Supplementary Information

Mechanosynthesis of pharmaceutically relevant sulfonyl-(thio)ureas

Davin Tan, Vjekoslav Štrukil, Cristina Mottillo and Tomislav Friščić*

McGill University, Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, 801 Sherbrooke St., H3A 0B8 Montréal, Québec, Canada.

*E-mail: tomislav.friscic@mcgill.ca

Table of contents

1. Experimental Section	1
1.1 Mechanosynthesis by copper-catalysed coupling	2
1.2 Base-assisted mechanosynthesis using K ₂ CO ₃	2
1.3 Gram-scale synthesis	2
1.4 Pathway B for the synthesis of tolbutamide (1a)	3
2. Summary of ¹ H and ¹³ C NMR and HR-MS data	3
3. Selected Fourier-transform attenuated total reflectance (FTIR-ATR) spectra	6
4. Selected ¹ H and ¹³ C NMR spectra	13

1. Experimental Section

Mechanosynthesis of sulfonyl-(thio)ureas was carried out in a Retsch MM400 mill at a frequency of 30 Hz using a 10 mL stainless steel milling jar and a single ball made of the same material (10 mm diameter). Gram-scale synthesis reactions were carried out in a 25 mL stainless steel milling jar. ¹H and ¹³C NMR spectra were recorded on a Varian MERCURY plus-300 or plus-400 spectrometer (300 or 400 MHz) with chemical shifts (δ) given in parts per million (ppm). The molecular weights of the pure products were determined using high-resolution mass spectra (HRMS). FT-IR spectra were collected using a Fourier Transform-Infrared Attenuated Total Reflection PerkinElmer UATR Two spectrometer in the range 400 cm⁻¹ to 4000 cm⁻¹.

1.1 Mechanosynthesis by copper-catalysed coupling

A mixture of 0.50 mmol of sulfonamide, 0.50 mmol isocyanate (1 equiv), 0.025 mmol (5% mol) of CuCl and nitromethane as the grinding liquid (η = 0.25 mL mg⁻¹) was milled at a frequency of 30 Hz for 2 hrs. After the reaction, 3 mL of deionized water and 20 mg of Na₂H₂EDTA·2H₂O were added to the green coloured crude mixture which was then milled for further 10 minutes at a frequency of 25 Hz. The resulting white product was purified by vacuum filtration and dried in air in all cases, except for glibenclamide **3b** where the formation of the sideproduct dicyclohexylurea requires chromatography.

1.2 Base-assisted mechanosynthesis using K₂CO₃

A mixture of 0.50 mmol of sulfonamide and 0.50 mmol of K_2CO_3 (1 equiv) was milled at a frequency of 30 Hz for 1hr. Then, 0.50 mmol isocyanate or isothiocyanate (1 equiv) was added and subsequently milled for another 2 hrs at 30 Hz. 20 mL of deionized water and dilute HCl was added to the crude mixture. The pH of the resultant suspension was set to pH=3 using pH paper and left to stir for 15 mins. The product was isolated via vacuum filtration and dried in air in all cases, except for the sulfonyl-urea **1d** where the formation of the sideproduct diphenylurea requires chromatography.

1.3 Gram-scale synthesis

For gram-scale synthesis of tolbutamide (1a) 5.0 mmol of sulfonamide, 5.0 mmol isocyanate (1 equiv), 0.25 mmol (5% mol) of CuCl and nitromethane as the grinding liquid (η = 0.25 mL mg⁻¹) was milled at a frequency of 30 Hz for 2 hrs. The reaction was carried out using two 10 mm diameter stainless steel balls in a 25 mL stainless steel jar. After the reaction, 15 mL of deionised water and 200 mg of Na₂H₂EDTA.2H₂O were added to the green coloured crude mixture which was then milled for 10 minutes more at a frequency of 25 Hz. The white product was purified via vacuum filtration and dried in air.

For the gram-scale synthesis of **1b**, a mixture of 5.0 mmol of sulfonamide and 5.0 mmol of K_2CO_3 (1 equiv) was milled at a frequency of 30 Hz for 1 hour. Then, 5.0 mmol isothiocyanate (1 equiv) was added and subsequently milled for another 2 hrs at 30 Hz. 20

mL of deionized water and dilute HCl were added to the crude mixture. The pH of the resultant suspension was set to pH=3 using pH paper and left to stir for 15 mins. The product was purified via vacuum filtration and dried in air.

1.4 Pathway B for the synthesis of tolbutamide (1a)

The mechanosynthesis of tolbutamide 1a (93% yield) was also explored by milling *p*-toluenesulfonyl-isocyanate and *n*-butyl-amine (retrosynthetic pathway B in the main paper). The high reactivity and moisture sensitive nature of *p*-toluenesulfonyl-isocyanate meant that reaction mixture preparation had to be done in a glovebox. Sulfonyl-isocyanates (mostly liquids) in general are less ideal, in terms of ease of handling and toxicity, as compared to sulfonamides (mostly solids).

2. Summary of ¹H and ¹³C NMR and HR-MS data

N-(butylcarbamoyl)-4-methylbenzenesulfonamide 1a

White powder (92% yield); ¹**H-NMR** (400 MHz, DMSO-*d6*) δ 0.79 (t, J = 7.20Hz, 3H), δ 1.11-1.18 (m, 2H), δ 1.23-1.30 (m, 2H), δ 2.37 (s, 3H), δ 2.88-2.93 (m, 2H), δ 6.41 (t, J = 5.80Hz, 1H), δ 7.38 (d, J = 8.00Hz, 2H), 7.75 (d, J = 7.6Hz, 2H), δ 10.45 (s, 1H); ¹³**C-NMR** (300 MHz, DMSO-*d6*) δ 14.0, 19.7, 21.5, 31.7, 39.2, 127.6, 129.8, 137.9, 143.9, 151.7. **HRMS**: Calculated for C₁₂H₁₈N₂NaO₃S [M+Na]: 293.0930; measured: 293.0925.

4-methyl-N-(phenylcarbamothioyl)benzenesulfonamide 1b

White powder (91% yield); ¹**H-NMR** (400 MHz, DMSO-*d6*) δ 2.38 (s, 3H), δ 7.16 (t, J = 7.26Hz, 1H), δ 7.39-7.43 (m, 4H), δ 7.28-7.36 (m, 2H), δ 7.81 (d, J = 8.37Hz, 2H), δ 10.14 (s, 1H); ¹³C-NMR (300 MHz, DMSO-*d6*) δ 21.5, 119.4, 124.5, 126.2, 128.2, 129.0, 129.9, 138.5, 144.3, 178.0; **HRMS**: Calculated for C₁₄H₁₄N₂NaO₂S₂ [M+Na]: 329.0389; measured: 329.0390.

4-methyl-N-(4-nitrophenylcarbamothioyl)benzenesulfonamide 1c

Yellow powder (80% yield); ¹**H-NMR** (400 MHz, DMSO-*d6*) δ 2.31 (s, 3H), δ 7.18 (d, J = 8.12Hz, 2H), δ 7.63 (d, J = 8.40Hz, 2H), 7.95-8.04 (m, 4H), δ 9.66 (s, 1H); ¹³**C-NMR** (300 MHz, DMSO-*d6*) δ 21.1, 118.6, 124.9, 127.9, 128.3, 140.0, 142.1, 147.8, 183.0; **HRMS**: Calculated for C₁₄H₁₂N₃O₄S₂ [M+Na]: 350.0275; measured: 350.0272.

4-methyl-N-(phenylcarbamoyl)benzenesulfonamide 1d

¹**H-NMR** (400 MHz, DMSO-*d6*) δ 2.37, δ 6.99 (t, J = 4.00 Hz, 1H), δ 2.37 δ 2.37 δ 7.37-7.41 (m, 4H), δ 7.20-7.33 (m, 2H), δ 7.82 (d, J = 7.84Hz, 2H), δ 8.78 (s, 1H), δ 10.63 (s, 1H); ¹³**C-NMR** (300 MHz, DMSO-*d6*) δ 21.5, 119.3, 123.5, 126.1, 127.9, 129.9, 137.7, 138.6, 144.1, 150.0 ppm. HRMS: Calculated for C₁₄H₁₄N₂NaO₃S [M+Na]: 313.0617; measured: 313.0614.

N-(cyclohexylcarbamoyl)-4-methylbenzenesulfonamide 1e

White powder (88% yield); ¹**H-NMR** (400 MHz, DMSO-*d6*) δ 1.02-1.25 (m, 5H), δ 1.22-1.66 (m, 5H), δ 2.37 (s, 3H), δ 3.25 (d, J = 7.28Hz, 1H), δ 6.30 (d, J = 8.40Hz, 1H) δ 7.38 (d, J = 8.00Hz, 2H), 7.75 (d, J = 7.60Hz, 2H), δ 10.26 (s, 1H); ¹³**C-NMR** (300 MHz, DMSO-*d6*) δ 21.5, 24.6, 25.4, 32.7, 48.5, 127.6, 129.9, 137.9, 144.0, 150.9. **HRMS**: Calculated for C₁₄H₂₀N₂NaO₃S [M+Na]: 319.1087; measured: 319.1082.

4-methyl-N-(propylcarbamoyl)benzenesulfonamide 1f

White powder (86% yield) ¹**H-NMR** (400 MHz, DMSO-*d6*) δ 0.73 (t, J = 7.00Hz, 3H), δ 1.28-1.32 (m, 2H), δ 2.37 (s, 3H), δ 2.84-2.91 (m, 2H), δ 6.42 (t, J = 5.80Hz, 1H), δ 7.38 (d, J = 8.00Hz, 2H), 7.75 (d, J = 7.6Hz, 2H), δ 10.46 (s, 1H); ¹³**C-NMR** (300 MHz, DMSO-*d6*) δ 11.4, 21.4, 23.0, 41.2, 127.6, 129.7, 137.7, 143.7, 151.7; **HRMS**: Calculated for C₁₁H₁₆N₂NaO₃S [M+Na]: 279.0774; measured: 279.0764.

4-chloro-N-(propylcarbamoyl)benzenesulfonamide 2a

White powder (92% yield); ¹**H-NMR** (400 MHz, DMSO-*d6*) δ 0.73 (t, *J* = 7.48Hz, 3H), δ 1.26-1.35 (m, 2H) δ 2.85-2.89 (m, 3H), δ 6.51 (t, *J* = 5.80Hz, 1H), δ 7.67 (d, *J* = 8.36Hz, 2H), δ 7.88 (d, *J* = 7.96Hz, 2H), δ 10.66 (s, 1H); ¹³**C-NMR** (300 MHz, DMSO-*d6*) δ 11.5, 22.9, 41.4, 129.6, 129.7, 138.5; **HRMS**: Calculated for C₁₀H₁₃ClN₂NaO₃S [M+Na]: 299.0228; measured: 299.0229.

N-(butylcarbamoyl)-4-chlorobenzenesulfonamide 2b

Off-white powder (92% yield); ¹**H-NMR** (400 MHz, DMSO-*d6*) δ 0.79 (t, J = 7.20Hz, 3H), δ 1.10-1.18 (m, 2H), δ 1.22-1.30 (m, 2H), δ 2.88-2.93 (m, 2H), δ 6.50 (t, J = 5.80Hz, 1H), δ 7.67 (d, J = 8.00Hz, 2H), 7.88 (d, J = 7.6Hz, 2H), δ 10.64 (s, 1H); ¹³**C-NMR** (300 MHz, DMSO-*d6*) δ 13.9, 19.7, 31.1, 31.7, 129.6, 129.7, 138.4, 139.6, 151.7; **HRMS**: Calculated for C₁₁H₁₅ClN₂NaO₃S [M+Na]: 313.0384; measured: 313.0376.

4-chloro-N-(cyclohexylcarbamoyl)benzenesulfonamide 2c

White powder (91% yield); ¹H-NMR (400 MHz, DMSO-*d6*) δ 1.03-1.22 (m, 5H), δ 1.46-1.66 (m, 5H), δ 3.26 (d, J = 7.28Hz, 1H), δ 6.39 (d, J = 8.40Hz, 1H) δ 7.66 (d, J = 8.28Hz, 2H), 7.88 (d, J = 8.64Hz, 2H), δ 10.44 (s, 1H)¹³C-NMR (300 MHz, DMSO-*d6*) δ 24.6, 25.4, 32.7, 48.6, 129.6, 129.7, 138.4; HRMS: Calculated for C₁₃H₁₇ClN₂NaO₃S [M+Na]: 339.0541; measured: 339.0541.

5-chloro-2-methoxy-N-(4-sulfamoylphenethyl)benzamide 3a

White powder (74% yield); ¹**H-NMR** (400 MHz, DMSO-*d6*) δ 2.89 (t, J = 7.04Hz, 2H), δ 3.48-3.53 (m, 2H), δ 3.79 (s, 3H) δ 7.14 (d, J = 8.96Hz, 2H), δ 7.29 (s, 2H), δ 7.43 (d, J = 8.24Hz, 2H), δ 7.47-7.50 (m, 1H), δ 7.62 (d, J = 2.84Hz, 1H), δ 7.74 (d, J = 8.12Hz, 2H), δ 8.25 (t, J = 5.52Hz, 1H); ¹³**C-NMR** (300 MHz, DMSO-*d6*) δ 35.1, 56.7, 114.6, 124.8, 125.3, 126.1, 129.6, 130.0, 131.2, 142.5, 144.1, 156.1, 164.0. **HRMS**: Calculated for C₁₆H₁₇ClN₂NaO₄S [M+Na]: 391.0490; measured: 391.0478.

White powder; ¹**H-NMR** (400 MHz, DMSO-*d6*) δ 1.03-1.22 (m, 5H), δ 1.46-1.66 (m, 5H), 2.89 (t, *J* = 7.04Hz, 2H),), δ 3.26 (d, *J* = 7.28Hz, 1H), δ 3.48-3.53 (m, 2H), δ 3.79 (s, 3H) δ 7.14 (d, *J* = 8.96Hz, 2H), δ 7.43 (d, *J* = 8.24Hz, 2H), δ 7.47-7.50 (m, 1H), δ 7.62 (d, *J* = 2.84Hz, 1H), δ 7.74 (d, *J* = 8.12Hz, 2H), δ 8.25 (t, *J* = 5.52Hz, 1H); ¹³C-NMR (300 MHz, DMSO-*d6*) δ 24.6, 25.4, 31.2, 32.7, 35.1, 48.5, 56.7, 114.6, 124.7, 125.3, 127.7, 129.8, 129.9, 131.9, 138.6, 145.7, 150.8, 156.1, 164.0; HRMS: Calculated for C₂₃H₂₈ClN₃NaO₅S [M+Na]: 516.1330; measured: 516.1331.

3. Selected Fourier-transform attenuated total reflectance (FTIR-ATR) spectra

According to powder X-ray diffraction the crude reaction mixtures were amorphous and we were not able to detect product formation by solid-state diffraction methods. However, comparisons of FTIR-ATR spectra of crude reaction mixtures from both base-assisted and copper-catalysed reactions showed that all of the iso(thio)cyanate had been consumed by the disappearance of the characteristic absorption band around 2200 cm⁻¹.

Figure S1. FTIR-ATR spectra for *n*-butylisocyanate reactant and the freshly prepared crude reaction mixture from the synthesis of tolbutamide (1a) via base-assisted and copper-catalysed routes. The disappearance of the isocyanate stretching band at 2200 cm⁻¹ is evident in both cases.

Figure S2. FTIR-ATR spectra for phenyl-isothiocyanate reactant and the freshly prepared crude reaction mixture from the synthesis of the sulfonyl-thiourea **1d** via base-assisted mechanochemical route. The disappearance of the thioisocyanate stretching band at ca. 2000 cm⁻¹ is evident.

Figure S3. FTIR-ATR spectra for cyclohexyl-isocyanate reactant and the freshly prepared crude reaction mixture from the synthesis of glibenclamide (**3b**) via copper-catalysed mechanochemical route. The disappearance of the isocyanate stretching band at ca. 2000 cm⁻¹ is evident.

FTIR-ATR spectrum of N-(butylcarbamoyl)-4-methylbenzenesulfonamide 1a

FTIR-ATR spectrum of 4-methyl-N-(phenylcarbamothioyl)benzenesulfonamide 1b

FTIR-ATR spectrum of 4-methyl-N-(4-nitrophenylcarbamothioyl)benzenesulfonamide 1c

FTIR-ATR spectrum of 4-methyl-N-(phenylcarbamoyl)benzenesulfonamide 1d

FTIR-ATR spectrum of N-(cyclohexylcarbamoyl)-4-methylbenzenesulfonamide 1e

FTIR-ATR spectrum of 4-methyl-N-(propylcarbamoyl)benzenesulfonamide 1f

FTIR-ATR spectrum of 4-chloro-N-(propylcarbamoyl)benzenesulfonamide 2a

N-(butylcarbamoyl)-4-chlorobenzenesulfonamide 2b

4-chloro-N-(cyclohexylcarbamoyl)benzenesulfonamide 2c

4. Selected ¹H and ¹³C NMR spectra

Figure S4. ¹H (top) and ¹³C (bottom) NMR spectra for sulfonyl-urea 1a (tolbutamide).

Figure S5. 1 H (top) and 13 C (bottom) NMR spectra for sulfonyl-thiourea 1b.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Figure S6. ¹H (top) and ¹³C (bottom) NMR spectra for sulfonyl-thiourea 1c.

Figure S7. ¹H (top) and ¹³C (bottom) NMR spectra for sulfonyl-urea **1d**. In this case the competing side-reaction of isocyanate coupling to form diphenylurea was difficult to avoid and the crude product contained 93% yield of **1d**, calculated from the ¹H NMR spectrum.

Figure S8. ¹H (top) and ¹³C (bottom) NMR spectra for sulfonyl-urea 1e.

Figure S9. ¹H (top) and ¹³C (bottom) NMR spectra for sulfonyl-urea 1f.

Figure S10. ¹H (top) and ¹³C (bottom) NMR spectra for sulfonyl-urea 2a (chlorpropamide).

Figure S11. ¹H (top) and ¹³C (bottom) NMR spectra for sulfonyl-urea 2b.

Figure S12. ¹H (top) and ¹³C (bottom) NMR spectra for sulfonyl-urea 2c.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Figure S13. ¹H (top) and ¹³C (bottom) NMR spectra for the glibenclamide precursor **3a**, obtained by mechanochemical amide synthesis.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Figure S14. ¹H (top) and ¹³C (bottom) NMR spectra for glibenclamide (**3b**) obtained by mechanochemical amide coupling and mechanochemical copper-catalysed coupling.