.

Yellow solid (m.p. 46-48 °C, 80%). 1H NMR (400 MHz, CDCl$_3$) δ = 7.84 (d, J = 8.0 Hz, 2H), 7.63 (d, J = 8.0 Hz, 2H), 3.31 – 3.23 (m, 2H), 2.86 – 2.72 (m, 2H). 19F NMR (376 MHz, CDCl$_3$) δ = -51.12 (t, J = 12.8 Hz, 2F). 13C NMR (101 MHz, CDCl$_3$) δ = 195.25, 134.77, 132.37 (t, J = 281.1 Hz), 132.07, 129.49, 128.84, 36.15 (t, J = 25.2 Hz), 32.47 (t, J = 2.8 Hz); IR (KBr): 3088, 3062, 2959, 2924, 2855, 2361, 1690, 1586, 1568, 1485, 1398, 1314, 1207, 1070, 1010, 986, 931, 803, 782, 748, 659, 568, 522, 456; GC-MS: 298.0; HRMS: 295.9414; Found:295.9415.

4-Chloro-1-(3-chlorophenyl)-4,4-difluorobutan-1-one.

Yellow liquid (82%) 1H NMR (400 MHz, CDCl$_3$) δ = 7.93 – 7.90 (m, 1H), 7.83 (d, J = 7.8, 1H), 7.57 – 7.52 (m, 1H), 7.44 – 7.38 (m, 1H), 3.29 – 3.23 (m, 2H), 2.84 – 2.71 (m, 2H). 19F NMR (376 MHz, CDCl$_3$) δ = -51.15 (t, J = 12.8 Hz, 2F). 13C NMR (101 MHz, CDCl$_3$) δ = 195.01, 137.52, 135.09, 133.47, 130.06, 129.42 (t, J = 291.3 Hz), 128.07, 126.04, 36.10 (t, J = 25.3 Hz), 32.63 (t, J = 2.8 Hz); IR (KBr): 3069, 2960, 2926, 2855, 1696, 1573, 1473, 1421, 1313, 1207, 1185, 1106, 1047, 938, 904, 778, 728, 698, 681, 670, 570, 558; GC-MS:252.0; HRMS: 251.9918; Found: 251.9920.

1-(3-Bromophenyl)-4-chloro-4,4-difluorobutan-1-one.
4-Chloro-4,4-difluoro-1-(4-nitrophenyl)butan-1-one.

4-Chloro-4,4-difluoro-1-(naphthalen-2-yl)butan-1-one.
4-Chloro-1-cyclohexyl-4,4-difluorobutan-1-one.

\[
\text{CF}_2\text{Cl}
\]

Slightly yellow liquid (49%) \(^1 \text{H NMR (400 MHz, CDCl}_3 \) \(\delta = 2.79-2.68 \) (m, 2H), 2.64 – 2.52 (m, 2H), 2.42-2.32 (m, 1H), 1.89 – 1.73 (m, 4H), 1.71 – 1.63 (m, 1H), 1.42 – 1.12 (m, 5H). \(^{19}\text{F NMR (376 MHz, CDCl}_3 \) \(\delta = -51.19 \) (m, 2F). \(^{13}\text{C NMR (101MHz, CDCl}_3 \) \(\delta = 210.14, 129.53 \) (t, \(J = 291.2 \) Hz), 50.74, 35.81 (t, \(J = 25.0 \) Hz), 34.07 (t, \(J = 2.5 \) Hz), 28.35, 25.64, 25.46. IR (KBr): 2933, 2857, 1713, 1451, 1316, 1294, 1207, 1189, 1102, 1027, 998, 936, 887, 659; GC -MS: 224.1; HRMS: 224.0776; Found: 224.0779.

General Procedure for the ring-opening of \(\text{gem-difluorocyclopropyl ketones} \) promoted by boron tribromide:

Into the solution of \(\text{gem-difluorocyclopropyl ketone} \) (0.2 mmol) in CHCl\(_3\) (1.0 mL) was added \(\text{BBr}_3 \) (1 mL, 0.4 M in CH\(_2\)Cl\(_2\)) slowly at -78 °C. The mixture was stirred at the same temperature until the reaction was complete determined by \(^{19}\text{F NMR} \). After being warmed to room temperature, saturated NaHCO\(_3\) solution was added to quench the reaction. After extraction with CH\(_2\)Cl\(_2\) (10 mL x 3), the organic solution was dried over Na\(_2\)SO\(_4\). The solvent was removed by concentration, and the residue was subjected to silica-gel column chromatography to afford the \(\beta\)-bromodifluoromethyl ketones.

4-Bromo-4,4-difluoro-1-phenylbutan-1-one.

\[
\text{O} \quad \text{CF}_2\text{Br}
\]

Yellow liquid (57%) \(^1 \text{H NMR (400 MHz, CDCl}_3 \) \(\delta = 8.00 – 7.96 \) (m, 2H), 7.63 – 7.57 (m, 1H), 7.52-7.45 (m, 1H), 3.34-3.28 (m, 2H), 2.92-2.80 (m, 2H). \(^{19}\text{F NMR (376MHz, CDCl}_3 \) \(\delta = -44.03 \) (t, \(J = 13.6 \) Hz, 2F). \(^{13}\text{C NMR (101MHz,CDCl}_3 \) \(\delta = 196.15, 136.07, 133.59, 128.75, 128.01, 122.43 \) (t, \(J = 304.7 \) Hz), 38.69 (t, \(J = 22.6 \) Hz), 33.14 (t, \(J = 2.8 \) Hz). IR (KBr): 3063, 2956, 2935,
1690, 1598, 1450, 1321, 1205, 1102, 1041, 917, 747, 689, 627, 554; GC-MS: 262.0; HRMS: 261.9808; Found: 261.9805.

4-Bromo-4,4-difluoro-1-(p-tolyl)butan-1-one.

4-Bromo-4,4-difluoro-1-(4-fluorophenyl)butan-1-one.

4-Bromo-1-(4-chlorophenyl)-4,4-difluorobutan-1-one.

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013
Yellow solid (m.p. 58-60 °C, 71%). 1H NMR (400 MHz, CDCl$_3$) δ = 7.87 (d, $J = 8.3$ Hz, 2H), 7.41 (d, $J = 8.3$ Hz, 2H), 3.27 - 3.20 (m, 2H), 2.87 – 2.74 (m, 2H). 19F NMR (376 MHz, CDCl$_3$) δ = -44.16 (t, $J = 13.5$ Hz, 2F). 13C NMR (101 MHz, CDCl$_3$) δ = 194.92, 140.09, 134.37, 129.41, 129.08, 122.25 (t, $J = 304.6$ Hz), 38.59 (t, $J = 22.7$ Hz), 33.13 (t, $J = 2.8$ Hz). IR (KBr): 2935, 1693, 1591, 1488, 1433, 1401, 1314, 1298, 1209, 1176, 1094, 989, 920, 834, 803, 750, 528, 463; GC-MS: 298.0; HRMS: 295.9412; Found: 295.9415.

4-Bromo-1-(4-bromophenyl)-4,4-difluorobutan-1-one.

Yellow solid (m.p. 57-59 °C, 74%). 1H NMR (400 MHz, CDCl$_3$) δ = 7.85 – 7.81 (m, 2H), 7.64 – 7.59 (m, 2H), 3.30 – 3.24 (m, 2H), 2.91 – 2.78 (m, 2H). 19F NMR (376 MHz, CDCl$_3$) δ = -44.14 (t, $J = 13.5$ Hz, 2F). 13C NMR (101 MHz, CDCl$_3$) δ = 195.11, 134.77, 132.07, 129.50, 128.84, 122.24 (t, $J = 304.7$ Hz), 38.57 (t, $J = 22.7$ Hz), 33.11 (t, $J = 2.8$ Hz). IR (KBr): 2960, 2919, 1693, 1586, 1568, 1484, 1433, 1399, 1315, 1299, 1206, 1176, 1101, 1070, 1041, 1011, 987, 920, 836, 801, 782, 741, 628, 557, 520, 455; GC-MS: 341.9; HRMS: 339.8909; Found: 339.8910.

4-Bromo-1-(3-chlorophenyl)-4,4-difluorobutan-1-one.

Yellow liquid (58%) 1H NMR (400 MHz, CDCl$_3$) δ = 7.95-7.92 (m, 1H), 7.89-7.82 (m, 1H), 7.59-7.53 (m, 1H), 7.46-7.42 (m, 1H), 3.33-3.26 (m, 2H), 2.92 – 2.79 (m, 2H). 19F NMR (376 MHz, CDCl$_3$) δ = -44.20 (t, $J = 13.5$ Hz, 2F). 13C NMR (101 MHz, CDCl$_3$) δ = 194.88, 137.55, 135.13, 133.52, 130.09, 128.10, 126.09, 122.16 (t, $J = 301.5$ Hz), 38.53 (t, $J = 22.7$ Hz), 33.27 (t, $J = 2.9$ Hz). IR (KBr): 3069, 2920, 1694, 1573, 1422, 1313, 1206, 1178, 1104, 1041, 998, 973, 920, 777, 721, 680, 628, 555, 525, 471; GC-MS: 298.0; HRMS: 295.9412; Found: 295.9415.

4-Bromo-1-(3-bromophenyl)-4,4-difluorobutan-1-one.

Yellow solid (m.p. 58-60 °C, 71%). 1H NMR (400 MHz, CDCl$_3$) δ = 7.87 (d, $J = 8.3$ Hz, 2H), 7.41 (d, $J = 8.3$ Hz, 2H), 3.27 – 3.20 (m, 2H), 2.87 – 2.74 (m, 2H). 19F NMR (376 MHz, CDCl$_3$) δ = -44.16 (t, $J = 13.5$ Hz, 2F). 13C NMR (101 MHz, CDCl$_3$) δ = 194.92, 140.09, 134.37, 129.41, 129.08, 122.25 (t, $J = 304.6$ Hz), 38.59 (t, $J = 22.7$ Hz), 33.13 (t, $J = 2.8$ Hz). IR (KBr): 2935, 1693, 1591, 1488, 1433, 1401, 1314, 1298, 1209, 1176, 1094, 989, 920, 834, 803, 750, 528, 463; GC-MS: 298.0; HRMS: 295.9412; Found: 295.9415.
Yellow liquid (61%) 1H NMR (400 MHz, CDCl$_3$) $\delta = 8.11 - 8.08$ (m, 1H), 7.92-7.88 (m, 1H), 7.74 – 7.70 (m, 1H), 7.41-7.35(m, 1H), 3.31 – 3.26 (m, 2H), 2.92 – 2.80 (m, 2H). 19F NMR (376 MHz, CDCl$_3$) $\delta = -44.20$ (t, $J = 13.5$Hz, 2F). 13C NMR (101 MHz, CDCl$_3$) $\delta = 194.81$, 137.73, 136.45, 131.06, 130.35, 126.54, 123.13, 122.17 (t, $J = 304.7$ Hz), 38.53 (t, $J = 22.7$ Hz), 33.26 (t, $J = 2.8$ Hz). IR (KBr): 3066, 2933, 1694, 1567, 1471, 1420, 1313, 1205, 1177, 1104, 1069, 1041, 996, 918, 775, 704, 679, 654, 627, 555; GC-MS: 341.9. HRMS: 339.8912; Found: 339.8910.

4-Bromo-4,4-difluoro-1-(4-nitrophenyl)butan-1-one.

Yellow solid (m.p. 65-67 °C, 54%). 1H NMR (400 MHz, CDCl$_3$) $\delta = 8.36 - 8.32$ (m, 2H), 8.17 – 8.12 (m, 2H), 3.42-3.36 (m, 2H), 2.96 – 2.83 (m, 2H). 19F NMR (376 MHz, CDCl$_3$) $\delta = -44.38$ (t, $J = 13.5$ Hz, 2F). 13C NMR (101MHz, CDCl$_3$) $\delta = 194.68$, 150.58, 140.36, 129.10, 124.00, 121.94 (t, $J = 303.9$ Hz), 38.42 (t, $J = 22.9$ Hz), 33.75 (t, $J = 2.8$ Hz). IR (KBr): 3112, 3081, 2922, 2859, 1698, 1604, 1531, 1433, 1409, 1348, 1317, 1207, 1102, 1042, 990, 922, 857, 743, 687, 630, 559, 549, 509; GC-MS: 307.0; HRMS: 306.9651; Found: 306.9656.

4-Bromo-4,4-difluoro-1-(naphthalen-2-yl)butan-1-one.

Yellow solid (m.p. 76-78 °C, 57%). 1H NMR (400 MHz, CDCl$_3$) $\delta = 8.48$ (s, 1H), 8.03 (dd, $J = 8.7$, 1.6 Hz, 1H), 7.98 (d, $J = 8.2$ Hz, 1H), 7.90 (t, $J = 8.2$ Hz, 2H), 7.65 – 7.55 (m, 2H), 3.47 – 3.41 (m, 2H), 2.99 – 2.87 (m, 2H). 19F NMR (376 MHz, CDCl$_3$) $\delta = -43.93$ (t, $J = 13.6$ Hz, 2F). 13C NMR (101 MHz, CDCl$_3$) $\delta = 196.06$, 135.74, 133.38, 132.40, 129.83, 129.59, 128.76, 128.65, 127.81, 126.97, 123.53, 122.50 (t, $J = 304.7$ Hz), 38.82 (t, $J = 22.6$ Hz), 33.19 (t, $J = 2.7$Hz). IR
(KBr): 3061, 2958, 2934, 1689, 1628, 1596, 1470, 1377, 1352, 1310, 1174, 1101, 1041, 989, 944, 914, 862, 823, 747, 708, 638, 625, 595, 550, 476; GC-MS: 312.0; HRMS: 311.9963; Found: 311.9961.

4-Bromo-1-cyclohexyl-4,4-difluorobutan-1-one.

Faint yellow liquid (65%) 1H NMR (400 MHz, CDCl₃) δ = 2.78 – 2.71 (m, 2H), 2.71 – 2.58 (m, 2H), 2.36 (ddd, J = 11.2, 7.3, 3.3 Hz, 1H), 1.90 – 1.72 (m, 4H), 1.72 – 1.61 (m, 1H), 1.40 – 1.12 (m, 5H). 19F NMR (376 MHz, CDCl₃) δ = -44.14 (t, J = 13.4 Hz, 2F). 13C NMR (101 MHz, CDCl₃) δ = 210.00, 122.35 (t, J = 304.7 Hz), 50.74, 38.21 (t, J = 22.5 Hz), 34.70 (t, J = 2.6 Hz), 28.35, 25.64, 25.47. IR (KBr): 2933, 2856, 1713, 1450, 1315, 1204, 1102, 996, 923, 887, 669, 628, 550; GC-MS: 268.1. HRMS: 268.0276; Found: 268.0274.

References:
1H NMR, 19F NMR and 13C NMR Spectra

1H NMR spectrum of compound of 5a

1H NMR spectrum of compound of 5b
1H NMR spectrum of compound of 5c

1H NMR spectrum of compound of 5d
1H NMR spectrum of compound of 5e

19F NMR spectrum of compound of 5e
1H NMR spectrum of compound of 5f

1H NMR spectrum of compound of 5g
1H NMR spectrum of compound of 5h

1H NMR spectrum of compound of 5i
1H NMR spectrum of compound of 5j

1H NMR spectrum of compound of 5k
1H NMR spectrum of compound of 51

1H NMR spectrum of compound of 1a
19F NMR spectrum of compound of 1a

1H NMR spectrum of compound of 1b
19F NMR spectrum of compound 1b

1H NMR spectrum of compound 1c
$^{19}\text{F NMR spectrum of compound of 1c}$

$^{1}\text{H NMR spectrum of compound of 1d}$
19F NMR spectrum of compound of 1d

1H NMR spectrum of compound of 1e
19F NMR spectrum of compound of 1e

1H NMR spectrum of compound 1f
19F NMR spectrum of compound of 1f

1H NMR spectrum of compound of 1g
19F NMR spectrum of compound of 1g

1H NMR spectrum of compound of 1h
19F NMR spectrum of compound of 1h

1H NMR spectrum of compound of 1i
19F NMR spectrum of compound of 1i

1H NMR spectrum of compound 1j
19F NMR spectrum of compound of 1j

1H NMR spectrum of compound of 1k
^{19}F NMR spectrum of compound of 1k

^{1}H NMR spectrum of compound of 1l

^{19}F NMR spectrum of compound of 1l
13C NMR spectrum of compound of 11
1H NMR spectrum of compound of 2a

19F NMR spectrum of compound of 2a
13C NMR spectrum of compound of 2b

1H NMR spectrum of compound of 2c
19F NMR spectrum of compound of 2c

13C NMR spectrum of compound of 2c
1H NMR spectrum of compound of 2d

19F NMR spectrum of compound of 2d
13C NMR spectrum of compound of 2d

1H NMR spectrum of compound of 2e
19F NMR spectrum of compound of 2e

13C NMR spectrum of compound of 2e
1H NMR spectrum of compound of 2f

19F NMR spectrum of compound of 2f
13C NMR spectrum of compound of 2f

1H NMR spectrum of compound of 2g
19F NMR spectrum of compound of 2g

13C NMR spectrum of compound of 2g
1H NMR spectrum of compound of 2h

19F NMR spectrum of compound of 2h
13C NMR spectrum of compound of 2h

1H NMR spectrum of compound of 2i
19F NMR spectrum of compound of $2i$

13C NMR spectrum of compound of $2i$
^{1}H NMR spectrum of compound of 2j

^{19}F NMR spectrum of compound of 2j
13C NMR spectrum of compound of 2j

1H NMR spectrum of compound of 2k
19F NMR spectrum of compound of $2k$

13C NMR spectrum of compound of $2k$
1H NMR spectrum of compound of 2I

19F NMR spectrum of compound of 2I
13C NMR spectrum of compound of 21

1H NMR spectrum of compound of 3a
19F NMR spectrum of compound of 3a

1H NMR spectrum of compound of 3b
19F NMR spectrum of compound of 3b

1H NMR spectrum of compound of 3c
19F NMR spectrum of compound of 3c

13C NMR spectrum of compound of 3c
1H NMR spectrum of compound of 3d

19F NMR spectrum of compound of 3d
13C NMR spectrum of compound of 3d

1H NMR spectrum of compound of 3e
$^1^9$F NMR spectrum of compound of 3e

$^{1^3}$C NMR spectrum of compound of 3e
1H NMR spectrum of compound of 3f

19F NMR spectrum of compound of 3f
13C NMR spectrum of compound of 3f

1H NMR spectrum of compound of 3g
^{19}F NMR spectrum of compound of 3g

^{13}C NMR spectrum of compound of 3g
1H NMR spectrum of compound of 3h

19F NMR spectrum of compound of 3h
13C NMR spectrum of compound of 3h

1H NMR spectrum of compound of 3i
19F NMR spectrum of compound of 3i

13C NMR spectrum of compound of 3i
1H NMR spectrum of compound of 3j

19F NMR spectrum of compound of 3j
13C NMR spectrum of compound of $3j$

1H NMR spectrum of compound of $4a$
19F NMR spectrum of compound of 4a

13C NMR spectrum of compound of 4a
1H NMR spectrum of compound of 4b

19F NMR spectrum of compound of 4b
13C NMR spectrum of compound of 4b

1H NMR spectrum of compound of 4c
19F NMR spectrum of compound of 4c

13C NMR spectrum of compound of 4c
1H NMR spectrum of compound of 4d

19F NMR spectrum of compound of 4d
13C NMR spectrum of compound of 4d

1H NMR spectrum of compound of 4e
19F NMR spectrum of compound of 4e

13C NMR spectrum of compound of 4e
1H NMR spectrum of compound of 4f

19F NMR spectrum of compound of 4f
\(^{13}\)C NMR spectrum of compound of 4f

\(^1\)H NMR spectrum of compound of 4g
$^{19}\text{F} \text{ NMR spectrum of compound of } 4\text{g}$

$^{13}\text{C} \text{ NMR spectrum of compound of } 4\text{g}$
1H NMR spectrum of compound of 4h

19F NMR spectrum of compound of 4h
13C NMR spectrum of compound of 4h

1H NMR spectrum of compound of 4i
19F NMR spectrum of compound of 4i

13C NMR spectrum of compound of 4i
1H NMR spectrum of compound of 4j

19F NMR spectrum of compound of 4j
13C NMR spectrum of compound of 4j